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Multivariate factor stochastic volatility models are increasingly used for the analysis of multivari-
ate financial and economic time series because they can capture the volatility dynamics by a small
number of latent factors. The main advantage of such a model is its parsimony, since all variances
and covariances of a vector of time series are governed by a low-dimensional common factor with the
components following independent SV models. The model reads

yt = Λft + Σ
1/2
t εt, Σt = Diag(exp(h1t), . . . , exp(hmt)) , εt ∼ Nm (0, Im) , (1)

ft = V
1/2
t u, Vt = Diag(exp(hm+1,t), . . . , exp(hm+r,t)) , u ∼ Nr (0, Ir) , (2)

where yt = (y1t, . . . , ymt)
′
, t = 1, . . . , T and Λ is an unknown m × r factor loading matrix with

elements Λij . The standard assumption is that ft, fs, εt, and εs are pairwise independent for all t and s.
Both the latent factors and the idiosyncratic shocks are allowed to follow different stochastic volatility
processes, i.e.

hit = µi + φi(hi,t−1 − µi) + σiηit, ηit ∼ N (0, 1) . (3)

Multivariate factor SV models have recently been applied to important problems in financial econo-
metrics such as asset allocation (Aguilar & West, 2000) and asset pricing (Nardari & Scruggs, 2007).
They extend standard factor pricing models such as the arbitrage pricing theory and the capital as-
set pricing model. However, as opposed to SV factor models, standard factor pricing models do not
attempt to model the dynamics of the volatilities of the asset returns and usually assume that the co-
variance matrix Σt ≡ Σ is constant. Empirical evidence suggests that multivariate factor SV models
are a promising approach for modeling multivariate time-varying volatility, explaining excess asset
returns, and generating optimal portfolio strategies.

For high dimensional problems of this kind, Bayesian MCMC estimation is a very efficient esti-
mation method, however, it is associated with a considerable computational burden, when the number
of assets is moderate to large. Several papers (Kim et al., 1998; Chib et al., 2002, 2006; Omori et al.,
2007) consider a variety of multivariate stochastic volatility (MSV) models with error distributions
arising from Gaussian or Student-t distributions that allow for both symmetric and asymmetric condi-
tional distributions. In the multivariate case, the correlation between variables is governed by several
latent factors.

Bayesian estimation relies on data augmentation: we introduce the latent volatilities h = (hi),
where hi = (hi0, . . . , hiT ) for i = 1, . . . ,m + r, and the latent factors f = (f1 · · · fT ) as latent data.
Given h, (1) is a standard factor model and f and Λ may be sampled as in Lopes & West (2004). Given
f , (1) can be easily transformed intom+r independent univariate SV models where the latent equation
(3) is combined for i = 1, . . . ,m with the observation equation log(yit − Λi·ft)

2 = hit + log(ε2it),
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and for i = m + 1, . . . ,m + r with the observation equation log(fi−m,t)
2 = hit + log(η2i−m,t).

Hence Bayesian estimation method for a multivariate factor SV models depends on how efficiently a
univariate SV model is estimated. We use the popular approach of auxiliary mixture sampling (Kim
et al., 1998; Chib et al., 2002, 2006; Omori et al., 2007) and approximate the distribution of log(ε2it)

by a mixture of 10 normal distributions. Conditional on the component indicator rit, this leads to a
Gaussian linear state space model. Rather than using standard forward-filtering backward-sampling
(Frühwirth-Schnatter, 1994; Carter & Kohn, 1994) to draw the volatilities, we apply a sparse Cholesky
factor algorithm (see e.g. McCausland et al., 2011) to sample “all without a loop” (AWOL) from the
high-dimensional joint density of all volatilities. This reduces computing time considerably, as it al-
lows joint sampling without running a filter. Also, we consider various reparameterizations of the
augmented SV model. Under the standard parameterization, augmented MCMC estimation turns out
to be inefficient, especially if the volatility of volatility parameter σi in the latent state equation is
small. By considering a non-centered version of the SV model, this parameter is moved to the obser-
vation equation. Using MCMC estimation for this transformed model reduces the inefficiency factor
in particular for the volatility of volatility parameter considerably. Finally, we adopt an ancillarity-
sufficiency interweaving strategy (Yu & Meng, 2011) outperforming both centered and non-centered
parameterizations in terms of sampling efficiency with respect to all parameters.

To show the effectiveness of our approach and its suitability for real world applications, we apply
the model to a vector of daily exchange rate data.
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