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This paper considers Bayesian nonparametric estimation of con-

ditional densities by countable mixtures of location-scale densities

with covariate dependent mixing probabilities. The mixing proba-

bilities are modeled in two ways. First, we consider finite covariate

dependent mixture models, in which the mixing probabilities are pro-

portional to a product of a constant and a kernel and a prior on the

number of mixture components is specified. Second, we consider ker-

nel stick-breaking processes for modeling the mixing probabilities. We

show that the posterior in these two models is weakly and strongly

consistent for a large class of data generating processes.

1. Introduction. Estimation of conditional distributions is an important problem in em-

pirical research. There are two alternative approaches to modeling conditional densities in the

Bayesian framework. First, the conditional distributions of interest can be obtained as a byprod-

uct of the joint distribution estimation. Second, the conditional distribution can be modeled

directly and the marginal distribution of the covariates can be left unspecified. Bayesian non-

parametric modeling of densities involves specifying a flexible prior on the space of densities.

Widely accepted minimal requirement for such priors is posterior consistency (see Ghosh and

Ramamoorthi (2003) for a textbook treatment). The theory of posterior consistency for (uncon-

ditional) density estimation is well developed. However, if only conditional density is of interest

modeling marginal distribution of covariates is an unnecessary complication. While there are

many proposed methods for direct conditional density estimation, their consistency properties

are largely unknown. We address this gap in the literature by demonstrating consistency for

Bayesian nonparametric procedures based on countable mixtures of location-scale densities with
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covariate dependent mixing probabilities. The mixing probabilities are modeled in two ways.

First, we consider finite covariate dependent mixture models, in which the mixing probabilities

are proportional to a product of a constant and a kernel and a prior on the number of mixture

components is specified. Second, we consider kernel stick-breaking processes of Dunson and Park

(2008) for modeling the mixing probabilities. We show that the posterior in these two models is

weakly and strongly consistent for a large class of data generating processes. Below, we provide

a more detailed overview of the literature and our contribution.

Practical Bayesian nonparametric approaches to density estimation are mostly based on mix-

tures of distributions.1 A commonly used prior for the mixing distribution is the Dirichlet

process prior introduced by Ferguson (1973). Markov Chain Monte Carlo (MCMC) estimation

methods for these models were developed by Escobar (1994) and Escobar and West (1995) who

used Polya urn representation of the Dirichlet process from Blackwell and MacQueen (1973)

(see Dey et al. (1998) for a more extensive list of references and applications). An alternative

approach to modeling mixing distribution is to consider finite mixture models and define a prior

on the number of mixture components (references on finite mixture models can be found in a

comprehensive book by McLachlan and Peel (2000)).

A general weak posterior consistency theorem for density estimation was established by

Schwartz (1965). Barron (1988), Barron et al. (1999), and Ghosal et al. (1999) developed the-

ory of strong posterior consistency. The latter authors demonstrated that the theory applies

to Dirichlet process mixtures of normals, which is often used in practice. Tokdar (2006) re-

laxed some of their sufficient conditions in the Dirichlet process mixture of normals context.

An alternative approach to consistency was introduced by Walker (2004). Ghosal and Tang

(2006) used this approach to obtain posterior consistency for Markov processes. Zeevi and Meir

(1997), Genovese and Wasserman (2000), Roeder and Wasserman (1997), and Li and Barron

(1999) also obtained approximation and classical and Bayesian consistency results for mixture

models. Posterior convergence rates for mixture models were obtained by Ghosal et al. (2000)

and Kruijer et al. (2010) among others. Wu and Ghosal (2010) and Norets and Pelenis (2009)

considered consistency in estimation of multivariate densities.

Muller et al. (1996), Roeder and Wasserman (1997), Norets and Pelenis (2009), Taddy and

Kottas (2010) suggested obtaining conditional densities of interest from joint distribution esti-

mation. MacEachern (1999), De Iorio et al. (2004), Griffin and Steel (2006), Dunson and Park

1There is also mostly theoretical literature on Gaussian process priors for density estimation, see, for example,

Tokdar and Ghosh (2007) and van der Vaart and van Zanten (2008).
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(2008), and Chung and Dunson (2009) among others developed dependent Dirichlet processes in

which conditional distribution is modeled as a mixture with covariate dependent mixing distri-

bution and possibly covariate dependent means and variances of the mixed distributions. There

are alternative approaches to modeling conditional distributions directly that are based on fi-

nite covariate dependent mixtures known in the literature as mixtures of experts and smoothly

mixing regressions (Jacobs et al. (1991), Jordan and Xu (1995), Peng et al. (1996), Wood et al.

(2002), Geweke and Keane (2007), Villani et al. (2009), and Norets (2010)).

Posterior consistency results for direct conditional density estimation are scarce. Norets (2010)

shows that large nonparametric classes of conditional densities can be approximated in the

Kullback-Leibler distance by three different specifications of finite mixtures of normal densities:

(i) only means of the mixed normals depend flexibly on covariates, (ii) only mixing probabili-

ties depend flexibly on covariates, and (iii) only mixing probabilities modeled by multinomial

logit model depend on covariates. Schwartz (1965) theory suggest that these Kullback-Leibler

approximation results imply posterior consistency in weak topology norm. Pati et al. (2010)

specify dependent Dirichlet processes that are similar to the specifications (i) and (ii) of Norets

(2010) and demonstrate weak and strong posterior consistency. They use Gaussian processes to

specify flexible priors for mixing probabilities (for specification (ii)) and means of normals (for

specification (i)).

Relative to these two papers our contribution is fivefold. First, we generalize Kullback-Leibler

approximation results from Norets (2010) to finite mixture specifications in which mixing prob-

abilities are proportional to a general kernel multiplied by a constant. We will call such mixture

specifications by kernel mixtures (KM). Second, we prove weak and strong posterior consistency

for kernel mixtures combined with a prior on the number of mixture components. Third, we

show that kernel stick breaking processes introduced by Dunson and Park (2008) can approxi-

mate kernel mixtures. Fourth, we obtain weak and strong posterior consistency results for the

kernel stick breaking mixtures. Fifth, our weak and strong posterior consistency results hold for

mixtures of general location-scale densities.

While approximation and weak posterior consistency results for kernel mixtures could be

anticipated from the results of Norets (2010), the approximation and consistency results for

kernel stick-breaking mixtures seem to be novel. We show that it is not necessary to use fully

flexible in covariates components in the stick-breaking process as in Pati et al. (2010) and

it is sufficient to use kernels instead, which are fixed known functions that depend on finite
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dimensional location and scale parameters.

The regularity conditions on the data generating process we assume in proving weak and

strong posterior consistency are very mild. Assumptions about the prior for the location and

scale parameters of the mixed densities employed in showing strong posterior consistency are

similar under both types of mixing. Standard normal prior for locations and inverse gamma for

squared scales satisfy the assumptions. Although the parameters entering the mixing probabil-

ities under two types of mixing are the same, the priors on these parameters might have to be

different in the two models if the strong posterior consistency is desired. For kernel mixtures

there are no restrictions on the prior for constants multiplying the kernels. For stick breaking

mixtures these constants are assumed to have a prior that puts more mass on values close to 1.

The prior for locations of the mixing probability kernels is not restricted under both types of

mixing.

The organization of the paper is as follows. Section 2 defines weak and strong posterior

consistency for conditional densities and present general theoretical results that are used later

in the paper. Posterior consistency results for kernel mixtures are given in Section 3. Section 4

covers kernel-stick breaking mixtures. Section 5 concludes.

2. The notion of posterior consistency for conditional densities. Consider a product

space Y × X, Y ⊂ R and X ⊂ Rdx . Let F = {f : Y × X → [0,∞),
∫
Y f(y|x)dy = 1} be the

set of all conditional densities on Y with respect to Lebesgue measure. Let us denote the data

generating density of covariates x with respect to some generic measure ν by fx0 (x) and the data

generating conditional density of interest by f0 ∈ F . The joint probability measure implied by

f0 and fx0 (x) is denoted by F0.

To define a notion of posterior consistency we need to define neighborhoods on the space

of conditional densities. Previous literature on Bayesian nonparametric density estimation em-

ployed weak and strong topologies on spaces of densities with respect to some common domi-

nating measure. Quite general weak and strong posterior consistency theorems were established

(Schwartz (1965), Barron (1988), Barron et al. (1999), Ghosal et al. (1999), and Walker (2004)).

It is possible to use these results if we define the distances between conditional densities as the

corresponding distances between the joint densities, where the density of the covariates is equal

to the data generating density fx0 (x). For example, a distance between conditional densities

f1, f2 ∈ F that generates strong neighborhoods is defined by the total variation distance be-
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tween the joint distributions,∫
|f1fx0 − f2fx0 | =

∫
|f1(y|x)fx0 (x)− f2(y|x)fx0 (x)|dydν(x).

A distance that generates weak neighborhoods for conditional densities can be defined similarly

(an explicit expression for the distance generating weak topology can be found in Billingsley

(1999)). Equivalently, one can define a weak neighborhood of f0 ∈ F as a set containing a set

of the form

U = {f ∈ F :

∣∣∣∣∫ giff
x
0 −

∫
gif0f

x
0

∣∣∣∣ < ε, i = 1, 2, . . . , k, }

where gi’s are bounded continuous functions on Y ×X.

For ε > 0 define a Kullback-Leibler neighborhood of f0 as follows

Kε(f0) =

{
f ∈ F :

∫
log

f0(y|x)

f(y|x)
dF0(y, x) =

∫
log

f0(y|x)fx0 (x)

f(y|x)fx0 (x)
dF0(y, x) < ε

}
.

Similarly defined integrated total variation and Kullback-Leibler distances for conditional den-

sities were considered in Ghosal and Tang (2006) and Norets and Pelenis (2009).

Since we are interested only in conditional distributions, we specify a prior on F . The cor-

responding posterior given data (XT , YT ) = (x1, y1, . . . , xT , yT ) is denoted by Π(·|XT , YT ). In

order to apply posterior consistency theorems formulated for joint densities, we can think of a

prior Π on F as a prior on the space of joint densities on Y ×X that puts probability 1 on fx0 .

The posterior of the conditional density does not involve fx0 ; fx0 plays a role only in the proof

of posterior consistency.

The following weak posterior consistency theorem is an immediate implication of Schwartz’s

theorem.

Theorem 2.1. If Π(Kε(f0)) > 0 for any ε > 0 then the corresponding posterior is weakly

consistent at f0: for any weak neighborhood U of f0,

Π(U |YT , XT )→ 1, a.s. F∞0 .

The proof of the theorem is exactly the same as the proof of Schwartz’s theorem and its

implications (see Ghosh and Ramamoorthi (2003) for a textbook treatment).

For showing strong posterior consistency we will use a theorem from Ghosal et al. (1999).

To state the theorem we need a notion of the L1-metric entropy. Let A ⊂ F . For δ > 0, the

L1-metric entropy J(δ, A) is defined as the logarithm of the minimum of all k such that there

exist f1, . . . , fk in F with the property A ⊂ ∪ki=1{f :
∫
|f − fi|fx0 < δ}.
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Theorem 2.2. Suppose Π(Kε(f0)) > 0 for any ε > 0. Let U = {f :
∫
|f − f0|fx0 < ε}. If

for given ε > 0 there is a δ < ε/4, c1, c2 > 0, β < ε2/8 and Fn ⊂ F such that for all n large

enough:

1. Π(Fcn) < c1 exp{−c2n} and

2. J(δ,Fn) < βn,

then Π(U |YT , XT )→ 1, a.s. F∞0 .

The proof of the theorem is exactly the same as the proof of Theorem 2 in Ghosal et al.

(1999). In the following sections we use these weak and strong posterior consistency theorems

to demonstrate consistency for countable covariate dependent location-scale mixtures.

3. Kernel mixtures with variable number of components. Consider the following

model for a conditional density,

p(y|x, θ,m) =

∑m
j=1 αjK(−Qj ||x− qj ||2)φ(y, µj , σj)∑m

i=1 αiK(−Qi||x− qi||2)
, (3.1)

where φ(y, µ, σ) is a fixed symmetric density with location µ and scale σ evaluated at y and K(.)

is a fixed positive function, for example, K(·) = exp(·). The prior on the space of conditional

densities is defined by a prior distribution for a positive integer m (the number of mixture

components) and θ = {Qj , µj , σj , qj , αj}∞j=1 ∈ Θ = (R+ × Y ×R+ ×X × (0, 1))∞, where Qj ∈

R+, µj ∈ Y , σj ∈ R+, qj ∈ X, and αj ∈ (0, 1). Also, let θ1:m = {Qj , µj , σj , qj , αj}mj=1 and note

that p(y|x, θ,m) = p(y|x, θ1:m,m). In a slight abuse of notation Π(·) and Π(·|XT , YT ) will denote

the prior and the posterior on the space of conditional densities and on Θ× {1, 2, . . . ,∞}.

3.1. Weak consistency. We impose the following assumption on the data generating process.

Assumption 3.1. 1. X = [0, 1]dx (the arguments would go through for a bounded X).

2. f0(y|x) is continuous in (y, x) a.s. F0.

3. There exists r > 0 such that∫
log

f0(y|x)

inf ||z−y||≤r, ||t−x||≤r f0(z|t)
F0(dy, dx) <∞. (3.2)

Condition in (3.2) requires logged relative changes in f0(y|x) to be finite on average. The

condition also implies that f0(y|x) is positive for any x ∈ X and y ∈ R. The condition can be

modified to accommodate bounded support, see Norets (2010) (this generalization is not pursued

here to simplify the notation). Norets (2010) shows that Laplace and Student’s t-distributions
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with covariate dependent parameters as well as nonparametrically specified data generating

processes satisfy this assumption.

We also make the following assumption about the location-scale density φ.

Assumption 3.2. 1. φ(y, µ, σ) = σ−dψ((y−µ)/σ), where ψ(z) is a bounded, continuous,

symmetric around zero, and monotone decreasing in |z| probability density.

2. For any µ and σ > 0, log φ(y, µ, σ) is integrable with respect to F0.

A standard normal density satisfies this assumption as long as the second moments of y are

finite. A Laplace density also satisfies this assumption if the first moments of y are finite. The

condition seems to imply that to estimate f0(y|x) by mixtures one needs to mix densities with

tails that are not too thin relative to f0(y|x).

We also make the following assumption about the kernel K(·).

Assumption 3.3. The kernel K(·) is positive, bounded above, continuous, non-decreasing,

and has a bounded derivative on (−∞, 0]. The upper bound can be set to 1 and, thus, 1 ≥ K(z) >

0 for z ∈ (−∞, 0]. Also, we assume ndx/2K(−2n)/K(−n)→ 0 as n→∞.

An exponential kernel K(z) = exp(z) satisfies the assumption. The following theorem is a

generalization of Proposition 4.1 in Norets (2010).

Theorem 3.1. If Assumptions 3.1-3.3 hold then for any ε > 0 there exists m and θ1:m =

{Qj , µj , σj , qj , αj}mj=1 such that∫
log

f0(y|x)

p(y|x, θ1:m,m)
dF0(y, x) < ε.

The theorem is proved in the Appendix. The intuition behind the proof is as follows. For

a fixed x, the conditional density can be approximated by a finite location-scale mixture. The

mixing probabilities in the approximation depend continuously on x. These continuous mixing

probabilities can be approximated by step functions (sums of products of indicator functions and

constants). The indicator functions in turn can be approximated by K(·), which gives rise to an

expression in (3.1) after a normalization. The following corollary shows that the approximation

stays good in a sufficiently small neighborhood of θ1:m.

Corollary 3.1. Suppose Assumptions 3.1-3.3 hold. Then, for a given ε > 0 there is m and

an open neighborhood Θm such that for any θ1:m ∈ Θm,∫
log

f0(y|x)

p(y|x, θ1:m,m)
dF0(y, x) < ε.
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Proof. By Theorem 3.1, there exists m and θ̃1:m such that∫
log

f0(y|x)

p(y|x, θ̃1:m,m)
dF0(y, x) < ε/2.

For any θ1:m,∫
log

f0(y|x)

p(y|x, θ1:m,m)
dF0(y, x) =

∫
log

f0(y|x)

p(y|x, θ̃1:m,m)
dF0(y, x)+

∫
log

p(y|x, θ̃1:m,m)

p(y|x, θ1:m,m)
dF0(y, x).

The first part of the right hand side of this equality is bounded above by ε/2. It suffices to show

that the second part is continuous in θ1:m at θ̃1:m. Let θn1:m be a sequence of parameter values

converging to some θ̃1:m as n→∞. For every y, p(y|x, θ̃1:m,m)/p(y|x, θn1:m,m)→ 1. The result

will follow from the dominated convergence theorem if there is an integrable with respect to F0

upper bound on | log p(y|x, θn1:m,m)|. Since θn1:m → θ̃1:m, µnj ∈ (µ, µ) and σnj ∈ (σ, σ) for some

finite µ, µ, σ > 0, and σ for all sufficiently large n. From Assumption 3.2,

ψ(0)

σ
≥ p(y|x, θn1:m) ≥

1(−∞,µ)(y)ψ(y−µσ ) + 1(µ,∞)(y)ψ(
y−µ
σ ) + 1[µ,µ](y)ψ(

µ−µ
σ )

σ
. (3.3)

The upper bound in (3.3) is a constant and the logarithm of the lower bound is integrable by

part 2 of Assumption 3.2.

The corollary combined with a prior that puts positive mass on open neighborhoods essen-

tially states that the Kullback-Leibler property holds: the prior probabilities of the Kullback-

Leibler neighborhoods of the data generating density f0(y|x)fx0 (x) have positive prior probabil-

ity, where the prior on the density of x puts probability one on fx0 and the prior for conditional

densities is defined by Π introduced above. By Theorem 2.1, the Kullback-Leibler property

immediately implies the following weak posterior consistency theorem.

Theorem 3.2. Suppose

1. Assumptions 3.1-3.3 hold.

2. For any m, θ1:m and an open neighborhood of θ1:m, Θm, Π(θ̃1:m ∈ Θm,m) > 0.

Then for any weak neighborhood U of f0(y|x),

Π(U |YT , XT )→ 1, a.s. F∞0 .
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3.2. Strong consistency. A natural way to define a sieve Fn on F for application of Theorem

2.2, for which bounds on prior probabilities Π(Fcn) can be easily calculated, is to consider

densities p(y|x, θ,m) where m and θ are restricted in some way. To obtain a finite values for

the L1-metric entropy one at least has to restrict components of θ to a bounded set. Thus, let

us define

Fn ={p(y|x, θ,m) : |µj | ≤ µn, Qj ≤ Qn, σn < σj < σn, 1 ≤ j ≤ m, m ≤ mn}.

We calculate a bound on J(δ,Fn) in the following proposition.

Proposition 3.1. Suppose Assumptions 3.2 and 3.3 hold. Then

J(δ,Fn) ≤ mn

(
log

[
b0
µn
σn

+ b1 log
σn
σn

+ 1

]
+ b2 + b3 logQn + b4 logK(−Qndx)

)
(3.4)

where b0, b1, b2, b3, and b4 depend on δ but not on mn, Qn, µn, σn, and σn.

A proof is provided in the Appendix. In addition to addressing the case of covariate depen-

dent mixing probabilities, the proposition shows that the entropy bounds derived in Ghosal

et al. (1999) and Tokdar (2006) for mixtures of normal densities hold for mixtures of general

location-scale densities. The next theorem formulates sufficient conditions for strong posterior

consistency.

Theorem 3.3. Suppose

1. A priori (µj , σj , Qj) are i.i.d. across j and independent from other parameters of the

model.

2. For any ε > 0, there exist δ < ε/4, β < ε2/8, positive constants c1 and c2, and sequences

mn, Qn, µn, σn ↑ ∞ and σn ↓ 0 with σn > σn such that

mn[Π(|µj | > µn)+Π(σn > σj)+Π(σj > σn)+Π(Qj > Qn)]+Π(m > mn) ≤ c1e−c2n, (3.5)

mn

(
log

[
b0
µn
σn

+ b1 log
σn
σn

+ 1

]
+ b2 + b3 logQn + b4 logK(−Qndx)

)
< nβ, (3.6)

where bi are defined in Proposition 3.1.

3. Conditions of Theorem 3.2 hold.

Then the posterior is strongly consistent at f0.

Theorem 3.3 is a direct consequence of Theorem 2.2. Possible choices of prior distributions

and sieve parameters that satisfy the conditions of the theorem are presented in the following

example.
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Example 3.1. Consider K(z) = exp(z). Let µn =
√
n, σn = 1/

√
n, σn = en, and Qn =

√
n.

Then condition (3.6) is satisfied for mn = c
√
n, where c > 0 is a sufficiently small constant.

Next let us choose prior distributions for (µj , σj , Qj) so that condition (3.5) holds. For a normal

prior on µj, Π(|µj | > µn) < c1e
−c2n for some c1 and c2. For an inverse gamma prior on σj we

will show that Π(σn > σj) + Π(σj > σn) < c1e
−c2n for n large enough and some c1 and c2. For

n large enough

Π(σ2n > σ2j ) + Π(σ2j > σ2n) = const ·
(∫ 1/n

0
x−α−1e−β/xdx+

∫ ∞
e2n

x−α−1e−β/xdx

)

≤ const ·
(∫ 1/n

0
(1/n)−α−1e−β/(1/n)dx+

∫ ∞
e2n

x−α−1dx

)

= const ·
(
nαe−βn + e−2αn/α

)
< c1e

−nc2 ,

as desired. Let m = bm̃c and choose a Weibull prior with shape parameter k ≥ 2 for m̃ and Qj,

then (3.5) is satisfied. Alternative choices of prior distributions and sequences are possible as

well.

4. Kernel stick breaking mixtures. For a location-scale mixture model to have a large

support the mixing distribution has to have infinite and at least countable support. In the

previous section, we defined countable mixtures by specifying a prior on the number of mix-

ture components that has support on positive integers. Estimation of such models by reversible

jump MCMC methods is feasible (Green (1995)); however, it could be complicated. A popular

alternative for countable mixtures is Dirichlet process prior mixtures. A stick-breaking repre-

sentation of the Dirichlet process introduced by Sethuraman (1994) proved to be especially

convenient for specifying countable covariate dependent mixtures. In this section, we consider

kernel stick-breaking (KSB) mixture introduced by Dunson and Park (2008),

p(y|x, θ) =
∞∑
j=1

πj(x)ψ

(
y − µj
σj

)
(4.1)

πj(x) = αjK(−Qj ||x− qj ||2)
j−1∏
l=1

{
1− αlK(−Ql||x− ql||2)

}
,

where θ, K, and ψ were defined in Section 3. Even though mixing probabilities πj(x) look quite

different from the mixing probabilities of KMs in (3.1) we show in the following proposition

that KSB mixtures can approximate KMs.
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Proposition 4.1. For any m, θKM ∈ Θ, and ε > 0 there exists θKSB ∈ Θ and n such that∫
log

p(y|x, θKM ,m)

p(y|x, θKSB1:n )
dF0(y, x) < ε, (4.2)

where p(y|x, θKM ,m) is defined in (3.1) and p(y|x, θKSB1:n ) is a truncated version of (4.1),

p(y|x, θKSB1:n ) =
n∑
j=1

πj(x)ψ

(
y − µj
σj

)

The proof of the proposition is in the Appendix. Using this approximation result, we obtain

weak and strong consistency in the following subsections.

4.1. Weak consistency. To show that a KSB mixture is weakly consistent we will prove that

the KL property holds.

Proposition 4.2. Suppose Assumptions 3.1-3.3 hold and for any n, θ1:n, and an open

neighborhood of θ1:n, Θn, Π(θ̃1:n ∈ Θn) > 0. Then for p(y|x, θ) defined in (4.1) and any ε > 0

Π

(
θ :

∫
log

f0(y|x)

p(y|x, θ)
dF0(y, x) < ε

)
> 0.

Proof. By Theorem 3.1 there exists m and θKM ∈ Θ such that∫
log(f0(y|x)/p(y|x, θKM ,m))dF0(y, x) < ε/2.

By Proposition 4.1 there exists n and θKSB1:n such that the left hand side in (4.2) is smaller

than ε/4. From the arguments in Corollary 3.1 it follows that the left hand side in (4.2) is

continuous in θKSB1:n . Therefore, there exists an open neighborhood of θKSB1:n , Θn, such that for

any θ̃KSB1:n ∈ Θn ∫
log(p(y|x, θKM ,m)/p(y|x, θ̃KSB1:n ))dF0(y, x) < ε/2.

Let θ̃KSB = (θ̃KSB1:n , θ̃KSBn+1:∞) ∈ Θ, where θ̃KSB1:n ∈ Θn and θ̃KSBn+1:∞ is an unrestricted continuation

of θ̃KSB1:n . Since p(y|x, θ̃KSB) ≥ p(y|x, θKSB1:n ),∫
log

f0(y|x)

p(y|x, θ̃KSB)
dF0(y, x) ≤

∫
log

f0(y|x)

p(y|x, θKM ,m)
dF0(y, x) +

∫
log

p(y|x, θKM ,m)

p(y|x, θKSB1:n )
dF0(y, x)

< ε.

By the proposition assumption Π(θ̃KSB1:n ∈ Θn) > 0 and the result follows.

By Theorem 2.1 the Kullback-Leibler property implies the following weak posterior consis-

tency theorem.
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Theorem 4.1. Under the assumptions of Proposition 4.2, for any weak neighborhood U of

f0(y|x),

Π(U |YT , XT )→ 1, a.s. F∞0 .

4.2. Strong consistency. To apply Theorem 2.2 we define sieves as follows. For a given δ > 0

and a sequence mn let

Fn = {p(y|x, θ) : |µj | ≤ µn, Qj ≤ Qn, σn < σj < σn, j = 1, . . . ,mn, sup
x∈X

∞∑
j=mn+1

πj(x) ≤ δ}.

The restriction on the mixing probabilities in the sieve definition is similar to the one used by

Pati et al. (2010). We calculate a bound on the metric entropy of Fn in the following proposition.

Proposition 4.3. Suppose Assumptions 3.2 and 3.3 hold. Then

J(4δ,Fn) ≤ mn

(
log

[
b0
µn
σn

+ b1 log
σn
σn

+ 1

]
+ b2 + b3 logQn + b4 logmn

)
, (4.3)

where b0, b1, b2, b3, and b4 depend on δ but not on n, mn, Qn, µn, σn, and σn.

A proof is given in the Appendix.

The next theorem formulates sufficient conditions for strong consistency.

Theorem 4.2. Suppose

1. A priori (αj , µj , σj , Qj) are i.i.d. across j.

2. For any ε > 0, there exist δ < ε/16, β < ε2/8, constants c1, c2 > 0, and sequences mn,

Qn, µn, σn ↑ ∞, and σn ↓ 0 with σn > σn such that

mn

[
Π(|µj | > µn) + Π(σn > σj) + Π(σj > σn) + Π(Qj > Qn)

]
(4.4)

+ Π

sup
x∈X

∞∑
j=mn+1

πj(x) > δ

 ≤ c1e−c2n,
mn

(
log

[
b0
µn
σn

+ b1 log
σn
σn

+ 1

]
+ b2 + b3 logQn + b4 logmn

)
< nβ, (4.5)

where b0, b1, b2, b3, and b4 are defined by Proposition 4.3.

3. Conditions of Theorem 4.1 hold.

Then the posterior is strongly consistent at f0.
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Theorem 3.3 is a direct consequence of Theorem 2.2 and Proposition 4.3. The difficulty in

verifying the sufficient conditions of the theorem arises in finding a prior distribution and sieve

parameters that satisfy the requirements that

Π

sup
x∈X

∞∑
j=mn+1

πj(x) > δ

 < c1e
−nc2

and mn logQn < nβ for n large enough as this requires delicate handling of mixing weights and

prior distributions. Observe that
∑∞
j=mn+1 πj(x) =

∏mn
j=1(1− αjK(−Qj ||x− qj ||2)) and thus

Π

sup
x∈X

∞∑
j=mn+1

πj(x) > δ

 ≤ Π

mn∏
j=1

(1− αjKj) > δ

 , (4.6)

where Kj = K(−Qjdx) ≤ K(−Qj ||x− qj ||2)). The following lemma describes priors for αj and

Qj that imply an exponential bound on the right hand side of (4.6).

Lemma 4.1. If prior distributions of αj and Kj = K(−Qjdx) first order stochastically

dominate Beta(γ, 1) for some γ > 2, then

Π

mn∏
j=1

(1− αjKj) > δ

 < e−0.5mn logmn .

The lemma is proved in the Appendix. With the result of the lemma we are ready to present

an example of priors that satisfy the conditions of Theorem 4.2.

Example 4.1. Suppose priors for µ and σ and sequences µn, σn, and σn are the same as

in Example 3.1 (normal and inverse gamma priors). Then for mn = cn/ log n and Qn = nr,

where c and r are constants, condition (4.5) is satisfied for c sufficiently small.

Condition (4.4) is satisfied if the prior distributions for K(−Qjdx) and αj first order stochas-

tically dominate Beta(γ, 1) for some γ ≥ 2 by Lemma 4.1 (note that for mn = cn/ log n,

exp(−0.5mn logmn) ≤ exp(−0.25cn) for large enough n).

Explicit priors for Qj and αj satisfying the sufficient conditions can be constructed for particu-

lar choices of K(·). For example, for K(·) = exp(·), αj ∼ Beta(γ, 1) and Qj ∼ Exponential(γdx),

which is equivalent to Kj = exp(−Qjdx) ∼ Beta(γ, 1), satisfy conditions of Lemma 4.1. Also,

Π(Qj > nr) ≤ c1e−nc2 for r ≥ 1.

5. Discussion. The regularity conditions on the data generating process assumed in prov-

ing weak and strong posterior consistency are very mild. The conditions require the tails of the
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mixed location-scale density not to be too thin relative to the data generating density. They

also require the local changes in the logged data generating density to be integrable.

Weak posterior consistency is proved under no special requirements on the prior for parame-

ters beyond conditions on the support (0 has to be in the support of the scale parameters and

the support of location parameters has to be unbounded).

Assumptions about the prior for the location and scale parameters of the mixed densities

employed in showing strong posterior consistency are similar under both types of mixing. They

are in the spirit of the assumptions employed in previous work on estimation of unconditional

densities. Examples of priors that satisfy the assumptions include normal prior for locations

and inverse gamma for squared scales commonly used in practice.

Although the parameters entering the mixing probabilities under the two types of mixing are

the same, the mixing probabilities are constructed differently. This seems to require different

priors for attaining strong posterior consistency under the two types of mixing. For kernel mix-

tures with variable number of components there are no restrictions on the constants multiplying

the kernels. For stick breaking mixtures these constants are assumed to have a prior that puts

more mass on values of the constants that are close to 1 (see Lemma 4.1). The inverse of the

scales of the mixing probability kernels may have thicker tails under stick breaking mixtures.

The prior for locations of the mixing probability kernels is not restricted under both types of

mixing, which is not surprising given that the space for covariates is assumed to be bounded.

It would be desirable to derive posterior convergence rates to get more insight into covariate

dependent mixture models. However, the techniques for deriving convergence rates are rather

different from the ones used in this paper. Thus, we leave this problem for future research.

6. Appendix.

Proof. (Theorem 3.1)

The theorem can be proved by exhibiting a sequence of m and θ1:m such that∫
log

f0(y|x)

p(y|x, θ,m)
dF0(y, x)→ 0.

Since dKL is always non-negative,

0 ≤
∫

log
f0(y|x)

p(y|x, θ1:m,m)
F0(dy, dx) ≤

∫
log max{1, f0(y|x)

p(y|x, θ1:m,m)
}F0(dy, dx).

Thus, it suffices to show that the last integral in the inequality above converges to zero as m

increases. The dominated convergence theorem (DCT) is used for that. First, we demonstrate
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the point-wise convergence of the integrand to zero a.s. F0. Then, we present an integrable upper

bound on the integrand required by the DCT. To define m and θ1:m we first define partitions

of Y and X.

Let Amj , j = 0, 1, . . . ,my, be a partition of Y consisting of adjacent half-open half-closed

intervals Am1 , . . . , A
m
my with length hm and the rest of the space Am0 . As m increases the fine

part of the partition becomes finer, hm → 0, and my → ∞. Also, it covers larger and larger

part of Y : for any y ∈ Y there exists M0 such that

∀m ≥M0, Cδm(y) ∩Am0 = ∅, (6.1)

where Cδm(y) is an interval with center y and half-length δm → 0. It is always possible to

construct such a partition. For example, if Y = (−∞,∞) let Am0 = (−∞,− logmy]∪[logmy,∞),

Amj = [− logmy+2(j−1) logmy/my,− logmy+2j logmy/my) for j 6= 0, and hm = 2 logmy/my.

Let Bm
i , i = 1, . . . ,mx be equal size half-open half-closed hypercubes forming a partition of

X = [0, 1]dx . Note m = (my + 1) ·mx. The partition becomes finer as m increases, λ(Bm
i ) =

m−1x → 0, where λ is the Lebesgue measure. Let qmi denote the center of Bm
i .

Taking into account that
∑my
j=0 F0(A

m
j |qmi ) = 1, define m and θ1:m as follows,

p(y|x, θ,m) =∑mx
i=1

[∑my
j=1 F0(A

m
j |qmi )φ(y, µmj , σm) + F0(A

m
0 |qmi )φ(y, 0, σ0)

]
K(−Qm||x− qmi ||2)∑mx

i=1K(−Qm||x− qmi ||2)
,

where σ0 is fixed, σm converges to zero as m increases, and µmj is the center of Amj . One can

always construct a partition Amj so that

δm → 0, σm/δm → 0, hm/σm → 0, (6.2)

for example, in the example from two paragraphs above let σm = h0.5m and δm = h0.25m .

Also, under Assumption 3.3 it is always possible to define a positive diverging to infinity

sequence Qm and a sequence sm (the squared diagonal of Bm
i ) satisfying

K(−2Qmsm)

K(−Qmsm)s
dx/2
m

→ 0, sm = dxλ(Bm
i )2/dx → 0. (6.3)

For example, one can set Qm = s−2m . This condition specifies that Qm should increase fast

relative to how fine the partition of X becomes.

Define Im1 (x, sm) = {i : ||qmi − x||2 ≤ 2sm} and Im2 (x, sm) = {i : ||qmi − x||2 > 2sm}. Since sm

is the squared diagonal of Bm
i , there exists i ∈ Im1 (x, sm) such that,

K(−Qm||x− qmi ||2) ≥ K(−Qmsm). (6.4)
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For all i ∈ Im2 (x, sm),

K(−Qm||x− qmi ||2) ≤ K(−2Qmsm). (6.5)

Note that ∑
i∈Im1 (x,sm)K(−Qm||x− qmi ||2)∑mx

i=1K(−Qm||x− qmi ||2)
(6.6)

≥ 1−
∑
i∈Im2 (x,sm)K(−Qm||x− qmi ||2)∑
i∈Im1 (x,sm)K(−Qm||x− qmi ||2)

≥ 1− card(Im2 (x, sm))K(−2Qmsm)

K(−Qmsm)
≥ 1− ddx/2x

K(−2Qmsm)

K(−Qmsm)s
dx/2
m

,

where the second inequality follows from (6.4) and (6.5). The last inequality follows from

card(Im2 (x, sm)) ≤ mx = d
dx/2
x s

−dx/2
m .

For i ∈ Im1 (x, sm) and Amj ⊂ Cδm(y),

F (Amj |xmi ) ≥ λ(Amj ) inf
z∈Cδm (y), ||t−x||2≤2sm

f(z|t). (6.7)

Inequalities (6.6), (6.7), and Lemma 6.1 imply that p(y|x, θ,m) exceeds

∑
j:Amj ⊂Cδm (y)

∑
i∈Im1 (x,sm)

F (Amj |qmi )
K(−Qm||x− qmi ||2)∑
lK(−Qm||x− qml ||2)

φ(y, µmj , σm)

≥ inf
z∈Cδm (y), ||t−x||2≤2sm

f(z|t)

·
[
1− 6ψ(0)hm

σm
− 2

∫ ∞
δm/σm

ψ(µ)dµ

]
·
[
1− ddx/2x

K(−Qmsm)

K(−Qmsm/22)sdx/2m

]
. (6.8)

By (6.2) and (6.3), given some ε1 > 0 there exists M1 such that for m ≥ M1 the product in

the last line of (6.8) is bounded below by (1− ε1).

If f0(y|x) is continuous at (y, x) and f0(y|x) > 0 there exists M2 such that for m ≥ M2,

[f0(y|x)/ infz∈Cδm (y), ||t−x||2≤2sm f0(z|t)] ≤ (1+ε1) since δm, sm → 0. For any m ≥ max{M1,M2}

1 ≤ max{1, f(y|x)

p(y|x, θ,m)
} ≤ max{1, f0(y|x)

infz∈Cδm (y), ||t−x||2≤2sm f0(z|t)(1− ε1)
} ≤ 1 + ε1

1− ε1

Thus, log max{1, f0(y|x)/p(y|x, θ,m)} → 0 a.s. F as long as f(y|x) is continuous in (y, x) a.s.

F0 (f0(y|x) is always positive a.s. F0).
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Let us derive an integrable upper bound for the DCT:

p(y|x, θ,m) ≥
[
1− ddx/2x

K(−2Qmsm)

K(−Qmsm)s
dx/2
m

]

·
(

[1− 1Am0 (y)] · inf
||z−y||≤r, ||t−x||≤r

f0(z|t) ·
∑

j:Amj ⊂Cr(y)∩(A
m
0 )c

λ(Amj )φ(y, µmj , σm)

(6.9)

+ 1Am0 (y) · inf
||z−y||≤r, ||t−x||≤r

f0(z|t) · λ(Cr(y) ∩Am0 )φ(y, 0, σ0)

)
For any m larger then some M3, the Riemann sum in (6.9) is bounded below by 1/4 (by Lemma

6.1) and [
1− ddx/2x

K(−2Qmsm)

K(−Qmsm)s
dx/2
m

]
≥ 1/2

(by (6.3)).

Choose σ0 so that for y ∈ Am0 , 1 > 1/4 ≥ λ(Cr(y)∩Am0 )φ(y, 0, σ0) ≥ rφ(y, 0, σ0), for example,

σ0 = 8rψ(0). Then

log max{1, f0(y|x)

p(y|x, θ,m)
} ≤ log max{1, f0(y|x)

inf ||z−y||≤r, ||t−x||≤r f0(z|t) · φ(y, 0, σ0) · (r/2)
}

= log
1

φ(y, 0, σ0)(r/2)
max{φ(y, 0, σ0)(r/2),

f0(y|x)

inf ||z−y||≤r, ||t−x||≤r f0(z|t)
}

≤ − log(φ(y, 0, σ0)(r/2)) + log
f0(y|x)

inf ||z−y||≤r, ||t−x||≤r f0(z|t)
. (6.10)

The first expression in (6.10) is integrable by Assumption 3.2 part 2. The second expression in

(6.10) is integrable by Assumption 3.1 part 3. Thus the proposition is proved.

Proof. Proposition 3.1.

The proof generalizes the ideas from Ghosal et al. (1999), Theorem 6 and Tokdar (2006)

Lemma 4.1 to general location scale densities and covariate dependent mixing weights.

Suppose f1, f2 ∈ Fn. We would like to find the restrictions on the parameters θim = {Qij , µij , σij , qij , αij}mj=1

for i = 1, 2 such that
∫
|f1(y|x)− f2(y|x)|dyfx0 (x)dx < δ. For notational simplicity let

πij(x) =
αijK(−Qij ||x− qij ||2)∑m
l=1 α

i
lK(−Qij ||x− qil ||2)

.
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Then for any given x ∈ X∫
|f1(y|x)− f2(y|x)|dy

=

∫ ∣∣∣∣∣∣
m∑
j=1

π1j (x)
1

σ1j
ψ

(
y − µ1j
σ1j

)
−

m∑
j=1

π2j (x)
1

σ2j
ψ

(
y − µ2j
σ2j

)∣∣∣∣∣∣ dy
=

∫
|
m∑
j=1

π1j (x)ψ1
j (y)− π2j (x)ψ2

j (y) + π1j (x)ψ2
j (y)− π1j (x)ψ2

j (y)|dy

≤
∫ m∑

j=1

π1j (x)|ψ1
j (y)− ψ2

j (y)|dy +

∫ m∑
j=1

|π1j (x)− π2j (x)|ψ2
j (y)dy

=
m∑
j=1

π1j (x)

∫
|ψ1
j (y)− ψ2

j (y)|dy +
m∑
j=1

|π1j (x)− π2j (x)|,

where ψij(y) = (σij)
−1ψ((y − µij)/σ

i
j). We will construct bounds for

∫
|ψ1
j (y) − ψ2

j (y)|dy and∑m
j=1 |π1j (x)− π2j (x)| separately. First, let’s find an upper bound for∫

|ψ1
j (y)− ψ2

j (y)|dy

=

∫ ∣∣∣∣∣ 1

σ1j
ψ

(
y − µ1j
σ1j

)
− 1

σ2j
ψ

(
y − µ2j
σ2j

)
+

1

σ1j
ψ

(
y − µ2j
σ1j

)
− 1

σ1j
ψ

(
y − µ2j
σ1j

)∣∣∣∣∣ dy
≤
∫ ∣∣∣∣∣ 1

σ1j
ψ

(
y − µ1j
σ1j

)
− 1

σ1j
ψ

(
y − µ2j
σ1j

)∣∣∣∣∣ dy +

∫ ∣∣∣∣∣ 1

σ1j
ψ

(
y − µ2j
σ1j

)
− 1

σ2j
ψ

(
y − µ2j
σ2j

)∣∣∣∣∣ dy.
Note that

∫ ∣∣∣∣∣ 1

σ1j
ψ

(
y − µ1j
σ1j

)
− 1

σ1j
ψ

(
y − µ2j
σ1j

)∣∣∣∣∣ dy = 2

∫ |µ1
j
−µ2

j
|

2

−
|µ1
j
−µ2

j
|

2

1

σ1j
ψ

(
y

σ1j

)
dy

≤ 2

∫ |µ1
j
−µ2

j
|

2

−
|µ1
j
−µ2

j
|

2

1

σ1j
ψ(0)dy = 2ψ(0)

|µ1j − µ2j |
σ1j

.

Without loss of generality assume that σ1j > σ2j , then

∫ ∣∣∣∣∣ 1

σ1j
ψ

(
y − µ2j
σ1j

)
− 1

σ2j
ψ

(
y − µ2j
σ2j

)∣∣∣∣∣ dy = 4

∫ +∞

0
max

(
0,

1

σ2j
ψ

(
y

σ2j

)
− 1

σ1j
ψ

(
y

σ1j

))
dy

≤ 4

∫ +∞

0
max

(
0,

1

σ2j
ψ

(
y

σ1j

)
− 1

σ1j
ψ

(
y

σ1j

))
dy = 4

∫ +∞

0

(
1

σ2j
− 1

σ1j

)
ψ

(
y

σ1j

)
dy

= 4
σ1j − σ2j
σ2j

∫ +∞

0

1

σ1j
ψ

(
y

σ1j

)
dy ≤ 4

σ1j − σ2j
σ2j

1

2
= 2

σ1j − σ2j
σ2j

.

Combining the two pieces together we find that

m∑
j=1

π1j (x)

∫
|ψ1
j (y)− ψ2

j (y)|dy ≤
m∑
j=1

π1j (x)

(
2ψ(0)

|µ1j − µ2j |
σ1j

+ 2
σ1j − σ2j
σ2j

)
.
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Next step is to find an upper bound for
∑m
j=1 |π1j (x)−π2j (x)|. We introduce additional notation,

where α̃i is a vector of normalized weights αi, i.e. α̃ij = αij/
∑m
l=1 α

i
l, K

i
j(x) = K(−Qij ||x− qij ||2)

and Ai(x) =
∑m
j=1 α̃

i
jK

i
j(x). Then for any x ∈ X

m∑
j=1

|π1j (x)− π2j (x)| =
m∑
j=1

∣∣∣∣∣ α̃1
jK

1
j (x)∑m

i=1 α̃
1
iK

1
i (x)

−
α̃2
jK

2
j (x)∑m

i=1 α̃
2
iK

2
i (x)

∣∣∣∣∣ =
m∑
j=1

∣∣∣∣∣ α̃
1
jK

1
j (x)

A1(x)
−
α̃2
jK

2
j (x)

A2(x)

∣∣∣∣∣
=

1

A1(x)A2(x)

m∑
j=1

∣∣∣α̃1
jK

1
j (x)A2(x)− α̃2

jK
2
j (x)A1(x) + α̃2

jK
2
j (x)A2(x)− α̃2

jK
2
j (x)A2(x)

∣∣∣
≤
∑m
j=1 |α̃1

jK
1
j (x)− α̃2

jK
2
j (x)|

A1(x)
+

∑m
j=1 α̃

2
jK

2
j (x)|A2(x)−A1(x)|
A1(x)A2(x)

=

∑m
j=1 |α̃1

jK
1
j (x)− α̃2

jK
2
j (x)|

A1(x)
+
|A2(x)−A1(x)|

A1(x)

=

∑m
j=1 |α̃1

jK
1
j (x)− α̃2

jK
2
j (x)|

A1(x)
+
|
∑m
j=1 α̃

1
jK

1
j (x)− α̃2

jK
2
j (x)|

A1(x)

≤ 2

∑m
j=1 |α̃1

jK
1
j (x)− α̃2

jK
2
j (x)|

A1(x)
= 2

∑m
j=1 |α̃1

jK
1
j (x)− α̃2

jK
2
j (x) + α̃1

jK
2
j (x)− α̃1

jK
2
j (x)|∑m

j=1 α̃
1
jK

1
j (x)

≤ 2

[∑m
j=1 α̃

1
j |K1

j (x)−K2
j (x)∑m

j=1 α̃
1
jK

1
j (x)

+

∑m
j=1 |α̃1

j − α̃2
j |K2

j (x)∑m
j=1 α̃

1
jK

1
j (x)

]

≤ 2
1

K(−Qndx)

 max
j=1,...,m

|K1
j (x)−K2

j (x)|+
m∑
j=1

|α̃1
j − α̃2

j |

 .
Given any δ > 0 and any f∗ ∈ Fn we want to ensure that there exists an i such that f∗, fi

satisfy∫
|f∗(y|x)− fi(y|x)|dy

≤
m∑
j=1

π1j (x)

(
2ψ(0)

|µ∗j − µij |
σ∗j

+ 2
σ∗j − σij
σij

)
+ 2

1

K(−Qndx)

 max
j=1,...,m

|K∗j (x)−Ki
j(x)|+

m∑
j=1

|α̃∗j − α̃ij |


≤ δ

3
+ 2

1

K(−Qndx)

[
δK(−Qndx)

6
+
δK(−Qndx)

6

]
= δ.

Let ζ = min(δ/12, 1). Define σh = σn(1 + ζ)h, h ≥ 0. Let H be the smallest integer such that

σH = σn(1 + ζ)H ≥ σn. This implies that H ≤ log(σn/σn)/ log(1 + ζ) + 1. Then for any h ≥ 1,

2(σh − σh−1)/(σh−1) ≤ δ/6. Let Nj = d(24ψ(0)/δ)µn/σj−1e. For 1 ≤ i ≤ Nj and 1 ≤ j ≤ H,

define

Eij =

(
−µn +

2µn(i− 1)

Nj
,−µn +

2µni

Nj

]
× (σj−1, σj ].

Then if (µ1, σ1), (µ2, σ2) ∈ Eij , then [2ψ(0)|µ1−µ2|/σ1 + 2(σ1−σ2)/σ2] ≤ δ/3 as desired. Take
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N =
∑H
j=1Nj , then

N ≤
H∑
j=1

(
24ψ(0)

δ

µn
σj

+ 1

)
=

24ψ(0)

δ

µn
σn

H∑
j=1

(1 + ζ)−j +H

≤ 24ψ(0)

δ

µn
σn

1

ζ
+

1

log(1 + ζ)
log(

σn
σn

) + 1

= c0
µn
σn

+ c1 log
σn
σn

+ 1,

where c0, c1 depend on δ, but not on µn, σn, σn. Hence the logarithm of the number of grid points

to bound
∑m
j=1 π

1
j (x)(2ψ(0)|µ∗j − µij |/σ∗j + 2(σ∗j − σij)/σij) < δ/3 is given by mn log(c0µn/σn +

c1 log(σn/σn) + 1).

As shown by Ghosal et al. (1999), Lemma 1, the logarithm of the number N of vectors

(α̃1, . . . , α̃N ) needed to make
∑m
j=1 |α̃∗j−α̃ij | < δK(−Qndx)/6 for some i ∈ {1, . . . , N} is bounded

above by mn(1 + log[(1 + δK(−Qndx)/6)/(δK(−Qndx)/6)]). This bound can be expressed as

mn(c2 + c3 log(K(−Qndx))) where c2, c3 depend on δ, but not Qn.

Finally, we need to construct a bound on the logarithm of the number of grid points for

{Qij , qij}mj=1 so that there exists an i such that |K(−Qij ||x − qij ||2) − K(−Q∗j ||x − q∗j ||2)| <

δK(−Qndx)/6. By Assumption 3.3, K ′ is bounded above, K ′ < K
′
, then

|K(−Qij ||x− qij ||2)−K(−Q∗j ||x− q∗j ||2)| ≤ K
′
(||x− qij ||2)|Qij −Q∗j |+K

′
Qn

dx∑
l=1

2(|xl − qij,l|)

≤ 2K
′
dxQn max

l=1,...,dx
|xl − qij,l|+K

′
dx|Q∗j −Qij | ≤

δK(−Qndx)

12
+
δK(−Qndx)

12
=
δK(−Qndx)

6
.

(6.11)

Hence the number of grid points for {Qj}mnj=1 is determined by ensuring that there exists an i and

Qij such that |Q∗j−Qij | ≤ (δK(−Qndx))/(12K
′
dx). Since Qij ∈ (0, Qn), therefore the logarithm of

the number of grid points is bounded above by mn(log(Qn)− log(K(−Qndx))+log(12K
′
dx/δ)).

Similarly, we want to ensure that there exists an i such that 2K
′
dxQn maxl=1,...,dx |xl − qij,l| <

δK(−Qndx)/12. Since qj belongs to the unit cube [0, 1]dx the number of grid points for qj is

bounded above by [(24K
′
dxQn)/(δK(−Qndx))]dx . Then the bound on logarithm of the number

grid points for {qj}mnj=1 is mndx(log(24K ′dx/δ) + log(Qn) − log(K(−Qndx))). The joint bound

on possible grid points for Q and q is given by mn(c4 + c5 log(Qn) + c6 log(K(−Qndx)) where

c4, c5, c6 depend on δ, but not on Qn.
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Combining all the pieces together we get that

J(δ,Fn) ≤ mn log

(
c0
µn
σn

+ c1 log
σn
σn

+ 1

)
+mn(c2 + c3 log(K(−Qndx)))

+mn(c4 + c5 logQn + c6 logK(−Qndx))

≤ mn

(
log

[
b0
µn
σn

+ b1 log
σn
σn

+ 1

]
+ b2 + b3 log(Qn) + b4 log(K(−Qndx))

)
where b0, b1, b2, b3, b4 do not depend on the parameter θ values.

Proof. Proposition 4.1.

Let the parameters associated with KM be θKM = {αj , Qj , qj , µj , σj}mj=1. For δ ∈ (0, 1) and

a large integer M to be determined later let the parameters for KSB mixture be

θKSB1:m·M = {αjδ,Qj , qj , µj , σj}mj=1 × · · · × {αjδ,Qj , qj , µj , σj}mj=1,

So that θKSB1:m·M is given by M repetitions of θKM (except αj ’s are multiplied by δ). For brevity

let Kj(x) = K(−Qj ||x− qj ||2). Then

p(y|x, θKSB1:m·M ) =
N ·M∑
j=1

αjδKj(x)
∏
l<j

{1− αlδKl(x)}φ(y, µj , σj)

=
M∑
h=1

 m∑
j=1

φ(y, µj , σj)αjδKj(x)
∏
l<j

(1− αlδKl(x))

[ m∏
i=1

(1− αiδKi(x))

]h−1

=

 m∑
j=1

φ(y, µj , σj)αjδKj(x)
∏
l<j

(1− αlδKl(x))

 M∑
h=1

[
m∏
i=1

(1− αiδKi(x))

]h−1

=

∑m
j=1 φ(y, µj , σj)αjδKj(x)

∏
l<j(1− αlδKl(x))

1−
∏m
i=1(1− αiδKi(x))

1−
[
m∏
i=1

(1− αiδKi(x))

]M
=

∑m
j=1 φ(y, µj , σj)αjδKj(x)

∏
l<j(1− αlδKl(x))∑m

j=1 αjδKj(x)
∏
l<j(1− αlδKl(x))

1−
[
m∏
i=1

(1− αiδKi(x))

]M
>

∑m
j=1 φ(y, µj , σj)αjδKj(x)

∏m
l=1(1− αlδKl(x))∑m

j=1 αjδKj(x)

1−
[
m∏
i=1

(1− αiδKi(x))

]M
>

∑m
j=1 φ(y, µj , σj)αjδKj(x)∑m

j=1 αjδKj(x)

(
[1− δ max

j=1,...,m
αj ]

m
)1−

[
m∏
i=1

(1− αiδKi(x))

]M
= p(y|x, θKM ,m)

(
[1− δ max

j=1,...,m
αj ]

m
)1−

[
m∏
i=1

(1− αiδKi(x))

]M ,
where the equality in the fifth line follows by induction and we used the fact that K(·) ≤ 1.
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Let δ < (1− exp (−ε/(2m))) /maxj=1,...,m αj , then [1 − δmaxj=1,...,m αj ]
m > exp {−ε/2}.

There exists j such that αj > 1/m and by Assumption 3.3 Kj(x) > K(−Qdx) for any x ∈ X,

where Q = maxj=1,...,mQj . Therefore,

m∏
i=1

(1− αiδKi(x)) < 1− δK(−Qdx)

m
.

For M > log(1− e−ε/2)/ log(1− (δK(−Qdx))/m) the following is true1−
[
m∏
i=1

(1− αiδKi(x))

]M > 1−
(

1− δK(−Qdx)

m

)M
> exp {−ε/2} .

Thus, log(p(y|x, θKM ,m)/p(y|x, θKSB1:m·M )) < ε and the proposition claim follows.

Proof. Proposition 4.3.

For f1, f2 ∈ Fn the following is true

||f1 − f2||1 ≤
∫
X

∫
Y

∞∑
j=1

∣∣∣π1j (x)φ(y;µ1j , σ
1
j )− π2j (x)φ(y;µ2j , σ

2
j )
∣∣∣ dyfx0 (x)dx

≤
∫
X

∫
Y

mn∑
j=1

π1j (x)
∣∣∣φ(y;µ1j , σ

1
j )− φ(y;µ2j , σ

2
j )
∣∣∣ dyfx0 (x)dx

+

∫
X

∫
Y

mn∑
j=1

∣∣∣π1j (x)− π2j (x)
∣∣∣φ(y;µ2j , σ

2
j )dyf

x
0 (x)dx

+

∫
X

∞∑
j=mn+1

|π1j (x)− π2j (x)|fx0 (x)dx

≤
∫
X

mn∑
j=1

π1j (x)

∫
Y

∣∣∣φ(y;µ1j , σ
1
j )− φ(y;µ2j , σ

2
j )
∣∣∣ dyfx0 (x)dx

+
mn∑
j=1

||π1j − π2j ||1 + sup
x∈X

∞∑
j=mn+1

|π1j (x)|+ |π2j (x)|

≤
∫
X

mn∑
j=1

π1j (x)

∫
Y

∣∣∣φ(y;µ1j , σ
1
j )− φ(y;µ2j , σ

2
j )
∣∣∣ dyfx0 (x)dx

+
mn∑
j=1

||π1j − π2j ||1 + 2δ,

where last inequality is true by construction of Fn as supx∈X
∑∞
j=mn+1 π

1
j (x) ≤ δ.

We need to define a grid {fi} on Fn so that for any f∗ ∈ Fn there exists fi in the grid such that

||f∗−fi||1 < 4δ, where fi is determined by (µi, σi, αi, Qi, qi). It was shown in Proposition 3.1 that

the part of the entropy corresponding to
∫
Y |φ(y;µij , σ

i
j)−φ(y;µ∗j , σ

∗
j )|dy, (the log of the number

of unique values of (µi, σi) in the grid) can be bounded by mn log[b0µn/σn + b1 log(σn/σn) + 1].
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Let πj(x) = αjKj(x)
∏
l<j(1 − αlKl(x)). We need to find a bound on the number of unique

(αi, Qi, qi) so that
∑mn
j=1 ||πij − π∗j ||1 < δ for some i. If |α1

jK
1
j (x)− α2

jK
2
j (x)| < δ/m2

n,

|π1j (x)− π2j (x)| = |α1
jK

1
j (x)

∏
i<j

(1− α1
iK

1
i (x))− α2

jK
2
j (x)

∏
i<j

(1− α2
iK

2
i (x))|

≤ |α1
jK

1
j (x)− α2

jK
2
j (x)|

∏
i<j

(1− α1
iK

1
i (x)) + α2

jK
2
j (x)|

∏
i<j

(1− α1
iK

1
i (x))−

∏
i<j

(1− α2
iK

2
i (x))|

≤ |α1
jK

1
j (x)− α2

jK
2
j (x)|+ |

∏
i<j

(1− α1
iK

1
i (x))−

∏
i<j

(1− α2
iK

2
i (x))|

≤
∑
i≤j
|α1
iK

1
i (x)− α2

iK
2
i (x)| = j

δ

m2
n

≤ δ

mn
.

From this inequality,
∑mn
j=1 ||πij−π∗j ||1 < δ if |αijKi

j(x)−α∗jK∗j (x)| < δ/m2
n. Note that |α1

jK
1
j (x)−

α∗jK
∗
j (x)| < |α1

j −α∗j |+ |K1
j (x)−K∗j (x)|, therefore we consider bounding |α1

j −α∗j | and |K1
j (x)−

K∗j (x)| by δ/(2m2
n). Hence, a bound on the number of unique αi in the grid can be determined

by the requirement that |αij − α∗j | < δ/(2m2
n) for any α∗ and some i. As αij ∈ (0, 1), the log of

the number of unique αi in the grid is bounded above by mn log(2m2
n/δ). Finally, we need to

find a bound on the log of the number of unique (Qi, qi) in the grid so that |K(−Qij ||x−qij ||2)−

K(−Q∗j ||x − q∗j ||2)| < δ/(2m2
n) for some i. Replacing δK(−Qndx)/6 with δ/(2m2

n) in (6.11)

(proof of Proposition 3.1), we can bound the log of the number of unique Qi by mn(log(Qn) +

2 log(mn)) + log(4K
′
dx/δ)) and the log of the number of unique qi by mndx(log(8K ′dx/δ) +

log(Qn) + 2 log(mn)). Thus, the bound for (Qi, qi) is given by mn(c4 + c5 log(Qn) + c6 log(mn))

where c4, c5, c6 depend on δ, but not on Qn or mn.

Combining all the pieces together we find that

J(4δ,Fn) ≤ mn

(
log

[
b0
µn
σn

+ b1 log
σn
σn

+ 1

]
+ b2 + b3 log(Qn) + b4 log(mn)

)
.

Proof. Lemma 4.1.

First, we will prove a secondary result that will be used later. Suppose that a, b
i.i.d.∼ Beta(γ, 1)

for γ > 2, then a · b first order stochastically dominate Beta(1, α) distribution for γ ≥ α ≥ 2. To

prove this we need to show that Pr(a · b ≤ z) ≤ 1− (1− z)α. Since a, b
i.i.d.∼ Beta(γ, 1), therefore

− log a,− log b
i.i.d.∼ Exponential(γ) and − log a− log b ∼ Gamma(2, 1/γ).

Pr(a · b ≤ z) = 1− Pr(− log a− log b ≤ − log z)

= 1−
∫ −γ log z
0

te−tdt = zγ(1− γ log z).
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Then the desired result follows from

A(z) = (1− z)α + zγ(1− γ log z) ≤ 1 (6.12)

for all z ∈ [0, 1] and γ ≥ α ≥ 2. To check the inequality (6.12) first verify A(0+) = A(1) = 1.

Second, A′(z) = 0 gives log z = α(1−z)α−1/(−γ2zγ−1) and after plugging in this value for log z,

A(z) ≤ max{1, zγ + z(1− z)α−1)α/γ + (1− z)α} ≤ max{1, 1 + z2 − z} ≤ 1.

Another auxiliary result that will be used in the proof of the lemma is that if c ∼ Gamma(m, 1/α),

then Pr(c < x) < e−0.5m logm for m large enough. For positive integer m,

Pr(c < x) =

∫ x
0 α

mtm−1e−αtdt

(m− 1)!
=

∫ αx
0 tm−1e−tdt

(m− 1)!
< (αx)m/m!

=
(αx)m

exp {m logm−m+O(log(m))}
(by Sterling formula)

= exp {−m logm+m+m log(αx)−O(log(m))}

= exp(−0.5m logm)
exp(m log(αx) +m+O(log(m)))

exp(0.5m logm)
< exp(−0.5m logm)

when m is sufficiently large.

Using these two auxiliary results note that if αj and Kj first order stochastically dominate

Beta(γ, 1) then for a1, a2
i.i.d.∼ Beta(γ, 1), bj

i.i.d.∼ Beta(1, α), and c ∼ Gamma(mn, 1/α),

Π

mn∏
j=1

(1− αjKj) > δ


=

∫
Π

(
α1K1 < 1− δ∏

j 6=1(1− αjKj)
|αj ,Kj , j 6= 1

)
dΠ(αj ,Kj , j 6= 1)

≤
∫

Π

(
a1a2 < 1− δ∏

j 6=1(1− αjKj)
|αj ,Kj , j 6= 1

)
dΠ(αj ,Kj , j 6= 1)

≤
∫

Π

(
b1 < 1− δ∏

j 6=1(1− αjKj)
|αj ,Kj , j 6= 1

)
dΠ(αj ,Kj , j 6= 1)

= Π

(1− b1)
∏
j 6=1

(1− αjKj) > δ

 (repeat for b2, . . . , bmn)

≤ Π

mn∏
j=1

(1− bj) > δ

 = Π

mn∑
j=1

− log(1− bj) < − log(δ)


= Π (c < − log(δ)) < e−0.5mn logmn .
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Lemma 6.1. Let A1, . . . , Am be a partition of an interval on R such that λ(Aj) ≤ h and

µj ∈ Aj. Assume Cδ(y) = [y − δ, y + δ] ⊂ ∪Aj is an interval with center y and length δ. Then

m∑
j=1

λ(Aj ∩ Cδ(y))σ−1ψ((y − µj)/σ) ≥ 1− 4hψ(0)

σ
− 2

∫ ∞
δ/σ

ψ(µ)dµ.

If Cδ(y) = [y − δ, y] or Cδ(y) = [y, y + δ] the lower bound in the above expression should be

divided by 2.

Proof. Let J = {j : Aj ∩Cδ(y) ⊂ [y − δ, y]}. For any j ∈ J and µ ∈ Aj ∩Cδ(y), µ− h ≤ µj

as λ(Aj) < h and µj ∈ Aj , which implies φ(y, µj , σ) ≥ φ(y, µ− h, σ). Therefore,

∑
j∈J

λ(Aj ∩ Cδ(y))φ(y, µj , σ) ≥
∫
∪j∈J [Aj∩Cδ(y)]

φ(y, µ− h, σ)dµ. (6.13)

Note next that∫
∪j∈J [Aj∩Cδ(y)]

φ(y, µ− h, σ)dµ ≥
∫ y−h

y−δ
φ(y, µ− h, σ)dµ =

∫ y−2h

y−δ−h
φ(y, µ, σ)dµ

≥
∫ y

y−δ
φ(y, µ, σ)dµ−

∫ y

y−2h
φ(y, µ, σ)dµ

≥
∫ y

y−δ
φ(y, µ, σ)dµ− 2hψ(0)

σ

By symmetry the same results can be obtained for J = {j : Aj ∩ Cδ(y) ⊂ [y, y + δ]}. Thus

m∑
j=1

λ(Aj ∩ Cδ(y))φ(y, µj , σ) ≥
∫ y+δ

y−δ
φ(y, µ, σ)dµ− 2

2hψ(0)

σ
.

A change of variables delivers the claim of the lemma.
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