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Abstract

Many papers have highlighted that some macroeconomic time series present
structural instability, for example NIPA decompositions of real GDP, money,
credit, interest rates and stock prices series as analyzed in Stock and Watson
(2003). The causes of these remarkable changes in the reduced form properties of
the macroeconomy is a debated argument. In literature this issue is handled with
three main econometric methodologies: structural breaks, regime-switching and
time-varying parameters (TVP). Nevertheless all these approaches need some ex
ante structure in order to model the change.
Based on the Recurrent Chinese Restaurant Process, we have specified a model
for an autoregressive process and estimated it via particle filter assuming a con-
jugate prior, i.e. we have applied the idea of evolutionary cluster to the study of
the instability in output and inflation for US after War World II. This procedure
displays some advantages, in particular does not require a strong ex ante struc-
ture in order to neither detect the breaks nor manage the parameters’ evolutions,
avoiding the main drawbacks of the standard methodologies. The application of
the cluster procedure to GDP growth and inflation rate for US from 1957 to 2011
shows a good ability in fit the data, producing a clusterization of the time series
that could be interpreted in terms of economic history and recovering the key data
features without making restrictive assumptions.
Considering the open debate on the source of the Great Moderation, i.e. Bad
Policy and/or Bad Luck, under the caveat that until now we have not studied
a VAR or a structural form, this approach leads to conclusions that support the
findings of Cogley and Sargent (2001, 2005): the presence of both Bad Policy and
Bad Luck. In fact there are evidences of changes over time in both volatility and
autoregressive coefficients for the AR specification presents, even if the latter are
less marked.

JEL: C18 C22 C51 E17

∗chiara.perricone@gmail.com



1 Introduction
Many papers have highlighted that some macroeconomic time series present

structural instability, the main example is Stock and Watson (2003), where the
authors consider data on 168 quarterly U.S. macroeconomic time series, from 1959
to 2001, studying both reduced and structural form. In particular we are going
to consider the annualized quarterly series for output and inflation for the period
1957Q1− 2011Q3 as in figure 1. The shaded areas represent the NBER recessions
and the vertical red lines mark the appointment dates of the Federal Reserve
chairmen1. The instability, i.e the heterogeneity in both level and volatility of
the time series over the studied period, is highlighted by the summary statistics
in table 1: some stylized facts emerge. Over the ′60s inflation was relatively
low and stable, then during the late ′60s it started rising and run amok in the
late ′70s. At the same time the economy experienced a deep and long recession
following the oil crisis of 1974. During the first half of the ′80s the economy
went through a difficult disinflation: inflation went back to the levels that were
prevailing before the ′70s at the cost of two severe recessions. From the mid-′80s,
until the recent financial crisis, the economy has been characterized by remarkable
economic stability. Economists like to refer to this last period, after 1984, with the
term ‘Great Moderation’, while the name ‘Great Inflation’ is often used to label
the turmoil of the ′70s. The contrast between the two periods is evident.
The causes of these remarkable changes in the reduced form properties of the
macroeconomy is a debated argument: some authors suggest that these changes
are the result of exogenous shocks, the so call ‘Bad Luck’ interpretation, whereas
some others claim that from the mid-′80s the policy makers have reached a better
understanding of the economy such that they were able to reduce the volatility
of inflation and interest rate. This latter interpretation goes under the name
of ‘Bad Policy’ and it is supported by the observation that the sharp decline in
inflation started shortly after Paul Volcker was appointed chairman of the Federal
Reserve in August 1979. It is tempting to link the two events and conclude that a
substantial change in the conduct of monetary policy must have occurred in those
years.

Output Growth Inflation Rate
Period Mean (%) Standard Dev (%) Mean (%) Standard Dev (%)

1947 - 2011 3.1 3.9 3.3 2.7
1947 - 1959 3.7 5.5 2.2 3.0
1960 - 1969 4.0 3.5 2.3 1.4
1970 - 1983 2.9 4.8 6.4 2.6
1984 - 1992 2.9 2.1 3.4 1.1
1993 - 2011 2.5 2.7 2.0 1.4

Table 1: Summary statistics for output growth and inflation rate.

Given these stylized facts, there is a growing literature that allows for parame-
ters instability and many declinations of change-point modeling have been applied
to the study of instability in U.S. real activity and inflation, generating heteroge-
neous and contradictory results. Let us considering only few examples, in order
to foresee the variety of methodologies and results.
Kim and Nelson (1999) and Kim, Nelson and Piger (2004), assuming a single

1Thomas B. McCabe (April 15, 1948 - April 2, 1951); William McChesney Martin, Jr. (April 2,
1951 - February 1, 1970); Arthur F. Burns (February 1, 1970 - January 31, 1978); G. William Miller
(March 8, 1978 - August 6, 1979); Paul A. Volcker (August 6, 1979 - August 11, 1987); Alan Greenspan
(August 11, 1987 - January 31, 2006); Ben S. Bernanke (February 1, 2006 - )
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Figure 1: Output growth 1(a) and inflation rate 1(b), 1947Q2 - 2011Q3.

change-point, investigate breaks in various measures of GDP. For most of the
measures they consider, the likelihood of a break is overwhelming and Bayesian
and frequentist analyses produce very similar results. Whereas Blanchard and
Simon (2001) present evidences that the decline in variance might have been more
gradual, as a part of an ongoing trend, discarding the idea of a single break point.
Clark (2003) supports the presence of time-varying volatility in inflation and Sims
and Zha (2006), using Markov switching VAR, identify changes in the volatility of
the structural disturbance as the key driven behind the stabilization of the U.S.
economy. Cogley and Sargent (2001, 2005) find variation in both conditional mean
and conditional variance for the time series of inflation. Using a battery of break
tests applied to time-varying autoregressive models Stock (2001) obtains little ev-
idence for variation in the conditional mean of inflation, as well as in Stock and
Watson (2003), where the authors conclude that for variables that measure the
real economic activity, the moderation generally is associated with reductions in
the conditional variance in the time-series models, not with changes in the con-
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ditional means. This result is supported by Primiceri (2005), who concludes that
there is a sensible variation in the conditional variance but little in the conditional
mean.
In the cited studies the issue of structural instability in macroeconomics time series
is handled with three main econometric methodologies: structural breaks, regime-
switching and time-varying parameters (TVP). All these models have advantages
and drawbacks.
The main advantage of models with a small number of structural breaks, typically
from 1 to 3, is that they do not restrict the change’s magnitude, that can hap-
pen after a break, in the coefficients used to model the time series but implicitly
assume that after the last estimated break in the sample, there will be no more
breaks. Moreover in some cases the researcher has to impose the number or the
dates of breaks.
In contrast, in the TVP models, which ensure lot of flexibility, the research impli-
citly assumes that there is probability of a break equal to 1 in the next observation.
Another disadvantage of the TVP model is that the size of the break is severely
limited by the assumption that coefficients evolve according to a random walk.
Given these observations Koop and Potter (2007), KP henceforth, suggest a new
model, drawn from their beliefs on some desirable features for a change-point
model. They propose the following criteria:

1. The number of regimes and their maximum duration should not be restricted
ex ante.

2. The regime duration distribution should not be restricted to be constant or
monotonically decreasing/increasing.

3. The parameters characterizing a new regime can potentially depend on the
parameters of the old regime.

Moreover, for the empirical evaluation of these models, there are other two points
to consider:

4. Assuming a Bayesian approach, the prior distribution of the parameters in
each regime should, if possible, be conjugate to the likelihood to minimize
the computational complexity.

5. The change-point model should be easy to update in real time as new data
arrive.

With respect to KP, we would like to add two more ideas:

6. The estimation of a time-varying parameters does not need to imply that in
every time there is a change in regime.

7. Considering a time-varying estimation, the magnitude of the changes should
not be big inside the same regime.

8. The number of regimes and their temporal boundary, without imposing any
restrictions, should be easily to interpret from the economic point of view.

It can immediately be seen that standard implementations of the TVP models
and models with small numbers of breaks do not have these features.
Therefore, using these criteria as building blocks, we suggest an idea, based on the
Recurrent Chinese Restaurant Process (RCRP) and the particle filter procedure,
which applies the notion of evolutionary cluster to the study of instability in time
series.
An observation at time t is characterized by two informations: a cluster belonging
and a set of parameters that identify the applied model. we assume that two
observations of a time series belong to the same cluster, or regime2, if the param-

2With a slight abuse of notation, we use the terms ‘cluster’ and ‘regime’ interchangeably in the
paper.
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eters that characterized the assumed model are ‘close’ to each others. Whereas
if the set of parameters at time t, or a subset of it, is different with respect to
the set of parameters at time t − h, then the observations yt and yt−h belong to
different clusters. One or more observations belong to each cluster, and therefore
one or more set of parameters are associated to a specific cluster, assuming that
inside the same regime the parameters that define different observations could not
significantly differ. In order to summarize the informations on the parameters,
the vector of coefficients representative a regime is the centroid of all parameters
identifying observations that belong to a specific cluster.
This approach present some advantages with respect to the previously cited method-
ologies. With respect to the structural breaks analysis, we don’t need to impose
any ex ante knowledge on the number or the dates of breaks. In opposition with the
regime switching approach, as well as with respect to KP, we don’t need to impose
a structure on the evolution or the duration of regimes. And finally, comparing
this methodology with the TVP, I do not assume an evolutionary mechanism com-
mon to all periods that drives the coefficients from one regime to another. In fact
the parameters’ evolution is driven by different mechanism within and between
clusters. If yt−1 and yt belong to the same regime the new set of parameters is
obtained from the set at the previous time, evolving with the Metropolis kernel.
On contrary, if the two observations belong to different clusters, the parameters
at time t will be drawn, independently to the past, from a based distribution. In-
deed since the transition mechanism does not need to move the parameters from
a regime to another and given the assumption of parameters’ homogeneity inside
clusters, the volatility of the parameters’ evolution mechanism is lower with re-
spect to what you need in a standard TVP model, where, as a drawback, the size
of the break is severely limited by the assumption that coefficients evolve accord-
ing to a random walk.
Moreover, with this approach, the cluster could be recurrent, i.e. the time se-
ries could belong to a cluster which it had previously visited, without imposing a
monotonic movement between clusters or a single jump, i.e. the series could jump
from cluster j to, for example, cluster j − 2, where j > 2.
For the estimation procedure, as KP, we use Bayesian methods, which are attrac-
tive for change-point models since they allow for flexible relationships between
parameters in various regimes and are computationally simple.
The empirical analysis we perform is based on the GDP growth and the inflation
rate as measured by the PCE deflator from 1957 Q4 through 2011 Q3 for U.S.,
both at an annual rate. The assumed model for both variables is an AR(2) with
an intercept, as in KP.
The application of the evolutionary cluster procedure to US data shows a good
ability in fit the observed values, moreover this methodology produces a clusteri-
zation of the time series that could be interpreted in terms of economic history
and it is able to recover key data features without making restrictive assumptions,
as in ‘one-break’ or TVP models. In particular the model is able to replicate the
decreasing in volatility for both time series, underlining the relation between styli-
zed facts and episodes like the Fed’s chairmen appointment or the end of specific
recession periods. It is interesting that the model assigns the observations of the
first ten years of the Great Moderation to two different clusters: a regime goes
from 1983 to 1987, whereas the observations between 1987 and 1992 belong to
another cluster. Nevertheless the posterior modes for the estimations of the first
coefficient in the AR(2) model are equal in the two regimes. This result can be
interpreted as a clue that the Fed’s target for the monetary policy change during
the Great Moderation and that this policy was pursued under both Volcker’s and
Greenspan’s leadership.
Considering the open debate on the source of Great Moderation period, under
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the caveat that until now we have not studied a VAR or a structural form, this
approach presents conclusions that support Cogley and Sargent (2001, 2005) find-
ings, suggesting changes in both volatility and coefficients, even if the latter are
less marked.
The chapter is structured as follow: in Section II we recall some theoretical notions
that are the building blocks of the main process used to construct the model, the
so called Recurrent Chinese Restaurant Process. In Section III and IV the model
and the inference methodology are specified, whereas in Section V we present
the results for the macroeconomic series of interest. Finally the conclusions and
further work in Section VI.

2 The theoretical background: from the Dirichelt
Process to the Recurrent Chinese Restaurant Pro-
cess

In this section we are going to introduce the Recurrent Chinese Restaurant
Process from the building block: the Dirichlet Process.
The Dirichlet process (DP) is a probability distribution over probability distribu-
tions, i.e. draws from the DP are themselves discrete probability distributions.
This characteristic allows the DP to be used as a prior in nonparametric Bayesian
models. More formally, the DP is a stochastic process whose sample paths are
probability measures with probability one, and whose finite dimensional marginal
distributions are Dirichlet distributed.

Definition 1 Dirichlet Process (DP)
Let G0 be a distribution over Θ and let α ∈ R+ . Further let A1, . . . , Ar be a finite
measurable partition of Θ. Then the random vector (G(A1), . . . , G(Ar)) is dis-
tributed according to a Dirichlet process, with base distribution G0 and concentra-
tion parameter α, written G ∼ DP (α,G0), if (G(A1), . . . , G(Ar))) ∼ Dir(αG0(A1), . . . , αG0(Ar))
for any finite measurable partition A1, . . . , Ar of Θ.

The parameters G0 and α can intuitively be understood as the mean and the
precision of the DP respectively. Let G ∼ DP (α,G0), therefore:

E[G(A)] = G0(A) and V ar[G(A)] =
G0(A) [1−G0(A)]

α+ 1

As α→ ∞ we have G(A) → G0(A) for any measurable A, i.e. G converges to G0

pointwise.
Moreover as G ∼ DP (α,G0), we can draw samples θ1, . . . ., θN ∼ G and consider
the posterior distribution G|θ1, . . . ., θN . Let A1, . . . , Ar be a finite measurable
partition of Θ, and let nk be the number of observed values θi in Ak, i.e. nk =
# {θi|θi ∈ Ak}. Then from the Dirichlet-Multinomial conjugacy we have

(G(A1), . . . , G(Ar))|θ1, . . . , θN ∼ Dir(αG0(A1) + n1, . . . , αG0(Ar) + nr)

which, by definition of DP, implies that the posterior distribution is a DP as well,
with parameters given by

G|θ1, . . . , θN ∼ DP

(
α+N,

α

α+N
G0 +

N

N + α

∑N
i=1 δθi
N

)

In other words, the posterior is distributed according to a DP whose base distri-
bution is a weighted average of the prior base distribution G0 and the empirical
distribution of the observations

∑N
i=1 δθi
N , where δθi is a Dirac function.
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Therefore the DP is a conjugate family that is closed under posterior updates.
One of the uses of the Dirichlet process is as mixing distribution in a mixture
model, which in turn can be used for density estimation or clustering.

Definition 2 Dirichlet Process Mixture (DPM)
A Dirichlet process mixture (DPM) is a model of the following form

yi|φi ∼ F (φi)

φi|G ∼ G

G ∼ DP (α,G0)

where yi (for i = 1, . . . , N) are observations that are modeled as exchangeable
draws from a mixture of distributions F (φi) and the mixing distribution G, which
is drawn from a DP with base distribution G0 and concentration parameter α.

Note that such a model is equivalent to the limit of the following finite mixture
model with K components as K → ∞:

yi|ci, θci ∼ F (θci)

ci|p1, . . . , pK ∼ Discrete(p1, . . . , pK)

θci ∼ G0

p1, . . . , pK ∼ Dir
( α
K
, . . . ,

α

K

)
where ci ∈ 1, . . . ,K is the class label of data point yi, θci are the parameters
associated with the cluster ci and pk, for k = 1, . . . ,K, are the mixing proportions
on which a symmetric Dirichlet prior is placed. Mixture models are a widely used
tool for density estimation and clustering. However, finite mixture models, i.e.
mixture models with a fixed, finite number of components K, can only be applied
when the number of components is known a priori or model selection procedures
have to be used to choose K. On the other hand, infinite mixture models bypass
the model selection problem by, in principle, allowing an infinite number of com-
ponents, where only a finite number of them will have data associated.
While DPMs are very flexible and powerful tools for modeling independent and
identically-distributed data, they cannot directly be applied when there is some
temporal or spatial structure associated with the data. In order to model depen-
dent data, we need to consider a Dependent Dirichlet Process (DDP). Griffin and
Steel (2006) give the following definition:

Definition 3 Dependent Dirichlet Process (DDP)
A dependent Dirichlet process is a stochastic process defined on the space of pro-
bability measures over a domain, indexed by time, space or a selection of other
covariates in such a way that the marginal distribution at any point in the domain
follows a Dirichlet process.

Models that capture this idea have recently been developed in different papers, in
particular Caron, Davy and Doucet (2007) and Ahmed and Xing (2008).
For this analysis we have implemented a Dependent Dirichlet Process to capture
a time structure that can be referred to as time-varying Dirichlet process mixture
models (TVDPM). Such models can, among other things, be used for ‘evolutiona-
ry clustering’, i.e. clustering of data that has a temporal structure.
There are two main approaches to model a TVDPM: (i) based on the stick-breaking
representation of the DP, as MacEachern (2000), Griffin and Steel (2006), or (ii)
based on the Chinese Restaurant Process (CRP), as Caron, Davy and Doucet
(2007) or Ahmed and Xing (2008).
In particular, we have implemented the idea of Ahmed and Xing, who describe a
TVDPM specifically designed for the application of clustering data with temporal
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structure. Their approach operates by, on the one hand, tying together the CRP
probabilities of consecutive time steps, and, on the other hand, allowing the clus-
ter parameters to develop according to some Markovian dynamics from one time
step to the next. Let define in details the recurrent Chinese Restaurant Process
beginning with the main objects of the metaphor: the Chinese Restaurant. An
observation at time t is pictured as a customer entering in a Chinese restaurant.
The tables in the restaurant are the clusters: like a customer can pick up a table,
an observation can lead to one of the existing cluster. On each table is served a
specific dish, which is the centroid of the cluster, i.e. the set of parameters that
characterized a specific cluster given the assumed model. If a customer choses a
table, he is selecting a specific dish, which each time could be prepared with minor
differences, i.e. the parameters that characterize two observations belonging to the
same regime have to be similar but not identical.
In the time-dependent variant of the Chinese Restaurant Process due to Ahmed
and Xing, named the Recurrent Chinese Restaurant Process (RCRP), one assumes
that customers to arrive in fixed times t = 1, . . . , T and there is a dependence be-
tween times. Therefore the metaphor slightly change: in the first epoch, the
customers are seated according to the standard CRP, where the probability of an
existing table is given by its popularity today, whereas the probability of a new
table is proportional to the concentration parameter of the DP. In all remaining
epochs, however, the table sizes at the previous epoch3 are used to determine the
popularity of a table today. Specifically, the conditional probability that the ith
data point arrived at time t belongs to the kth cluster, i.e. ct,i = k, is defined as

P (ct,i = k|ct−1,1:Kt−1 , ct,1:i−1) ∝

{
nk,t−1 + n

(i)
k,t if k is an old cluster
α for a new cluster

(1)

where nk,t−1 is the number of customers seated at table k in time t− 1, and n(i)k,t

is the number of customers seated at table k in epoch t after observing the first
(i − 1)ths data points. If k is an old cluster, i.e. it had already data associated
yesterday, the parameters θk,t are carried over from t−1 to t by means of a Marko-
vian transition kernel P (θk,t|θk,t−1), whereas if k is a new cluster, the parameters
θk,t are drawn from G0. Therefore the conditional distribution of θk,t given the
cluster and the past is define as:

P (θk,t|θk,t−1, ct = k) =

{
P (θk,t|θk,t−1) if k is an old cluster

G0(θk,t) for a new cluster

3 The model
The approach taken here is to model yt as observations from a Recurrent Chi-

nese Restaurant Dirichlet Process Mixture model (RCRDPM), where t = 1, . . . , T .
In order to fully specify the model, the mixed distribution F (·), the base distribu-
tion G0 and the transition kernel P (θk,t|θk,t−1) have to be defined.

3.1 Mixed Distribution
Let us define the mixed distribution F (·) or, equivalently, the probability

P (yt|ct = k, θk,t) of the observed data conditional to the fact that yt belong to the
cluster k and the model is characterized by the parameters θk,t associated to the
cluster k. We assume the observed data follow an AR(p) model of the form:

yt = ψ0,t + ψ1,tyt−1 + ψ2,tyt−2 + . . .+ ψp,tyt−p + σtεt

3For simplicity we assume only a time dependence of one period, even if there are no restrictions
on the possible time dependence.
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where εt ∼ N (0, 1). Therefore we define:

P (yt|xt, ct = k, θk,t) = N (yt|xtΨk,t, σ
2
k,t)

where θk,t = (Ψk,t, λk,t), Ψk,t is (ψ0,t, ψ1,t, ψ2,t, . . . , ψp,t), λk,t is 1/σ2
k,t and xt

stacks the past observations, i.e. (yt−1, yt−2, . . . , yt−p).

3.2 Base distribution G0

In the RCRDPM model, as well as in DP mixture models, the base distribution
G0 acts as a prior over the parameters θk,t, therefore it should reflect our prior
belief of how we expect the means and precisions of the individual clusters to
vary. One choice for G0 computationally attractive and not unreasonable from
a modeling perspective is the conjugate prior to the likelihood P (y|x, θ), i.e. the
Normal-Gamma Distribution given by

G0(θk,t) ≡ G0(Ψk,t, λk,t) = N (Ψk,t|Ψ0, n0λk,t)Γ(λk,t|a, b)

The main advantage of this choice is that the predictive distribution and the
posterior are analytically tractable, simplifying the inference procedures.

3.3 Transition Kernel
The transition kernel P (θk,t|θk,t−1) models the evolution of component pa-

rameters through time, inside the same cluster. Given Definition 3 of Dependent
Dirichlet Process, marginally the model has to be distributed as a DP, therefore
the major restriction on the choice of the transition kernel is that it has to fulfill∫

G0(θk,t−1)P (θk,t|θk,t−1)dθk,t−1 = G0(θk,t) (2)

In other words, G0 has to be an invariant distribution for the Markovian chain
P (θk,t|θk,t−1).
A possible choice for P (θk,t|θk,t−1) is the one based on the update rule of the
Metropolis algorithm, which has the advantage that it can be combined with any
base distribution and likelihood. The main drawbacks of the Metropolis kernel is
that the dependence structure it introduces, i.e. how the parameters evolve from
t− 1 to t, is not easily characterizable, and that one cannot sample directly from:

P (θk,t|θk,t−1, yt) =
P (θk,t|θk,t−1)P (yt|θk,t)∫
P (θk,t|θk,t−1)P (yt|θk,t)dθk,t

(3)

A possible alternative to (3) is the auxiliary variable kernel4, which removes both
the drawbacks of the Metropolis kernel but requires a possibly large number of
auxiliary variables and has to be re-derived for each choice of G0.
The Metropolis Update Rule Kernel is given by:

P (θk,t|θk,t−1) = S(θk,t−1, θk,t)A(θk,t−1, θk,t)

+

(
1−

∫
S(θk,t−1, θ̃)A(θk,t−1, θ̃)dθ̃

)
δθk,t−1

(θk,t) (4)

4Given an invariant distribution G0 it is possible to introduce a set of auxiliary variables zk,t,1:M =
(zk,t,1, . . . , zk,t,M ) that fulfill P (θk,t|θk,t−1) =

∫
P (θk,t|zk,t,1:M )P (zk,t,1:M |θk,t−1)dzk,t,1:M such that

P (θ,zzz) = P (zzz|θ)G0, where θ denotes the parameters of any given cluster at any given time step and
zzz denotes the corresponding set of auxiliary variables. See Pitt and Walker (2005).
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where S(θk,t−1, θk,t) is a symmetric proposal distribution, A(θk,t−1, θk,t) = min
{
1,

G0(θk,t)
G0(θk,t−1)

}
is the probability of move and δθk,t−1

(θk,t) is a Dirac function, such that:

δθk,t−1
(θk,t) =

{
0 if θk,t−1 6= θk,t
∞ if θk,t−1 = θk,t

and ∫
δθk,t−1

(θk,t)dθk,t = 1

It can easily be shown that the Metropolis kernel fulfills the restriction in equation(3)
allowing us to use it with an arbitrary base distributions G0 as long as they can be
evaluated. Sampling from this transition kernel is straightforward: once a sample
θk,t is obtained from the proposal distribution, it will be accepted with proba-
bility A(θk,t−1, θk,t), otherwise with the complementary probability the draw will
be rejected and θk,t = θk,t−1. One possible and popular choice for the proposal
distribution is an isotropic Gaussian centered at the old value

S(θk,t−1, θ̃) = N (θ̃|θk,t−1, sI). (5)

The parameter s controls the spread of the proposed jumps, and therefore the
dependence among consecutive time steps induced by the kernel: small values
for s will lead to mostly small changes, which will have a high probability of
being accepted, leading to high correlations between consecutive time steps, while
larger values will lead, on one hand, to larger jumps which decrease the correlation
between θk,t−1 and θk,t but, on the other hand, also to more rejections, increasing
the correlation, since a rejection implies θk,t−1 = θk,t.
By definition, observations that belong to the same cluster are characterized by
similar parameters, indeed the change implied by the transition kernel should be
small. This is one of the main improvement with respect to the standard TVP:
the evolutionary structure does not need to address big variations in coefficients
between time t and t − 1, inducing a lot of variability, that is a quite criticized
point of the TVP approach, since the transition kernel does not have to deal with
change of regimes.

4 Inference
So far we have presented the model specification, in this section we will define

the estimation strategy.
There are two main possible inference procedures: a sequential Monte Carlo (SMC)
algorithm or a Metropolis-Hastings (M-H) sampler. we implement the SMC al-
gorithm, in the form of particle filter, similar to the approach proposed in Caron,
Davy and Doucet (2007).
A Sequential Monte Carlo algorithm belongs to a family of sampling methods that
allow recursive sampling from a sequence of distributions πt(z1:t), for t = 1, . . . , T
where πt(·) is called target distribution. The main idea behind the SMC methods
is that if the state z1:t up to time t consists of an old component z1:t−1 and a new
component zt , i.e. z1:t = (z1:t−1, zt), then samples from πt−1(z1:t−1) can be used
to construct samples from πt(z1:t). A widely used sequential Monte Carlo tech-
nique is known as sequential importance sampling (SIS), which recursively uses
importance sampling to obtain weighted samples from the target distribution.
Both cited inference schemes have their strengths and weaknesses: the particle
filter has the advantage that it can be used sequentially, i.e. predictions can be
made as new data comes in, and it is computationally efficient. However, there are
also some drawbacks. In particular sequential Monte Carlo methods are known
to behave poorly in high dimensional settings, possibly leading to an inaccurate
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representation of the posterior distribution: in fact, the posterior estimate might
collapse to a single point. If one is only interested in the Maximum A Posteriori
(MAP) solution this is not overly problematic as one can then simply view the
particle filter as a method for finding the MAP solution.
Algorithm 1 outlines a sequential Monte Carlo inference procedure for the sequence
of target distributions:

πt(c1: t,Θ1: t) = πt−1(c1: t−1,Θ1: t−1) (6)
×P (ct|Θt, c1: t−1, yt) (7)

×
Kt∏
k=1

{
P (θk,t|θk,t−1) if k ≤ Kt−1

G0(θk,t) if k = Kt
(8)

where θt = (θ1,t, . . . , θKt,t) is the vector of parameters for all possible clusters at
time t, i.e. ct = k for k = 1, . . . ,Kt, where Kt ≡ Kt−1 + 1, i.e. the number of
possible clusters today is the number of observed clusters yesterday plus one.
After the weights initialization, at each time step t, the SMC algorithm first moves
each particle forward in time by sampling a label for the data point yt and new
associated parameters from suitable importance distributions (forecast step), then
computes the weight of each particle (update step) and finally selects a new par-
ticle set by resampling. In the following we will specify the main choices for each
step.
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Algorithm 1 RCRDPM via particle filter
1: for i = 1, . . . , N do
2: w

(i)
0 = 1

N
3: end for
4: for t = 1, . . . , T do
5: for i = 1, . . . , N do
6: Sample the cluster c(i)t ∼ P (ct|Θ(i)

t−1, c
(i)
1:t−1, yt)

7: if c(i)t = Kt, i.e. you have sample a new cluster then
8: Sample θ(i)

c
(i)
t ,t

∼ q1(θ|yt)
9: Compute the important ratio for the weight: r

10: else c(i)t ≤ Kt−1, i.e. you have sample an old cluster
11: Sample θ(i)

c
(i)
t ,t

∼ q2(θ|yt, θ(i)
c
(i)
t ,t−1

)

12: via the Metropolis Transition Kernel
13: Compute the important ratio for the weight: r
14: end if
15: Compute the new weights w̃(i)

t = w
(i)
t−1 × r

16: Check if the estimated coefficients lead to a stable series.
17: end for
18: Normalize the weights: ŵ(i)

t =
w̃

(i)
t∑N

i=1 w̃
(i)
t

19: if
[∑N

i=1(w̃
(i)
t )2

]−1
≤ N

2 then
20: Resampling: Duplicate the particles with large weights
21: and remove the particles with small weights, resulting in a
22: new set of particles i1, . . . , iN with equal weights wt =

1
N .

23: else
24: Take the old particles, with weights w(i)

t = ŵ
(i)
t

25: end if
26: end for

Line 6: Sample the Cluster

The observation yt can belong to one of the cluster obtained until time t− 1,
i.e. the cluster’s label could be in the set {1, 2, . . . ,Kt−1}, or it can belong to a
new cluster and the associated label is Kt. Therefore, at time t the number of
possible clusters is equal to Kt and the distribution P (ct|θt−1, c1:t−1, yt, xt), for
ct = 1, . . . ,Kt, is given by:

P (ct|θt−1, c1:t−1, yt, xt) =

{
P (yt|θk,t−1, xt) if k ≤ Kt−1∫

P (yt|θ, xt)G0(θ)dθ if k = Kt
(9)

For any old cluster, i.e. ct ∈ {1, 2, . . . ,Kt−1}, the cluster’s distribution is simply
the likelihood of yt, given θk,t−1, i.e the set of parameters that characterized the
cluster k at time t− 1, and the past xt .
On contrary for the new cluster, since we have chosen the base distribution to be
conjugate to the likelihood, we can analytically evaluate the probability of the data
point when integrating over the base distribution

∫
P (yt|θ, xt)G0(θ)dθ, which is a

Student-t distribution:

P (yt|θk,t−1, xt) = St(yt|x′tΨ0, f(xt)
a

b
, 2a)

12



where f(xt) = 1− xt(x
′
txt + n0)

−1x′t.
Therefore to sample from the distribution in (9) the steps are: evaluate P (ct|θt−1, c1:t−1, yt, xt)
for all possible choices of ct = {1, 2, . . . ,Kt}, apply the weights scheme of the
RCRP, normalize, and then sample from the resulting discrete distribution.

Line 7-8: Importance Distribution for new cluster q1(θk,t|yt, xt, ct = k)q1(θk,t|yt, xt, ct = k)q1(θk,t|yt, xt, ct = k)

The true distribution of the parameters θk,t for a new cluster, given a newly
associated data point yt, is given by

P (θk,t|yt, xt, ct = k) =
P (yt|θk,t, xt)G0(θk,t)∫
P (yt|θk,t, xt)G0(θk,t)dθk,t

which, due to conjugacy, can be evaluated analytically. Therefore we can set the
importance distribution as the true distribution of θk,t:

q1(θk,t|yt, xt, ct = k)
def
= P (θk,t|yt, xt, ct = k)

Line 11-12: Importance Distribution for old cluster q2(θk,t|θk,t−1, yt, xt, ct = k)q2(θk,t|θk,t−1, yt, xt, ct = k)q2(θk,t|θk,t−1, yt, xt, ct = k)

When an old cluster is sampled, the distribution of the parameters at time t
depends on the old parameters at time t − 1, through the transition kernel, and
the data point, through the likelihood:

P (θk,t|θk,t−1, yt, xt, ct = k) =
P (θk,t|θk,t−1)P (yt|θk,t, xt)

P (θk,t|θk,t−1)P (yt|θk,t, xt)dθk,t
(10)

Since we adopt a Metropolis kernel it is not obvious how to sample from the
distribution in (10), therefore we have to use an approximation for the importance
distribution q2(·). A possible choice is

q2(θk,t|θk,t−1, xt, yt, ct = k)
def
= P (θk,t|θk,t−1)

i.e. the Metropolis kernel as in (4).

Line 9, 13 and 15: Weights

Due to the recursive nature of the algorithm and since a particle is characterized
by a cluster and a set of parameters, the weights at time t are given by

wt = wt−1 (11)

×
P (ct,i = k|ct−1,1:Kt−1 , ct,1:i−1)

P (ct,i = k|θt−1, c1:t−1, yt, xt)
(12)

× G0(θct,t)

q1(θct,t|yt)
1k=Kt (13)

×P (θct,t|θct,t−1)

q2(θct,t|yt)
1k≤Kt−1 (14)

×P (yt|xt, ct = k, θk,t) (15)

where (11) is the weight at time t − 1, (12) is the ratio between the conditional
probability as in (1) and the probability associated with the sampled cluster from
the discrete distribution, (13) is the ratio between the prior and the importance
distribution for the vector of parameters θct,t if a new cluster was sampled, (14)
is the ratio if the cluster is an old one, but since the choice for the importance
distribution is exactly the transition kernel, this ratio simplifies to 1, and (15) is
the likelihood.
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Line 20: Resampling

The resampling step is needed since the weights of the particle filter tend to
skew, i.e. after few iterations only a small number of particles presents high weights
whereas most of the particles have weights close to zero, which implies that the
algorithm tries to reproduce the target distribution with only a small subsample
of the particles.
There are different resampling strategies: multinomial resampling, residual re-
sampling, stratified resampling or systematic resampling. In this work we have
implemented the multinomial resampling, in which the particle duplication Ni

counts are drawn from a multinomial distribution Ni ∼Mult(N ;w(1), . . . , w(N)).
The indices i1, . . . , iN for the new set of particles can then easily be obtained from
these counts.

5 Empirical Analysis: Inflation and GDP

5.1 Initialization and fixed coefficients
The base distribution is defined as:

G0(Ψk,t, λk,t) = N (Ψk,t|Ψ0, n0λk,t)Γ(λk,t|a, b)

where Ψ0 is the OLS estimation for the vector of coefficients Ψ, a and b are such
that the expected value, i.e. ab−1, is equal to the OLS estimation for the variance
of the time series, whereas n0 is such that n0λk,t is a value that ensures the algo-
rithm to span the parameters space.
The jump in the transition kernel driven by the parameter s in (5) is chosen as-
suming that inside the same cluster, i.e. when the transition kernel takes place,
the parameters are closed to each other, in other words the difference between the
parameters at time t−1 and t has to be small if the two observations belong to the
same regime. The number5 of particles, N , is fixed at 15000. The latter parameter
to choose is α, the concentration parameter of the DPM, that reflects the believe
that a new cluster could appear: the larger α is, the smaller the variance and the
DP will concentrate more of its mass around the mean. Moreover this parameter
controls the number of cluster in a direct manner, indeed a larger α implying a
larger number of cluster a priori. We assume a value such that even in the worst
scenario, i.e. all the particle at time t− 1 and all the particles, up to the last, at
time t belong to the same cluster, there exists a probability non equal to zero that
a new cluster appears, given by α

α+N+N = 0.0015.

5.2 Inflation
In this section we are going to present the main results for the inflation rate,

as PCE deflator, for the period6 1957Q4 : 2011Q3, expressed as an annual rate.
Following KP, we assume an AR(2) model with constant for the inflation series.
Figure 2 shows the actual data, the time series generated by the standard OLS for
an AR(2) model, and the series obtained with the evolutionary clusters approach.
The methodology based on clusters presents a good performance in reproducing

5Until now the number of particles is limited by the amount of ram needed to run the algorithm
and save all the important informations.

6With respect to the figure 1(b) the studied temporal horizon skips the first ten year, i.e. 1947-1957,
because the high volatility that characterized the years after the WWII is quite difficult to explain.
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the actual data. In particular, comparing to the performance of a standard OLS
we obtain a better fit for the period of high level and volatility of inflation, i.e.
1970-1982.
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Figure 2: Percentage inflation rate: actual data (green), estimated series via OLS (blue) and
estimated series via evolutionary cluster methodology (red).

At the MAP, the procedure identifies 13 clusters that are highlight with diffe-
rent color over the original series in figure 3. It is interesting note that it is possible
to interpret the clusterization in terms of economic history and stylized facts. For
example a new cluster is generated in proximity both Volcker and Greenspan ap-
pointment dates as chairman, a new cluster corresponds to the ‘standard’ starting
date for the Great Moderation period, i.e. 1983, and another one after the end
of the 1992 recession. It is important to note that the possibility of interpret the
clusters, due to a relative small number that however it is not imposed a priori, it is
really an advantage, in particular with respect to the result of KP, who estimated
124 regimes losing any possible interpretations.
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Figure 3: Percentage inflation rate divided in the estimated clusters.

Let now consider the estimated coefficients. Give the MAP for the sequence of
clusters that evolves over time, each observation yt belongs to a cluster and it is
characterized by a distribution for the parameters. We summarized the informa-
tions relative to the parameters with the cluster’s centroid.

Let us analyze the precision parameter, λ, in figure 4.
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Figure 4: Centroids for the estimated clusters: the precision parameter λ.

The cluster procedure is able to reproduce the low volatility characterizing
the ′60s, the suddenly increase in ′70s and the decreasing path due to the Great
Moderation after 1983. Moreover, the algorithm is quite sensible to the increase
in volatility in 1992, after the crisis of 1990 − 1991, and in the last years, due to
the recent recession.
In figure 5 are plotted the values of the clusters’ centroid for the coefficient of the
first lag in the AR(2) model.
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Figure 5: Centroids for the estimated clusters: the coefficient associated to the first lag in the
AR(2) ψ1.

It is interesting note that the values of this parameters during the first ten
years of Great Moderations are stable even if they belong to two different clusters,
whereas there is a significant difference with the values characterizing the ′70s,
where, as well as for the Great Moderation years, we observe that the estima-
tions for ψ1 are homogeneous across the two clusters that identify these years. A
possible interpretation for this consistency within periods, i.e. the ′70s and from
1983 to 1992, and heterogeneity between periods, is that around 1983 there was a
change in terms of policy effort devoted to maintain the inflation at a stable and
low level.
With regards to the other two autoregressive coefficients ψ0 and ψ2, the posteriors
highlight small changes between clusters.
Stock and Watson (2003) find for the implicit price deflator for the personal con-
sumption expenditure (GDC) a break in both conditional mean and conditional
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variance in the first years of the ′70s. Even in this analysis we obtain a cluster’s
change for that period, but since we do not impose a single breaks, we recover
other important changes, as the one in the early ′80s, that Stock and Watson
miss. Indeed this comparison is a good example of the limits of a single break
approach.
Considering the debate on Bad Luck or Bad Policy, even if the analysis is not
implemented neither in a VAR nor in a structural form and therefore we can not
address directly the question on the origin of the Great Moderation, nevertheless
this result could be an indicator that the Great Inflation period has to be inter-
preted in terms of both Bad Policy and Bad Luck. In fact we can observe an
important change in volatility, i.e. the source of Great Inflation was Bad Luck
before ′84, as well as in coefficients, i.e. the source of Great Inflation was a Bad
Policy.

5.3 GDP
In this section we are going to present the main results for the GDP growth

(percentage), for the period 1957Q4 : 2011Q3, expressed as an annual rate. In
figure 6 there is the time series for GDP colored for the 5 clusters estimated at
the MAP. As well as for the inflation, it is possible to interpret the clusters in
terms of economic history. The first cluster covers the ′60s, the second contains
the ‘Great Inflation’ period, whereas the third one starts around 1983 with the
‘Great Moderation’, the fourth cluster appears after the end of the 1992 reces-
sion, whereas the last regime starts after the end of the recession of 2001-2002.
Comparing my results with KP, as previously pointed out, the number of regimes
that we obtain is more intelligible, in fact KP found a posterior mean number of
regimes equal to 45. Nevertheless it is interesting to observe that in both analyses
there is a consistent reduction in the number of regimes with respect to the result
for inflation.
Let us consider the parameters that identify the clusters’ centroid, starting with
the precision parameter. It is possible to observe a continuous reduction in vari-
ance7, as shown in figure 7.
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Figure 6: Percentage GDP growth divided in the estimated clusters.

7We transform λ in order to compare these results with Koop and Potter (2007), multiplying 1/λ
by 100 and taking the exponential.
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Figure 7: Transformed variance, considering the centroids for the estimated clusters.

We can compare this result with the estimations obtained for the TVP and the
one-break model for real GDP growth, presented in KP: indeed in figure 8 there
are the graphs for the posterior mean volatility of GDP under the two alternative
models as in Koop and Potter (2007). Both models indicate that volatility is
decreasing substantially over time, with a particularly dramatic drop occurring
around 1984. However, with the TVP model this decline is much more smooth
and non-monotonic than with the one-break model.

(a) (b)

Figure 8: Posterior mean for GDP variance: TVP in 8(a) and one break in 8(b), from Koop
and Potter (2007)

.

The cluster approach remarks less then the two alternative approaches the
volatility decline in 1984. It is interesting note that the changes in clusters, ob-
tained with the evolutionary cluster methodology, correspond to the changes in
the slope for the graph of the estimated variance via TVP as in figure 8(a): the
first cluster catches the first decline in volatility between 1957 and 1968, the sec-
ond cluster corresponds to the period of increase in volatility during the ′70s, that
nevertheless implies a lower level of variance than during the ′60s, and the third,
fourth and fifth groups are related to the reduction in volatility experimented from

18



1984, with two little waves after 1990 and 2000.
Let now consider the values for ψ1, plotted in figure 9, where it is possible to
observe a small non-monotonic reduction over the sample. Note that the changes
in coefficients for GDP are lower than what it is experimented in inflation. This
result is supported by others papers: for example KP find small changes in co-
efficients under both models TVP and one-break. The results for ψ0 and ψ2 are
similar to what observed for ψ1: there is a low volatility of the parameters between
clusters and the impact of both the constant and the observation at time t − 2
decreases during the years.
This small change for the coefficients, opposing to the remarkable change in
volatility, is stressed in Stock and Watson (2003) with a similar but stronger
results: the authors fail to reject the null hypothesis of no break in the coefficients
of the conditional mean, whereas the null hypothesis of no break in the condi-
tional variance is rejected at the 1% significance level, with a estimate break date
in 1983.
Concluding, in order to formulate possible explanation on the source of Great
Moderation, a structural economic model is needed, since the reduction of GDP
variance, mostly due to changes in the precision parameter, could arise either
for reductions in the variance of certain structural shocks or from changes in the
structure of monetary policy.
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Figure 9: Centroids for the estimated clusters of ψ1

.

6 Conclusion
In this study we have presented a new methodology in order to analyze the

instability in time series, applying the idea of evolutionary cluster to the study of
output and inflation for US after War World II. Based on the Recurrent Chinese
Restaurant Process, we have specified a model for an autoregressive process and
estimated it via particle filter using a conjugate prior.
This procedure displays some advantages, in particular does not require a strong
ex ante structure in order to neither detect the breaks nor manage the parameters’
evolutions. Whereas the main drawback is that this methodology is based on a
descriptive approach, thus it can not be use for forecast.
The application of the evolutionary cluster procedure to GDP growth and infla-
tion rate for US from 1957 to 2011 generate estimations which well track the data.
Moreover this methodology produces a clusterization of the time series that can be
interpreted in terms of economic history and it is able to recover key data features
without making restrictive assumptions, as in ‘one-break’ or TVP models.
This analysis supports the findings of Koop and Potter (2007), such that a model
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between the one-break and TVP models is most sensible and successfully captur-
ing the properties of a reasonable data generating process. Therefore, as in KP we
let the data tell us what the key properties of the data are, rather than assuming
them. The empirical results compared with Stock and Watson (2003) also show
the problems of working with models with a small number of breaks when, in
reality, the evolution of parameters is much more gradual. Moreover with respect
to KP, the proposed methodology stress the idea that parameters associated to
observations that belong to the same regime have a different relationship then
parameters that generate observations of different clusters, and the results on the
number of regimes is more intelligible under the presented study.
Considering the open debate on the source of the Great Moderation, under the
caveat that until now we have not studied a VAR or a structural form, this ap-
proach presents conclusions that support the findings in Cogley and Sargent (2001,
2005), suggesting changes in both volatility and coefficients before and after 1984,
even if the changes in coefficients are less marked.
We leave to future research the implementation of this approach to a structural
model in order to address directly the question on Great Inflation period.
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