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Preliminary
Abstract

This paper develops a new efficient approach for multivariate time series data mod-
eling and forecasting in the presence of an unknown number of change-points. The
predictive density has a closed form by assuming conjugate priors for the parame-
ters which characterize each regime. A Markov chain Monte Carlo (MCMC) method
takes advantage of the conjugacy to integrate out the parameters which characterize
each regime, treat the regime duration as a state variable and simulate the regime
allocation of the data from its posterior distribution efficiently. Two priors, one is non-
hierarchical for fast computation, the other is hierarchical to exploit the information
across regimes, are proposed. The model is applied to 7 U.S. macroeconomic time se-
ries and finds strong evidence for the existence of structural instability. On one hand, a
general pattern of the volatility is similar to the great moderation. On the other hand,
the model discovers heterogeneous dynamics for each variable. We also show that a
shrinkage hierarchial prior improves the out-of-sample forecast.

1 Introduction

Multivariate time series data analysis plays a central role in macroeconomic analysis and
prediction. Linear models such as vector auto regressions (VAR) are standard tools to
calculate the impulse response function and forecast. Recently, many papers highlight the
importance of nonlinearity associated with structural instability for macroeconomic and
financial variables such as GDP growth, real interest rate, inflation and equity return among
many. However, because the estimation is usually involved with intensive computation,
most of the change-point models are applied to univariate time series. Existing multivariate
change-point models have restrictions to the number of regimes a priori. It is either fixed
at a small number (2 or 3) as in Jochmann and Koop (2011) or assumed equal to the
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length of the data as in Cogley and Sargent (2005). A multivariate approach which can
estimate and forecast in the presence of an unknown number of regimes is missing in the
current literature. This paper develops a new multivariate time series model to fill the gap
by exploring the full posterior distribution for the allocation of the data to their respective
regimes. The estimation of the new approach is fast by using a conjugate prior for the
parameters which characterize each regime. The simulation of the regime allocation of the
data from its posterior distribution is very efficient, because the time-varying parameters for
the conditional data density are integrated out. A hierarchical structure is introduced to
exploit the information across regimes.

Accounting for structural instability in macroeconomic and financial time series modeling
and forecasting is important. Empirical applications by Clark and McCracken (2010), Gior-
dani et al. (2007), Liu and Maheu (2008), Wang and Zivot (2000) and Stock and Watson
(1996) among others demonstrate strong evidence for the existence of nonlinearity in the
form of structural changes.

The problem of estimation and forecasting in the presence of structural breaks has been
recently addressed by Koop and Potter (2007), Maheu and Gordon (2008) and Pesaran et al.
(2006) by using Bayesian methods. These approaches provide feasible solutions for univariate
time series modeling, but they are all computationally intensive. This is because there are
too many combinations of the break points, exploring them exhaustively is impractical. For
example, Koop and Potter’s (2007) model assumes path dependent time-varying parameters,
which imply O(2T ) possible change-points scenarios. Although they have reduced the state
space from O(2T ) to O(T 2) in their MCMC algorithm, it is still computationally challenging
to calculate the predictive density and the mixing property of their MCMC algorithm is left
unanswered. Another approach with an unknown number of regimes is Maheu and Gordon
(2008). Since their approach requires conducting O(T 2) posterior inference numerically, the
computational burden is even heavier than Koop and Potter’s (2007) method. Extending
these methodologies to the multivariate framework is empirically unrealistic, since a multi-
variate model requires much more computation as the number of variables increases.

Current multivariate change-point models include Jochmann and Koop (2011) and Cogley
and Sargent (2005). A common feature of these models is that they need to fix the number
of regimes a priori. The full posterior distribution for the allocation of the data to their
respective regimes is not explored because of this restriction. One potential solution to this
problem is to estimate the model many times. For each time, the estimation is associated with
a distinct number of regimes. Then, the Bayesian averaging method can be applied to obtain
the posterior distribution for the regime allocation. However, this solution is computationally
brutal and the multimodal posterior density problem in each single estimation procedure may
still exist, which can cause slow mixing of the Markov chain and affect the inference.

To alleviate the computational burden, we use a conjugate prior for the parameters
which characterize each regime. This assumption avoids the numeric approximation of the
conditional posterior distribution and provides a closed form for the predictive density. This
give us a huge gain in the computational speed. Meanwhile, another advantage of this
methodology is that the sampler of the regime allocation is very efficient since the parameters
which characterize each regime can be integrated out as nuisance parameters.1 Different from

1It is called Rao-Blackwellisation. See Casella and Robert (1996).
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the usual Gibbs sampling scheme for a hidden Markov model, in which the set of the regime
indicators and the set of the parameters characterizing each regime are simulated conditional
on each other, this assumption enables us to sample these time-varying parameters jointly.
So the multimodal problem caused by the usual Gibbs sampler is not present in our MCMC
algorithm.

Applying the conjugate priors to VAR was investigated by Kadiyala and Karlsson (1997)
for the practitioners. Recent empirical work such as Carriero et al. (2011) has shown the
usefulness of simple conjugate priors for the U.S. economy. Banbura et al. (2010) augment
the conjugate prior by a shrinkage parameter to reflect subjective belief and show that it is
competitive in forecasting. These methods are applied to linear models without structural
change. They have demonstrated that a conjugate prior is practically reasonable and a
helpful starting building block for a structural break model.

Regarding to the prior elicitation for the parameters which characterize each regime,
we adopt two different but closely related approaches. The first is a slightly revised simple
conjugate prior used in Carriero et al. (2011), which is designed to approximate the Minnesota
prior (Litterman (1986)). This prior is informative but covers a reasonable range of the
parameter space. The model using this prior is labeled as non-hierarchical SB model, where
SB means structural break. The advantage of this prior is the fast computational speed. By
using our MCMC algorithm, for a simulated data set with 7 variables and 600 observations,
if we assume a VAR(1) model in each regime, it takes less than 5 seconds to simulate 6000
samples of model parameters from their posterior distribution.

The second prior is featured by a hierarchical structure with shrinkage hyper parameters,
which is labeled as hierarchical SB model. The hierarchical structure is on the parameters
which characterize each regime. It intends to exploit the information across regimes (Pesaran
et al. (2006)). In addition, the shrinkage method (e.g., Belmonte et al. (2011)) makes the
model parsimonious in the Bayesian framework. The shrinkage hyper parameters in our
model can shrink the second prior towards the first one. It reflects the prior belief for the
variation of the hierarchical structure. In our application to U.S. economy, a tight hierarchical
prior provides superior forecasting than the non-hierarchical prior and other alternatives.

From the view of computation, a hierarchical structure is unaffordable for a time series
model such as Maheu and Gordon (2008). This is because their approach requires O(T 2)
times of numeric approximation. Each time is associated with a MCMC estimation applied to
a distinct subset of the data. For a univariate time series with 600 observations, it could take
one day or even longer to estimate by using a regular PC. A simple hierarchical structure may
easily increase the estimation time to months, or even years, which is obviously impractical.
Because the conjugate prior assumption produces an analytic form of the predictive density
conditional on the duration of the most recent regime, the numeric approximation with the
MCMC algorithm is avoided and the computational speed is improved significantly. Hence,
the hierarchical structure is affordable in our approach and the estimation can be done in a
reasonable time.

The hierarchical structure in this paper, to the best of our knowledge, is for the first time
introduced in the multivariate time series literature. Current literature of the hierarchical
priors such as Pesaran et al. (2006) or Koop and Potter (2007) are on the univariate analysis.
In our new approach, besides the ability to learn across regimes, the hierarchical prior is
systematically calibrated following the first prior, which approximates the Minnesota prior.
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This feature is very important for multivariate models because of the overparameterization
problem. In other words, the curse of the dimensionality may make a seemingly harmless
hierarchical prior to have strong impact on the inference. Since our hierarchical prior is built
on the Minnesota prior, it has a solid theoretic foundation and a reasonable range for the
model parameters.

In order to apply the joint sampler for the time-varying parameters, assuming path inde-
pendence is necessary to reduce the dimension of the state space. Koop and Potter (2007)
applies a Gibbs sampler to reduce the state dimension from O(2T ) to O(T 2) in the posterior
simulation, but their approach draws the regime allocation and the set of parameters which
characterize each regime individually. To sample them jointly, we need to consider O(2T )
scenarios. Each scenario has a distinct path of break points and can represent a state after
the time-varying parameters characterizing each regime are integrated out. However, it is
impractical to estimate all O(2T ) scenarios with existing hardware. This paper applies the
assumption similar to Chib (1998) to reduce the dimension of the state space from O(2T )
to O(T ). Specifically, we assume that the data before a break point is uninformative for
the current regime conditional on the prior for the parameters characterizing each regime.
For the non-hierarchical model, this assumption is equivalent to Chib (1998). For the hi-
erarchical approach, the parameters which characterize each regime are dependent, because
they share the same hierarchical prior and this prior is not exogenously fixed. However,
they are independent conditional on one sample of the hierarchical prior parameters. This
assumption frees the model from path dependence and enables an exhaustive exploration
of the posterior for the regime allocation. By using this assumption, we have maximal T
paths for each observation, which can be evaluated very quickly after being combined with
the conjugate prior assumption.

Our approach has four attractive features for the practitioners. First, the number of
regimes is estimated endogenously and the regime allocation is explored from its posterior
distribution exhaustively. All time-varying parameters are sampled jointly, so the estima-
tion is efficient in terms of mixing. Second, the conjugate prior makes the estimation of the
non-hierarchial model very fast because no numeric approximation is involved. Third, the
hierarchical structure with shrinkage control is parsimonious and able to exploit the infor-
mation across regimes to improve forecasting. Lastly, the priors are automatically adjusted
to different normalization, because they are calibrated according to the Minnesota prior.

We apply our new approach to 7 U.S. macroeconomic variables. They are unemployment
rate(UR), Core personal consumption expenditure(PCE), non-farm employment(EM), retail
sales(Retail), housing starts level(Housing), industrial production index (IP) and the federal
funds rate(FFR). The new model discovers very strong evidence for the existence of struc-
tural changes. Another interesting finding is that although a simple prior approximating
the Minnesota prior is useful and competitive in out-of-sample forecasting as in Carriero
et al. (2011), introducing the hierarchical structure with the shrinkage hyper parameters
significantly improve both the predictive and the marginal likelihood.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
apply the model to 7 U.S. macroeconomic variables. Section 4 concludes.
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2 Model

In this section, we will first introduce the conjugate prior for a simple multivariate linear
model in Section 2.1. The non-hierarchical and hierarchical SB models are proposed in
Section 2.2 and 2.3, respectively. The prior elicitation for the non-hierarchical SB and
hierarchical SB model is discussed in Section 2.4 and 2.5, respectively.

2.1 Multivariate linear model

A simple multivariate linear model has the following form:

yt = Φ′xt + et, et
i.i.d.∼ N(0,Σ). (1)

yt is a N × 1 vector of the data at time t. xt is a M × 1 vector of the regressors. Φ is a
M ×N matrix of the coefficients. Each et is a N × 1 zero mean i.i.d. normal random vector.

Let T to represent the length of the time series data. Define Y = (y1, y2, . . . , yT )′, X =
(x1, x2, . . . , xT )′ and E = (e1, e2, . . . , eT )′ by stacking up of yt’s, xt’s and et’s, respectively.
Model (1) can also be written as

Y = XΦ + E, E ∼MN(0,Σ, I), (2)

where MN(0,Σ, I) means a matrix normal distribution. The first parameter, which is a
T ×N zero matrix, represents the mean of the error matrix E. The second parameter, the
N ×N matrix Σ, is proportional to the covariance matrix of each row of matrix E, namely,
et. The last parameter, the T × T identity matrix I, is proportional to the covariance
matrix of each column of the matrix E. The identity matrix I comes from the assumption
that et is i.i.d. If vectorizing the matrix E, the matrix normal distribution is equivalent
to a multivariate normal distribution as vec(E) ∼ N(0,Σ ⊗ I) or vec(E ′) ∼ N(0, I ⊗ Σ).2

Appendix A introduces the matrix normal distribution in detail.
A special case is the VAR model, which is the focus of this paper. For a VAR(p) model,

where p is the number of lags in the autoregression, xt = (1, y′t−1, y
′
t−2, . . . , y

′
t−p)

′ and M =
Np+1. Φ can be decomposed as (φ0, φ1, . . . , φp)

′, where φ0 is a N×1 vector of the intercepts
and φi is the N ×N coefficient matrix of yt−i for i = 1, . . . , p.

The inverse Wishart matrix normal distribution is used as the conjugate prior for the
parameters (Φ,Σ):

Σ ∼ IW (S, ν), (3)

Φ | Σ ∼MN(Φ,Σ⊗ Ω). (4)

An inverse Wishart distribution is a random distribution, from which each sample is a
nonnegative definite matrix. The mean of Σ is E(Σ) = S

ν−N−1
. See the appendix for the

details of an inverse Wishart distribution.
The conjugacy shows that the posterior of Φ and Σ is still an inverse Wishart matrix

normal distribution:

Σ | Y,X ∼ IW (S, ν) (5)

2Σ and I are not identified up to a scalar. This does not affect any derivation or inference in this paper.
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Φ | Σ, Y,X ∼MN(Φ,Σ⊗ Ω) (6)

where Φ = Ω(Ω−1Φ +X ′Y ), Ω = (Ω−1 +X ′X)−1, ν = ν + T and S = S + Y ′Y + Φ′Ω−1Φ−
Φ
′
Ω
−1

Φ.
The inverse Wishart matrix normal prior also provides a closed form for the predictive

density of yt, which is a multivariate Student-t distribution. For example, if only the prior
is used, we have

yt | xt ∼ t(Φ′xt,
(1 + x′tΩxt)S

ν + 1−N
, ν + 1−N) (7)

Its probability density function is p(yt | xt) = k−1
∣∣∣1 + (yt−Φ′xt)′S−1(yt−Φ′xt)

(1+x′tΩxt)

∣∣∣− ν+1
2

, where k =

πN/2(1 + x′tΩxt)
N/2|S|1/2 Γ((ν+1−N)/2)

Γ((ν+1)/2)
. The first two moments are E(yt | xt) = Φ′xt and

Var(yt | xt) = (1 + x′tΩxt)E(Σ).
If we use the posterior distribution, which is also an inverse Wishart matrix normal

distribution, the out-of-sample predictive density of yT+1 is obtained by replacing the prior
parameters in Equation 7 by the posterior parameters.

yT+1 | IT ∼ t(Φ
′
xT+1,

(1 + x′T+1ΩxT+1)S

ν + 1−N
, ν + 1−N). (8)

IT = (y1, . . . , yT , x1, . . . , xT+1) represents the information available for the whole sample.
Notice that we assume xT+1 is also known for the prediction purpose. In a VAR model, xT+1

is simply yT , yT−1, . . . , yT−p, which is consistent with the definition of IT . For the rest of the
paper, we also define It = (y1, . . . , yt, x1, . . . , xt+1) as the information up to time t, inclusive.

2.2 Non-hierarchical structural break model

The difference between a linear model and the structural break model in this paper is that
the parameters in the aforementioned linear model are time-varying instead of constant. In
other words, we use Φt and Σt to replace Φ and Σ to get

yt = Φ′txt + et, et
i.i.d.∼ N(0,Σt). (9)

Define θt = (Φt,Σt) as the time-varying parameters which characterize the conditional data
density at time t. At each time t, there is a positive probability π for a structural change to
occur. If a structural change happens, the new value of θt is drawn from the aforementioned
inverse Wishart matrix normal distribution. Otherwise, θt stays the same as the value in the
previous period.

The model is

dt =

{
dt−1 + 1, w.p. 1− π
1, w.p. π

(10)

θt = 1(dt = 1)Fθ + 1(dt > 1)δθt−1 (11)

yt | θt, xt = N(Φ′txt,Σt) (12)
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In (10), dt is an implicitly defined time-varying parameter, which represents the regime
duration up to time t. This variable will be shown to be very important and treated as
the state variable for the predictive density. The regime duration dt can take values of
1, . . . , t. The last period T has the maximal number of possible values for dt(from 1 to T ).
If dt = 1, a structural change happens and θt is drawn from the inverse Wishart matrix
normal distribution Fθ as in (11). If no break appears in the previous period, the duration
is increased by 1 and θt stays the same as value in the previous period. In each regime, the
dynamics of yt follows a linear representation as in (1) conditional on θt.

Compared to the existing structural break models, this approach explores all possible
change-points as Koop and Potter (2007) and Giordani et al. (2007). The difference is that
if there is a structural change (dt = 1), we assume that the new parameter θt is drawn
from the distribution Fθ independently from the value of θt−1. We make this assumption
for two reasons. First of all, it is computationally feasible to calculate the predictive density
by integrating out θt’s. It reduces the effective number of paths from O(2t) to O(t) at
each period t. Second, from an empirical point, it is reasonable or even preferable for some
macroeconomic variables to have a sudden change of the parameters.

The parameters to be estimated in this model include the regime durationsD = (d1, . . . , dT )
and the conditional data density parameters Θ = (θ1, . . . , θT ). Existing MCMC methods
usually apply a sampler to randomly draw the regime allocation and the parameters char-
acterizing each regimes conditional on each other. This paper proposes to jointly simulate
these time-varying parameters from their posterior distribution. First, randomly sample the
regime duration D from its marginal distribution D | π, IT , which is obtainable only if the
conjugate prior and the path independence are assumed. Then, conditional on the duration
D, simulate Θ from the distribution Θ | D, π, IT . This is equivalent to the joint sampling
from distribution D,Θ | π, IT , which is efficient based on Casella and Robert (1996).

The MCMC method in this paper is new to the existing literature and described here in
details. The first step of sampling D from D | π, IT is done by using the forward filtering and
backward sampling method of Chib (1998). In our new approach, the duration dt is treated
as the state variable instead of a regime indicator in the current literature, where a sample
series of the regime indicators S = (s1, s2, . . . , sT ) defines the regime allocation of the data
and is always in a non-decreasing order. For example, S = (1, 1, 1, 2, 2, 3, 3, 3, 3) means that
the first 3 periods are in the first regime, the 4th and 5th periods are in the second regime
and the last 4 periods are in the third regime. This sample path is equivalent to a sample
path of the regime durations D = (1, 2, 3, 1, 2, 1, 2, 3, 4). For each time t with dt = 1, the
data enter into a new regime, otherwise no regime change happens. Obviously, there is a
one-to-one relationship between D and S.

Each individual value of st and dt has different information content. The regime indicator
st is able to tell how many regimes there are before time t, but is unable to show how long
the current regime is. Drawing st from its posterior distribution is usually done conditional
on the distinct regime dependent parameters θ̃i, where subscript i represents the ith regime.
By definition, we have θt = θ̃st . On the other hand, dt is able to tell how long the current
regime lasts but contains no information about how many regimes appear before time t. So
if one only knows dt and all the distinct values of θ̃i’s, he cannot tell the current value of θt.
However, if the data in the past regime is uninformative to the current regime, the regime
duration dt can tell which sub-sample can be used to obtain the posterior and provides the
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predictive density by integrating out the parameters of the conditional data density in that
regime, which cannot be done by using the regime indicator st.

In our approach, the assumption of independent sampling of new θt from Fθ enables us
to treat dt as a state variable, because it is sufficient to produce the predictive density. Θ is
integrated out as a set of nuisance parameters and the MCMC posterior sampler simulates
directly from the marginal posterior distribution of the regime durations D | π, IT . The con-
jugate prior provides a closed form for the predictive density to accelerate the computational
speed by a great amount, which makes the MCMC algorithm practical.

The forward filter is the following:

1. At t = 1, set p(d1 = 1 | π, I1) = 1, which is trivial.

2. The forecasting step:

p(dt = j | π, It−1) =

{
p(dt−1 = j − 1 | π, It−1)(1− π), for j = 2, . . . , t;
π, for j = 1.

3. The updating step:

p(dt = j | π, It) =
p(yt | dt = j, It−1)p(dt = j | π, It−1)

p(yt | π, It−1)

for j = 1, . . . , t. The first term in the numerator is a student-t distribution density
function as the following:

yt | It−1, dt ∼ t(Φ̂′xt,
(1 + x′tΩ̂xt)Ŝ

ν̂ + 1−N
, ν̂ + 1−N) (13)

with Φ̂ = Ω̂(Ω−1Φ + X ′t+1−dt,t−1Yt+1−dt,t−1), Ω̂ = (Ω−1 + X ′t+1−dt,t−1Xt+1−dt,t−1)−1, ν̂ =

ν+ dt− 1, and Ŝ = S+Y ′t+1−dt,t−1Yt+1−dt,t−1 + Φ′Ω−1Φ− Φ̂′Ω̂−1Φ̂. where Xt+1−dt,t−1 =
(xt+1−dt , . . . , xt−2, xt−1)′ and Yt+1−dt,t−1 = (yt+1−dt , . . . , yt−2, yt−1)′ are the data between
time t + 1 − dt and t − 1 inclusive. If dt = 1, which means a break happens, we have
the first subscript (t) less than the second subscript (t − 1). In this case, Xt+1−dt,t−1

and Yt+1−dt,t−1 are empty sets and all hat parameters (Φ̂, Ω̂, ν̂, Ŝ) are replace by the
prior parameters (Φ,Ω, ν, S).

The second term is obtained from step 2.

The predictive likelihood in the denominator, p(yt | π, It−1), is computed by summing
over all values of the duration dt

p(yt | π, It−1) =
t∑

dt=1

p(yt | dt, It−1)p(dt | π, It−1). (14)

4. Iterate over step 2 and 3 until the last period T .

The backward sampler of the duration vector D is the following:
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1. Sample the last period duration dT from the distribution dT | π, IT , which is obtained
from the last iteration of the forward-filtering step.

2. If dt > 1, then dt−1 = dt − 1.

3. If dt = 1, then sample dt−1 from the distribution dt−1 | It−1. This is because dt = 1
implies a structural change at time t. Hence, for any τ ≥ t, the data yτ is in a new
regime and independent of dt−1. The distribution dt−1 | dt = 1, π, IT is equivalent to
dt−1 | dt = 1, π, It−1.

4. Iterate step 2 and 3 until the first period t = 1.

After obtaining the durations D, simulating Θ from Θ | D, IT is simply done by using
the conjugacy property of (5) and (6). First convert D to a series of the aforementioned
regime indicators S = (s1, . . . , sT ). This is done by calculating the number of regimes K
and index the regimes by 1, . . . , K. Label s1 = 1 and st = 1 for t > 1 until at some time τ
with dτ = 1, which implies there is a break and the data is in a new regime. Then, set sτ =
2 at this break point. Iterate this labeling procedure until the last period with sT = K.

We know that a sample series of D and S are equivalent. The reason of introducing S is
to help the sampling of Θ looks more straightforward. Because Θ can only takes K possible
values implied by a sample path of S (K can be different for other sample paths of S), we
can define its distinct values as Θ∗ = (θ∗1, . . . , θ

∗
K). Because each θ∗i is independent from the

other θ∗j ’s, we can simulate each θ∗i only conditional on the data allocated to the ith regime
implied by S. In detail , θ∗i is randomly drawn from the following distribution.

Σ∗i ∼ IW(Si, νi) (15)

Φ∗i | Σ∗i ∼MN(Φi,Σ
∗
i ⊗ Ωi) (16)

with Φi = Ωi(Ω
−1Φ + X∗

′
i Y

∗
i ),Ωi = (Ω−1 + X∗

′
i X

∗
i )−1, νi = ν + d∗i , and Si = S + Y ∗

′
i Y

∗
i +

Φ′Ω−1Φ − Φ
′
iΩ
−1

Φi. The data X∗i = (xt0 , . . . , xt1)′ and Y ∗i = (yt0 , . . . , yt1)′, where st = i if
and only if t0 ≤ t ≤ t1, are the collection of xt and yt being allocated to the ith regime,
respectively. d∗i is the duration of the ith regime.

The above algorithm is based on a fixed break probability π. If we have a prior for π as a
beta distribution B(πa, πb), the conditional posterior of π is π | D ∼ B(πa+K−1, πb+T−K)
by conjugacy. This can be combined with the aforementioned method to form a Gibbs
sampler as follows:

1. Sample D,Θ | π, IT .

2. Sample π | D.

2.3 Hierarchical structural break model

The advantage of the non-hierarchical structural break model is that the estimation time is
almost negligible. We can estimate a model with one hundred variables in a few minutes.
Section 2.4 proposes a reasonable conjugate prior to approximate the Minnesota prior. For
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the application in Section 3, this prior works well both in terms of marginal likelihood and
predictive likelihood.

Meanwhile, the fast computational speed gives us the privilege to adventure more struc-
tures and exploit more information from the data. For a simple example, we can try thou-
sands of different priors for sensitivity check. In this paper, we pursue a more systematical
way by proposing a hierarchical structure to exploit the information across regimes. It is
also a natural solution to the prior sensitivity check and intrinsically more objective than
the Minnesota prior.

In the non-hierarchical model (10)-(12), the distinct parameters θ∗i ’s are drawn from the
pre-specified distribution Fθ. In this subsection, We propose to use these values to learn
Fθ instead of assuming it as exogenous. This can be translated to proposing a prior for
(Φ,Ω, S, ν), which are the parameters of the distribution Fθ.

These priors are assumed as follows:

Ω ∼ IW(Ω0, ω0), (17)

Φ | Ω ∼MN(M0,Λ0 ⊗ Ω), (18)

S ∼W(S0, τ0), (19)

ν ∼ G(a0, b0)1(ν ≥ N + 2). (20)

The detailed MCMC procedure to draw the model parameters from the posterior distri-
bution is in the appendix. A simple list of steps is as follows:

1. Sample D,Θ | π,Φ,Ω, S, ν, IT by using the joint sampler in the non-hierarchical model.

2. Sample π | D.

3. Sample Φ,Ω | D,Θ

4. Sample S | D,Θ, ν.

5. Sample ν | D,Θ, S.

The path independence and conjugacy assumptions greatly facilitate the computation of
Step 1, so the MCMC algorithm can iterate for thousands of times to obtain the numeric
approximation for the posterior of the hierarchical parameters (Φ,Ω, S, ν).

2.4 Priors for the non-hierarchical model

The importance of the prior elicitation for multivariate Bayesian models has been addressed
by many papers. This is because a multivariate model usually involves many parameters.
A seemingly harmless prior may be very informative and severely distort the inference. The
worse part is that this problem can be left unnoticed by the applicant.

In this paper, the prior for the non-hierarchical model is made to approximate the Min-
nesota prior (Litterman (1986)) for a linear VAR model. Since our approach has a linear
representation for each regime, the Minnesota prior is a natural candidate for the non-
hierarchical model. Notice that the Minnesota prior is not a conjugate prior, nonetheless,
its essence can be captured in a systematical way by having the following properties.
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1. An uninformative prior for the intercept φ0.

2. A stationary series has its regression coefficients centered around 0. Meanwhile, a
non-stationary series has its regression coefficients to approximate the random walk.

3. The prior for a distant lag is tighter than for a closer lag. In other words, the coefficients
of the regressors shrinks to zero as their lag length increases.

4. The volatility is calibrated by using the univariate series information.

In detail:

1. Φ:

It is the prior mean of the regression coefficient Φt’s. In the VAR framework, Φ can
be written as (φ

0
, φ

1
, . . . , φ

p
)′, where φ

0
is the prior mean of the intercept vectors and

φ
i

is the prior mean of the coefficient matrix for yt−i. We set Φ equal to 0 except

φ(ii)

1
, which is the coefficient of the first lag of the ith variable in the ith equation. For

example, if φ(11)

1
= 1, the prior mean implies the first variable y

(1)
t is a random walk

process, or y
(1)
t = y

(1)
t−1 + e

(1)
t .

Let φ(ii)

1
= 1 if the process is non-stationary and 0 otherwise. The judgement can be

done by using a formal statistical test or based on experience.

2. S and ν:

Estimate a univariate AR model for each variable to get the estimated residual variance
σ̂2
i for i = 1, . . . , N . Then, set the prior mean of Σ as diag(σ̂2

1, . . . , σ̂
2
N). Specifically,

S = (ν −N − 1)diag(σ̂2
1, . . . , σ̂

2
N)

ν = N + 2

The value of ν guarantees the existence of the second moment of yt. It is also necessary
for the numerical stability in the MCMC algorithm.

3. Ω:

We assume Var(φ
(ij)
k ) = γ

σ2
i

k2σ2
j
, where the superscript (ij) and subscript k means that

φ
(ij)
k is the coefficient of the kth lag of the jth variable in the ith equation. γ controls

the global tightness of the prior and k2 in the denominator shows the variance shrinks

towards 0 as the lag length increases. The ratio
σ2
i

σ2
j

is for normalization.

The matrix normal assumption implies Var(φ
(ij)
k ) = σ2

i Ω1+N(k−1)+j,1+N(k−1)+j. So we

set Ω1+N(k−1)+j,1+N(k−1)+j = γ 1
k2σ2

j
to meet the assumption of Var(φ

(ij)
k ) = γ

σ2
i

k2σ2
j
. The

M ×M matrix Ω is then given by

diag(100,
γ

σ2
1

, . . . ,
γ

σ2
N

,
γ

4σ2
1

, . . . ,
γ

4σ2
N

, . . . ,
γ

p2σ2
1

, . . . ,
γ

p2σ2
N

, )
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or 

100 0 0 0 0 0 0 0 0
0 γ

σ2
1

0 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0 0

0 0 0 γ
σ2
N

0 0 0 0 0

0 0 0 0 γ
4σ2

1
0 0 0 0

0 0 0 0 0
. . . 0 0 0

0 0 0 0 0 0 γ
4σ2
N

0 0

0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 γ
p2σ2

N


The value of the top left element is set as 100 to imply Var(φ

(i)
0 ) = 100σ2

i , which reflects
a proper prior with a wide range over the parameter space.3

2.5 Priors for the hierarchical model

The prior for the hierarchial model is related to that of the non-hierarchical model in the
sense that the hierarchical prior is set to be centered around the non-hierarchical prior and
can be controlled to shrink towards it. The first feature is the hierarchical structure. It
allows us to estimate these hyper parameters instead of fixing them exogenously. Hence, we
can learn from the information across regimes. The second feature of shrinkage is necessary
if one wants the model to be parsimonious, especially in the multivariate framework. An
over dispersed prior may harm the forecasting or even contaminate the in-sample estimation.

In detail, the prior in (17) is set as

Ω0 = (ω0 −M − 1)Ωnon-hie; ω0 ≥M + 2,

where Ωnon-hie is the pre-specified value of Ω in the non-hierarchical model. So we have
E(Ω) = Ωnon-hie. ω0 is chosen to be greater than or equal to M + 2 for numeric stability
in the MCMC algorithm. Increasing ω0 shrinks the prior of Ω towards the constant matrix
Ωnon-hie.

For the prior in (18), we assume

M0 = Φnon-hie; Λ0 = λE(Σnon-hie),

where λ is a positive scalar representing the tightness of the prior for Φ. E(Σnon-hie) is the
prior mean of the covariance matrix Σ in the non-hierarchical model. This is similar to the
prior of Φt in the non-hierarchical model except that it does not depend on Σt. We choose
this setting to avoid any unrealistic prior brought by the high dimensionality and different

3It can be changed to a much larger value such as 1.0e10. For a linear model, it is equivalent to Carriero
et al. (2011) from the empirical point of view, but their approach needs a training sample because their prior
is improper.
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normalization of the variables. This prior is centered at Φnon-hie. As λ decreases, it shrinks
towards the value of the non-hierarchical model.

For the prior in (19), we set

S0 =
1

τ0

E(Σnon-hie); τ0 ≥ N + 2

This prior has a mean of E(Σnon-hie). It shrinks towards the mean as τ0 increases.
The last parameter ν in (20) has a truncated gamma distribution as ν ∼ G(νa, νb)1(ν ≥

N + 2). If νa →∞ and νb
νa
→ some constant c ≥ N + 2, ν shrinks towards that constant. In

the application, we set νa = νb = 5.

3 Application to U.S. economy

3.1 Data

The model is applied to a system with 7 variables downloaded from CITIBASE. They are:
unemployment rate (UR), Core PCE (1200 × log difference of the level), nonfarm employ-
ment (1200 × log difference of the level), retail sales (1200 × log difference of the level),
housing starts level (100 × log difference of the level), industrial production index (1200 ×
log difference of the level), federal funds rate.4 There are 625 observations from 1959M02
to 2011M02. Summary statistics are shown in Table 1. We can notice that the variables
are normalized differently from the variance column. This is not a problem to us since it is
automatically corrected in the prior elicitation procedure.

Table 1: 7-variable VAR: summary statistics

Mean Min Max Variance

UR 5.99 3.40 10.80 2.45
Core PCE 3.44 -6.74 12.29 5.80
Em 1.75 -10.44 14.74 7.93
Retail 3.18 -92.54 90.04 230.9
Housing -0.20 -29.15 31.22 62.22
IP 2.77 -50.71 71.98 101.3
FFR 5.70 0.11 19.10 11.76

3.2 Model Selection

We select the model for data analysis from the hierarchical, the non-hierarchical SB models
and linear VAR models. In the SB models, we use SB-VAR(q) to represent that each regime
has a VAR(q) representation.5 We estimate from SB-VAR(1) to SB-VAR(4) models for both

4This is the same set of variables used in Carriero et al. (2011).
5The first q observations are truncated as the regressors.
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the hierarchical and the non-hierarchical models. For the non-hierarchical SB model, two
versions are estimated. The first one fixes the structural break probability p = 0.01, while
the second one estimates the p by assuming a prior p ∼ B(1, 9) as a beta distribution.
For each hierarchical SB-VAR(q) model, we estimate four versions to investigate the effect
of shrinkage in the multivariate setting with structural instability. The first one assumes
Λ0 = I, which reflects a seemingly harmless prior and ignores variable normalization. The
other three are a loose (λ = 1), tight (λ = 0.1) and a tighter (λ = 0.01) prior in Section 2.5.

For the VAR models, the priors for the parameters are the same as that for each regime in
the non-hierarchical SB models. It is equivalent to the non-hierarchical SB model by setting
the break probability p = 0.

The model comparison is based on Kass and Raftery (1995). They suggest to compare

the model Mi and Mj by the log Bayes factors log(BFij), where BFij =
p(Y1,T |Mi)

p(Y1,T |Mj)
is the

ratio of the marginal likelihoods. A positive value of log(BFij) supports model Mi against
Mj. Quantitatively, Kass and Raftery (1995) consider the results barely worth a mention
for 0 ≤ log(BFij) < 1; positive for 1 ≤ log(BFij) < 3; strong for 3 ≤ log(BFij) < 5; and
very strong for log(BFij) ≥ 5.

Geweke and Amisano (2010) have shown the marginal likelihood can be written as the

product of one period predictive likelihoods p(Y1,T ) =
T∏
t=1

p(yt | Y1,t−1). Hence the marginal

likelihood in essence is based on out-of-sample forecasting. The model comparison by the
Bayes factor automatically penalizes parametrization and abides by Ockham’s razor.

Table 2 shows the marginal likelihoods for model comparison, in which three important
features can be discovered. First, the structural break models outperform the linear models
strongly. This is consistent with the current literature that incorporating the nonlinearity
associated with structural instability is important for modeling the macroeconomic variables.
Second, the VAR(2) dynamics is favored by both the linear and the SB models. Adding more
lags than VAR(1) improves the out-of-sample forecasting for this application. Lastly, among
the structural break models, the best fit is the hierarchical SB-VAR(2) with the tighter prior
of λ0 = 0.01. The hierarchical models with λ0 = 1 or Λ0 = I do not perform as good as
those with λ0 = 0.1 or λ0 = 0.01.

3.3 Estimation Results

We study two models in more details: the non-hierarchical SB-VAR(2) and the hierarchical
SB-VAR(2) with λ0 = 0.01, which has the largest marginal likelihood. The learning ability
of the hierarchical structure identifies different dynamics from the non-hierarchical model.

Three features are discovered in this application. First, we find structural instability is
an important feature for U.S. macroeconomic variables, which is consistent with the previous
literature. Second, the volatility has a decreasing pattern in general and is in line with the
great moderation. Meanwhile, some sudden volatility changes exist. Lastly, our approach
find the number of regimes is different from most of the current models. Current model
either assume a small number of regimes (2 or 3) or structural change at each time (T ). We
find the best model supports about 6 regimes, which is new to the multivariate analysis of
U.S. economy.
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Table 2: Log Marginal Likelihood

log marginal likelihood

VAR(1) -9698.1
VAR(2) -9596.6
VAR(3) -9608.0
VAR(4) -9660.4

Non-hie SB-VAR(1): p = 0.01 -9496.9
Non-hie SB-VAR(2): p = 0.01 -9452.7
Non-hie SB-VAR(3): p = 0.01 -9502.0
Non-hie SB-VAR(4): p = 0.01 -9577.7

Non-hie SB-VAR(1) -9497.8
Non-hie SB-VAR(2) -9449.9
Non-hie SB-VAR(3) -9500.0
Non-hie SB-VAR(4) -9575.8

Hie SB-VAR(1): Λ0 = I -9454.7
Hie SB-VAR(2): Λ0 = I -9414.9
Hie SB-VAR(3): Λ0 = I -9451.9
Hie SB-VAR(4): Λ0 = I -9497.6

Hie SB-VAR(1): λ0 = 1 -9466.5
Hie SB-VAR(2): λ0 = 1 -9416.2
Hie SB-VAR(3): λ0 = 1 -9447.4
Hie SB-VAR(4): λ0 = 1 -9493.8

Hie SB-VAR(1): λ0 = 0.1 -9450.2
Hie SB-VAR(2): λ0 = 0.1 -9374.5
Hie SB-VAR(3): λ0 = 0.1 -9385.2
Hie SB-VAR(4): λ0 = 0.1 -9391.0

Hie SB-VAR(1): λ0 = 0.01 -9451.3
Hie SB-VAR(2): λ0 = 0.01 -9368.6
Hie SB-VAR(3): λ0 = 0.01 -9371.1
Hie SB-VAR(4): λ0 = 0.01 -9387.1
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Figure 1: Break probability.
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Figure 1 plots the posterior probabilities of structural changes implied by these two
models.6 The top panel shows a visible structural change at 1987M03 and some evidence of
structural instability in the end of 1987 and early 1988 detected by the non-hierarchical SB
model.

The bottom panel of Figure 1 plots the smoothed break probabilities implied by the hier-
archical SB model. It finds more regimes than the non-hierarchical SB model. Define a break
happens if the posterior break probability p(dt = 1 | IT ) > 0.5, the model identifies 1960M06,
1979M10, 1982M12 and 2009M01 as the change-points. If using p(dt = 1 | IT ) > 0.2 as
the criteria of the structural change, 1979M09, 1984M03, 1987M12, 1995M05, 2001M01,
2001M11, 2007M12 and 2009M11 can also be considered as change-points. From the pos-
terior inference, the mean of the number of regimes is 6. This finding is consistent with
Koop and Potter (2007) in their univariate analysis of U.S. GDP growth and inflation data,
which found that more structural changes exist than what has been implied by the current
literature.
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Figure 2: Non-hierarchical SB-VAR(2): volatility

To understand the structural change in the multivariate system. Figure 2 shows the

6Both versions of the non-hierarchical SB models produce similar results, so we plot the one in which p
is estimated. All four versions of the hierarchical SB models produce similar results, so we plot the optimal
one in Table 2.
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posterior mean of the volatility of each individual variable (σ
(i)
t =

√
Σ

(ii)
t , for i = 1, . . . , 7

and t = 1, . . . , T ) implied by the non-hierarchical SB model. All variables are featured by a
volatility decrease after the structural change, which is consistent with the great moderation.
However, the timing is different from the current literature, which is considered to start in
early 1980’s as in Kim and Nelson (1999). In our application, it happened in late 1980’s.

Figure 3 plots the posterior mean of the volatility σ
(i)
t implied by the hierarchical SB

model. A common pattern for these variables is that their volatilities decrease after late
1980’s, which is consistent with the non-hierarchical SB model.

Meanwhile, it also identifies distinct break patterns, which are different from the non-
hierarchical SB model. For example, a sudden structural change happened in mid 1960.
After that break, the volatilities of the unemployment rate, nonfarm employment, housing
states and industrial production had increased, while the volatilities of the other variables
had decreased. There are also two other structural changes in Aug 2007 and early 2009, after
which heterogeneous structural change appeared in each variable’s dynamics. For example,
the volatility of the unemployment rate was characterized by an increase after Aug 2007 and
stayed at the same level afterwards. On the contrary, the volatility of the housing starts was
decreased on Aug 2007, but on early 2009 it was increased to a even higher level than that
before Aug 2007.
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Figure 3: Hierarchical SB-VAR(2): volatility
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3.4 Predictive Likelihoods and Means

Geweke and Amisano (2010) discussed that the predictive likelihood is robust to prior elic-
itation, so we use it as another criteria for model selection. We also report the root mean
square error(RMSE) as a traditional measure for model comparison. These are shown in
Table 3 for the last 10 years of the sample.

The implication of the predictive likelihood(PL) in the second column is consistent with
the results from the marginal likelihood comparison. Namely, the SB models dominate the
linear VAR models; the hierarchical SB models dominate the non-hierarchical SB models;
and the SB-VAR(2) setting dominates the other SB-VAR(q) settings.

The difference is that the favorite prior for the hierarchical SB-VAR(2) is the tight prior of
λ0 = 0.1 instead of the tighter prior of λ0 = 0.01. This result confirms the existing literature
that the shrinkage is helpful for the out-of-sample forecasting. It also shows that a too strong
shrinkage assumption may weaken the learning ability of the hierarchical prior. An extreme
case for a very strong shrinkage of the hierarchical prior reduces to the non-hierarchical SB
model.

There is no clear pattern from the root mean square errors. For example, for the core PCE
mean forecasting, the linear VAR(4) model is clearly much better than all SB models. The
non-hierarchical SB-VAR(3) with estimated p performs the best for nonfarm employment.
For the industrial production, the hierarchical SB-VAR(4) with Λ = I has the optimal fit.

4 Conclusion

This paper develops a new efficient approach for multivariate time series data modeling
and forecasting in the presence of an unknown number of change-points. The predictive
density has a closed form by assuming conjugate priors for the parameters which characterize
each regime. A Markov chain Monte Carlo method takes advantage of the conjugacy to
integrate out the parameters which characterize each regime, treat the regime duration as a
state variable and simulate the regime allocation of the data from its posterior distribution
efficiently.

Two priors are proposed for model estimation. The first prior is non-hierarchical and
approximates the Minnesota prior. Its advantage is the super fast computationally speed.
The second prior assumes a hierarchical structure to exploit the information across regimes
and shrinkage parameters to control for parsimony.

The new approach is applied to 7 U.S. macroeconomic time series. The SB models
strongly dominate the linear alternatives; The hierarchical SB models dominate the non-
hierarchical SB model; and VAR(2) in each regime setting dominates other VAR(q) settings.
The best model is the hierarchical SB-VAR(2) model with tight or tighter shrinkage. It
identifies more regimes than what has been implied by the existing literature. A general
trend of volatility decrease is consistent with the great moderation. Meanwhile, we find
heterogeneous dynamics with infrequent volatility sudden changes.
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Table 3: 7-variable VAR, Predictive Likelihood and RMSE

PL UR Core PCE Nonfarm Em Retail Housing IP FFR

VAR(1) -1783.7 0.149 1.667 2.060 14.398 7.489 9.059 0.202
VAR(2) -1760.9 0.144 1.637 1.687 14.315 7.982 8.834 0.186
VAR(3) -1756.1 0.144 1.569 1.604 14.388 8.156 8.715 0.196
VAR(4) -1755.6 0.146 1.530 1.579 14.276 8.045 8.800 0.209

Non-hie SB-VAR(1): p = 0.01 -1714.2 0.148 2.795 1.315 19.146 7.239 12.199 0.198
Non-hie SB-VAR(2): p = 0.01 -1691.4 0.140 2.669 1.164 17.972 7.611 10.070 0.177
Non-hie SB-VAR(3): p = 0.01 -1704.1 0.144 2.682 1.139 18.332 7.761 9.747 0.176
Non-hie SB-VAR(4): p = 0.01 -1714.4 0.144 2.597 1.236 17.314 7.864 9.519 0.174

Non-hie SB-VAR(1): -1707.2 0.148 2.775 1.331 18.913 7.333 11.369 0.190
Non-hie SB-VAR(2): -1685.8 0.140 2.642 1.158 17.945 7.649 9.209 0.172
Non-hie SB-VAR(3): -1700.3 0.144 2.682 1.135 18.469 7.847 9.110 0.173
Non-hie SB-VAR(4): -1716.0 0.144 2.630 1.247 17.479 7.919 9.129 0.172

Hie SB-VAR(1): Λ0 = I -1695.5 0.149 2.635 1.392 18.533 7.349 10.829 0.191
Hie SB-VAR(2): Λ0 = I -1689.7 0.140 2.794 1.171 18.139 7.678 9.327 0.179
Hie SB-VAR(3): Λ0 = I -1734.1 0.148 2.680 1.322 17.461 7.835 9.443 0.191
Hie SB-VAR(4): Λ0 = I -1759.7 0.144 2.435 1.463 18.084 8.029 8.572 0.216

Hie SB-VAR(1): λ = 1 -1719.8 0.156 2.911 1.332 19.364 7.269 12.694 0.218
Hie SB-VAR(2): λ = 1 -1692.4 0.140 2.750 1.200 18.140 7.723 8.759 0.172
Hie SB-VAR(3): λ = 1 -1733.5 0.144 2.626 1.341 18.498 7.953 9.189 0.182
Hie SB-VAR(4): λ = 1 -1761.3 0.147 2.508 1.330 17.128 7.797 9.452 0.184

Hie SB-VAR(1): λ = 0.1 -1696.5 0.148 2.636 1.381 18.767 7.402 10.811 0.190
Hie SB-VAR(2): λ = 0.1 -1682.2 0.140 2.806 1.183 18.978 7.655 9.802 0.172
Hie SB-VAR(3): λ = 0.1 -1722.6 0.146 2.754 1.211 18.817 7.663 10.036 0.165
Hie SB-VAR(4): λ = 0.1 -1735.2 0.144 2.592 1.304 18.550 7.548 11.360 0.174

Hie SB-VAR(1): λ = 0.01 -1721.5 0.153 2.897 1.358 19.771 7.312 13.342 0.220
Hie SB-VAR(2): λ = 0.01 -1698.7 0.143 2.750 1.200 18.839 7.679 11.220 0.192
Hie SB-VAR(3): λ = 0.01 -1718.5 0.151 2.874 1.210 19.626 7.814 11.680 0.193
Hie SB-VAR(4): λ = 0.01 -1741.5 0.149 2.796 1.298 18.276 7.458 11.905 0.195

Forecast the last 10 years.
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A Inverse Wishart - Matrix Normal prior

1. Σ:

The error covariance matrix Σ has a Inverse-Wishart distribution. Its prior mean is

E(Σ) =
S

ν −N − 1

The variance of each element

V ar(Σij) =
(ν −N + 1)S2

ij + (ν −N − 1)SiiSjj
(ν −N)(ν −N − 1)2(ν −N − 3)

Its density function is given by

p(Σ) =
|S|ν/2|Σ|−(ν+N+1)/2etr{−1

2
SΣ−1}

2νN/2ΓN(ν/2)

Γp is multivariate gamma function, which isΓp(a) =
∫
S>0

etr{−S}|S|a−(p+1)/2dS where

S > 0 means S is p×p positive definite matrix, or Γp(a) = πp(p−1)/4
∏p

j=1 Γ(a+(1−j)/2)

A special case is when N = 1. Then Σ = σ2 as a scalar and

p(σ2) =
sν/2(σ2)−ν/2−1 exp{− s

2
σ−2}

2ν/2Γ(ν/2)
.

So σ2 has an inverse-gamma distribution with a shape parameter ν/2 and a scale

parameter s
2
. The mean and the variance of the σ2 equal to s

ν−2
and 2s2

(ν−2)2(ν−4)
,

respectively.

The precision matrix P , which is the inverse of the covariance matrix Σ, has a Wishart
distribution W (P , ν), where P = S−1. It has density

p(P ) =
|P |−ν/2|P |(ν−N−1)/2etr{−1

2
P−1P}

2νN/2ΓN(ν/2)

A special case is when N = 1, then P = σ−2 has a gamma distribution with

p(σ−2) =
sν/2(σ−2)ν/2−1 exp{− s

2
σ−2}

2ν/2Γ(ν/2)
.

The mean and variance of σ−2 are ν
s

and 2ν
s2

.

2. Φ:

The regression coefficient matrix Φ has a matrix normal distribution. Each column of
Φ, Φ.j, is the regression coefficients for the jth equation and has a multivariate normal
distribution

Φ.j | Σ ∼ N(Φ.j,ΣjjΩ)
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Each row of Φ, Φi., is the coefficients of impact from the same source across equations.

Φi. | Σ ∼ N(Φi.,ΣΩii)

The density function is

p(Φ | Σ) =
etr{−1

2
Σ−1(Φ− Φ)′Ω−1(Φ− Φ)}

(2π)MN/2|Σ|M/2|Ω|N/2

B Sample from a matrix Gaussian

For Φ | Σ ∼ MN(Φ,Σ ⊗ Ω), to generate a sample of Φ, first get lower triangular matrices
Σ1/2 and Ω1/2 through Cholesky decomposition. Then, generate C ∼ MN(0, I ⊗ I). Φ is
generated from

Φ = Ω1/2CΣ1/2′,

since vec(Ω1/2CΣ1/2′) = Σ1/2 ⊗ Ω1/2vec(C). So the variance of vec(C) is Σ1/2 ⊗ Ω1/2(Σ1/2 ⊗
Ω1/2)′ = Σ1/2 ⊗ Ω1/2(Σ1/2′ ⊗ Ω1/2′) = (Σ1/2Σ1/2′)⊗ (Ω1/2Ω1/2′) = Σ⊗ Ω

C Sample from an Inverse-Wishart distribution

Generate Σ from a Inverse-Wishart, IW (S, ν), by

Σ = S1/2C−1S1/2′

where S1/2 is the lower triangular matrix from the Cholesky decomposition of S and C is
drawn from a Wishart W (I, ν).

D Sample the hierarchical prior

1. Φ and Ω:

The prior is matrix normal and inverse-Wishart.

Ω ∼ IW (Ω0, ω0)

Φ | Ω ∼MN(M0,Λ0 ⊗ Ω)

The conditional posterior Φ,Ω | {Σi,Φi}Ki=1 is

Ω | {Σi,Φi}Ki=1 ∼ IW (Ω1, ω1)

Φ | Ω, {Σi,Φi}Ki=1 ∼MN(M1,Λ1 ⊗ Ω)

with

Ω1 = Ω0 +
K∑
i=1

ΦiΣ
−1
i Φ′i +M0Λ−1

0 M ′
0 −M1Λ−1

1 M ′
1
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ω1 = ω0 +KN

M1 = (M0Λ−1
0 +

K∑
i=1

ΦiΣ
−1
i )Λ1

Λ1 = (Λ−1
0 +

K∑
i=1

Σ−1
i )−1

2. S:

The prior of S is a Wishart W (S0, τ0). The conditional posterior is also Wishart.

S | ν, {Σi}Ki=1 ∼ W (S1, τ1)

with

S−1
1 = S−1

0 +
K∑
i=1

Σ−1
i

τ1 = τ0 +Kν

3. ν:

The prior is a Gamma G(a0, b0). The conditional posterior has no convenient form.

p(ν | S, {Σi}Ki=1) = pG(ν; a0, b0)
K∏
i=1

p(Σi | S, ν)

∝ pG(ν; a0, b0)
K∏
i=1

{
|S|ν/2

2νN/2ΓN(ν/2)
|Σi|−

ν+N+1
2

}

∝ νa0−1e−b0ν
|S|Kν/2

2KνN/2ΓKN (ν/2)

K∏
i=1

{
|Σi|−

ν+N+1
2

}
The log of the last equation (after discarding more constants) is

K log(|S|)− 2b0 −KN log(2)−
∑K

i=1 log(|Σi|)
2

ν−K log(ΓN(ν/2))+(a0−1) log(ν).

The sampling method of ν is a M-H step with a proposal distribution of

ν(i) ∼ G(ξ, ξ/ν(i−1))
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E Marginal likelihood

The marginal likelihood is calculated by using the bridge-sampling estimator in Frühwirth-
Schnatter (2004), Meng and Wong (1996).

p̂t(Y ) = p̂t−1(Y )

L−1
L∑
l=1

p̂(φ̃(l)|Y )

Lq(φ̃(l))+Mp̂(φ̃(l)|Y )

M−1
M∑
l=1

q(φ̃(m))

Lq(φ̃(m))+Mp̂(φ̃(m)|Y )

,

and

p̂(φ | Y ) =
p∗(φ | Y )

p̂t−1(Y )
=
p(Y | φ)p(φ)

p̂t−1(Y )

where φ represents the parameters of a model. φ(l)’s are simulated from an importance
density q; and φ(m)’s are the posterior samples from the MCMC sampler. The above two
procedures are iterated until convergence.

This method is from L−1
L∑
l=1

p̂(φ̃(l) | Y ) →
∫
p(φ | Y )q(φ)dφ and M−1

M∑
l=1

q(φ̃(m)) →∫
q(φ)p(φ | Y )dφ are equivalent. Frühwirth-Schnatter (2004) showed the mean-squared

error of log p̂(Y ) is approximated by

1

L

Vq

(
p(φ|Y )

ωq(φ)+(1−ω)p(φ|Y )

)
E2
q

(
p(φ|Y )

ωq(φ)+(1−ω)p(φ|Y )

) +
ρf (0)

M

Vp

(
q(φ)

ωq(φ)+(1−ω)p(φ|Y )

)
E2
p

(
q(φ)

ωq(φ)+(1−ω)p(φ|Y )

) ,
where ω = L

L+M
and ρf (0) is the normalized spectral density of f = q(φ)

ωq(φ)+(1−ω)p(φ|Y )
at

frequency 0.

ρ̂f (0) = 1 + 2
S∑
s=1

(
1− s

S + 1

)
rs

and

rs =
1

M

M∑
m=s+1

(f (m) − f)(f (m−s) − f)

s2
f

.

f and s2
f are the sample mean and sample variance of f .

For the MSB-LSV model, φ = (p,Φ,Ω, S, ν). The importance density for p is a beta
density implied by the posterior of mean of K, K̃. q(Ω) is inverse Wishart with parameters
Ω̃1, ω̃1, which are the posterior means of Ω1 and ω1. q(Φ | Ω) is matrix normal with parameter
M̃1, Λ̃1 which are the posterior means of M1 and Λ1. q(S) is a Wishart with parameters
S̃1, τ̃1, which are the posterior means of S1 and τ1. q(ν) is a gamma with mean and variance
matching the moments of the posterior.

q(p) = B(K̃ − 1, T − K̃)
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q(Ω) = IW(Ω̃1, ω̃1)

q(Φ | Ω) = MN(M̃1, Λ̃1 ⊗ Ω)

q(S) = W(S̃1, τ̃1)

q(ν) = G(ν̃a, ν̃b),

where ν̃a
ν̃b

and ν̃a
ν̃2
b

match the posterior mean and variance. So ν̃b = E(ν|Y )
V (ν|Y )

and ν̃a = E2(ν|Y )
V (ν|Y )
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