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Abstract

PRELIMINARY AND INCOMPLETE

1 Introduction

Is there any evidence that the U.S. in�ation is described, at least for a while, by

unstable equilibrium paths? In this paper we explore this possibility estimating

a basic New Keynesian model under di¤erent assumptions about the set of valid

equilibria.

The possibility of unstable solutions was previously excluded a priori, because

explosive paths would violate terminal conditions, and they will not be optimal. The

literature refers to the rational expectations hypothesis as a su¢ cient condition to

ensure stability: the economic agents have a complete knowledge of the environment,

1



so they are able to select the path that respects optimality. The literature strived to

�nd su¢ cient conditions also for the uniqueness of the stable solution: in that case

the problem is said to be "determinate". By contrary, when there are many stable

solutions, the economy can jump from one equilibrium path to another, because of

self ful�lling believes. This situation of "indeterminacy" would create an additional

source of in�ation variations, and it is considered, by the New Keynesian literature

(Clarida Galì and Gertler, 2000, and Lubik and Schorfheide, 2004, among others),

as the cause of price instability in the U.S., during the Seventies (look at Figure 1, in

Section 5). Then, the dichotomy between determinacy / indeterminacy is considered

as the starting point to give policy prescriptions: the central banks should implement

policies apt to avoid situations with in�nite stable solutions.

This reasoning has at least two weak points. First, this dichotomy is based on the

assumption that in�ation can not explode, but hyperin�ations happen, unfortunately.

How much is reliable such an assumption? And, more important, is it proper to

describe a situation in which in�ation oscillates from 3% to 15%?

Moreover, note the paradoxical result of a stable system that generate instability,

as opposed to an unstable system to ensure stability. Consider the observed series

of in�ation during the Seventies, in the so called "Great In�ation" period. Suppose

we want to describe this pattern with a dynamic model. In the �gure below there

are the dynamics of three possible bivariate systems around an equilibrium point.

The �rst equilibrium is a saddle: the variables will explode unless they are on

the saddle path that brings them in the equilibrium point. The second is a sink: no

matter where the economy starts, it will reach the (stable) equilibrium asymptoti-

cally. The third case is a source: the equilibrium is unstable, and the variables will
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explode somewhere unless the starting point is exactly the steady state. Imagine to

ask someone, who is not an expert in economics, the following question: "which sys-

tem will you choose to describe in�ation in the Great In�ation period?" The answer

would probably be: "the third one". If we also ask to that person: "if you can, will

you exclude a priori one of these systems?" He will say: "Yes, I exclude the second

system: the stable one." It is exactly the opposite of what economists use to do. The

usual practice is to use a system with multiple stable equilibrium paths to describe

the unstable behavior of macroeconomic variables. Explosive paths, on the contrary,

are a priori excluded by hypothesis.

This practice is at least counter-intuitive, and we want to test it. We suppose

the economy is described by the New Keynesian model, and we compare the �t of

this model under di¤erent assumptions on the set of valid solutions. We consider the

case in which unstable paths are not a priori excluded, and we verify if it can help

in describing the U.S. in�ation.

We �rst present a theoretical framework in which we clarify the role of unstable

solutions in models with rational expectations. We refer to the rational sunspots ap-

proach in which "temporary" unstable paths are not in contrast with the hypothesis

of rational expectations.

We proceed estimating the model�s parameters and the latent states using the

particle learning approach of Carvalho, Johannes, Lopes and Polson (2010). This

method relays on the assumption that the posterior distribution of the parameters

depends on a set of su¢ cient statistics that are recursively updated. When we can

not use this assumption, we approximate the posterior distribution of the parameters

using mixtures of Normals, as in Liu and West (2001).

To compare the di¤erent models we use the sequential Bayes factor presented in

West (1986). We provide evidence that the high in�ation during the Seventies is

better explained by unstable dynamics.
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2 The Rational Sunspots Approach

2.1 Motivation

We want to verify if unstable paths can better explain the in�ation dynamics. Then,

a theoretical point raises: stability is implied by rational expectations, should we

abandon this hypothesis? Cochrane (2011) asserts that "Transversality conditions

can rule out real explosions, but not nominal explosions". In other words rational

expectations leaves the possibility of hyperin�ations. Alas, the New Keynesian model

we analyze in the next section has both nominal and real variables that will eventually

explode together with in�ation.

However, the possibility of a temporary walk on unstable paths is not at all in

contrast with rational expectations: a short lived deviation from the stable solution

would not violate any transversality condition. This is the approach followed by

Ascari and Bonomolo (2012), in which temporary walks on unstable path can be

justi�ed by temporary changes in the expectations formation process.

2.2 A simple example

Let formalize this idea with a simple example. Consider the following model inspired

by Cochrane (2011), including the Fisher equation (1) and the Taylor rule (2):

it = r + Et�t+1 (1)

it = r + ��t + "t "t � N(0; �2") (2)

it is the nominal interest rate at time t, r is the real interest rate (assumed con-

stant for simplicity), �t is in�ation and "t is a white noise exogenous shock. Finally,

Et�t+1 = E (�t+1jIt) that is the expected value of in�ation at t + 1, conditional on

the information set available at time t. Coherently with the rational expectations

hypothesis (in the strong form), we assume that the set It contains all the rele-

vant information: all the present and past values of the endogenous and exogenous

variables, and the structure of the model with its parameters.
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Let concentrate on in�ation: the two equations above implies the following model:

�t =
1

�
Et�t+1 �

1

�
"t (3)

Equation (3) has an in�nite number of solutions, because one can �nd an in�nite

number of couples (�t; Et�t+1) that clear the equation. However, remember that

Et�t+1 is a function of �t because it is an expected value conditional on an information

set that contains also in�ation at time t. Then, we can impose some additional

restrictions to limit the set of allowed solutions. In this spirit, we use the original

method by Muth (1961), supposing that in�ation at time t is a linear function of

only present, past, and expected future values of the exogenous shock. Using this

assumption, we derive the set of solutions parametrized by b 2 (�1;+1) (see the

Appendix):

�t = ��t�1 + "t�1 �
b

�
"t (4)

Equation (4) represents all the solutions of equation (3), each one corresponding to a

particular value of b. As an example, we write two important cases, often considered

in the literature: following the terminology used by Blanchard (1979), we have the

pure forward looking solution corresponding to b = 1,

�Ft = �
1

�
"t (5)

and the pure backward looking solution, corresponding to b = 0,

�Bt = ��Bt�1 + "t�1 (6)

We can understand how the central bank can in�uence the dynamics of in�ation.

The Taylor rule (2) describes the monetary policy implemented. The Taylor principle

states that the central bank conducts an "active" policy if it moves the nominal

interest rate more than proportionally with respect to in�ation�s variations, that

is when j�j > 1. Otherwise the policy is "passive". From equation (4) it is clear

that when the Taylor principle is not respected, for every b 2 (�1;+1) the implied

dynamics are stable. By contrary when the central bank conducts an active monetary

policy all the solutions are unstable but the forward looking one: equation (5). Now,

fostering on common sense, a central bank should not respect the Taylor principle,
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to be sure the in�ation is described by stable dynamics. Posing � > 1 can be

highly risky, because the probability of being on the unique stable path (among

in�nite unstable) is practically zero! Not if we are under the rational expectations

hypothesis. In that case, when � is inside the unit circle, the economy can choose

randomly the solution, and change it at every period. This creates an additional

source of in�ation�s variation that enhances its volatility. Moreover, this translates

in uncertainty in the conduction of monetary policy, because the response of in�ation

to a monetary policy shock is not predictable. This regrettable situation can be

avoided posing � greater than one in absolute value. In that case only the forward

looking solution is valid: any other solution will violate a terminal condition.

The economy can select equation (5) by mean of expectations. At a particu-

lar time, each solution corresponds to a particular expected value, and the Taylor

principle forces the agents to coordinate their expectations on the unique value that

corresponds to the forward looking solution, that in this simple example is Et�t+1 = 0

8t. This correspondence suggests an economic interpretation for b.

2.3 An interpretation for b

Following Ascari and Bonomolo (2012) we can interpret b as the way agents form

their expectations, under the rational expectations hypothesis. To understand this

point, go back to the original spirit of Muth (1961). One of the purpose of that paper

is to write the expectation at time t as an exponentially weighted average of past

observations. The previous paper by Muth (1960), in fact, demonstrates that, under

some assumptions, this is an optimal estimator. In the simple case of equation (3)

we obtain the following expression:

Et�t+1 = (b� 1)
1X
i=1

�
�

b

�i
�t+1�i (7)

Then, b determine how the agents consider past observations in making forecasts.

Et�t+1 is the product of two terms: (b� 1), that tells how much past is important

in the expectations formation, and the weighted average in which the weights are
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function of b. Intuitively, the agents can form expectations looking relatively more

to the past (when b is far from one), or looking to the steady state value (when b is

exactly equal to one): in the last limiting case, represented by the forward looking

solution, we have Et�t+1 = 0.

2.4 The Rational Sunspots

Start considering the case of a passive monetary policy. When j�j < 1 the agents

are free to choose any solutions, and the economy can jump among equilibrium

paths just because of self ful�lling believes. This behavior can be modeled with

sunspots. Ascari and Bonomolo (2012) construct sunspots randomizing among the

in�nite rational expectations equilibria. Because they are parametrized by b, let

randomize over this parameter. More precisely, assume

bt = bt�1 + �t �t � N(0; �2�) (8)

where �t is a Normally distributed sunspot shock. This last condition, in terms of

equation (7), can be interpreted as changes in the expectations formation process.

Suppose that in some periods the agents form their expectations trusting a lot the

past, while in other periods they expect in�ation to be more or less around its steady

state. This mechanism is labeled "rational sunspots" because we are randomizing

over the set of rational expectations solutions: what pushes the economy in changing

the expected value, is not an external element, but it is something related to a degree

of freedom we have in making forecasts, coherently with the rational expectations

hypothesis.

Is this possibility only restricted to the case of passive policy? When the Taylor

principle is respected any unstable solution is excluded because it is not optimal: the

transversality condition will be violated. But it happens for sure if b is constant. On

the other hand, if b is time varying, you can imagine temporary deviations from the

stable solution, so that the terminal condition will not be violated. These deviations,

in terms of equation (7) can be interpreted as temporary changes in the expectations

formation process. The opinion of the present paper, is that in the empirical analysis,
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we can not exclude this situation. Hence, in the following sections, we propose a test

to verify the empirical validity of these temporary unstable paths.

When rational sunspots a¤ect the solution of the model, supposing that bt follows

equation (8), and assuming that expectations have the form of equation (7) in every

period, we have that the complete set of solutions are represented by equation (9)

�t = #t�t�1 + "t�1 �
bt
�
"t , (9)

#t = �
(1� bt)

(1� bt�1)

that has the same form of equation (4), but with time varying parameters. In other

words, rational sunspots can be considered as an economic explanation of drifting

parameters and stochastic volatility.

2.5 The General Solution

We consider the class of models that can be written in the form of Blanchard and

Kahn (1980):

24 Xt+1

EtPt+1

35 = A

24 Xt

Pt

35+ Zt
where Xt is a (n � 1) vector of predetermined variables, and Pt is a (m � 1) vector

of non-predetermined variables. The exogenous disturbances are collected in the

(� � 1) vector Zt, that has a multivariate normal distribution: Zt � i:i:d: N(0;�).

The exogenous shocks in Zt are called fundamental errors. Finally, A and  are

matrices with the parameters of the model.

The matrix A can be rewritten using the Jordan decomposition

A = C�1JC
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and we de�ne the following set of block matrices:

C�1 =

26666664
B11 B12

(n� n) (n�m)

B21 B22

(m� n) (m�m)

37777775 , C =

26666664
C11 C12

(n� n) (n�m)

C21 C22

(m� n) (m�m)

37777775 ,

J =

26666664
J1 0

(n� n) (n�m)

0 J2

(m� n) (m�m)

37777775 ,  =

26666664
1

(n� �)

2

(n� �)

37777775
In the Appendix we show that the rational sunspots solutions take the form of the

following system:

Xt = (B11J1C11 +B12J2C21)Xt�1 + (B11J1C12 +B12J2C22)Pt�1 + 1Zt�1 (10)

C21Xt + C22Pt = J2Ht (C21Xt�1 + C22Pt�1) +

+Ht(C211 + C222)Zt�1 + btJ
�1
2 (C211 + C222)Zt (11)

where bt is a (m�m) diagonal matrix:

bt =

26666664
b1;t 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0 bm;t

37777775
in which

bi;t = bi;t�1 + � i;t � i;t � N(0; �2�i) 8i

and Ht = (I + bt) (I + bt�1)
�1. The matrix bt plays the same role of the coe¢ -

cient b introduced above, parametrizing the solutions. In general, if we have m non

predetermined variables, the cardinality of the set of solutions is in�nite to the power

of m. However, as in the simple example here presented, when the eigenvalues of the

model are outside the unit circle, we can put some restrictions on the elements in
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bt, reducing the set of solution to a smaller one. In practice, consider the following

stability criterion:

stability criterion: for i = 1:::m; if jJ2;ij > 1 put bi;t = �1 8t,

where J2;i is the ith element in the main diagonal of J2, and bi;t is the ith element

in the main diagonal of bt.

The criterion reduces the degrees of freedom in the matrix bt, and then, it down-

sizes the set of valid solutions. If, for example, there are r � m number of eigenvalues

outside the unit circle, the number of solutions, applying the criterion, is 1(m�r).

The limiting case is when the Blanchard-Kahn condition is satis�ed, that is when

the number of eigenvalues outside the unit circle is equal to the number of non pre-

determined variables: the criterion forces all the elements in the main diagonal of

b to be equal to �1, and this is the unique stable solution. If the criterion is not

satis�ed, the dynamics of the variables will be unstable.

3 The New Keynesian Model

We want to test the validity of the stability criterion, when the New Keynesian model

is called to explain the U.S. in�ation dynamics. Let introduce a basic version of the

model, described by the following three equations:

xt = Etxt+1 �
1

�
(it � Et�t+1) + ext (NKIS)

�t = �Et�t+1 + kxt + e�t (NKPC)

it = �iit�1 + (1� �i) [�xxt + ���t] + "it "it � N(0; �2i ) . (TR)

The �rst equation is the New Keynesian IS curve, that relates the output gap xt to

the real interest rate. The dynamics of the in�ation rate �t are described by the

second equation, the New Keynesian Phillips curve. The (NKIS) and the (NKPC)

come from the maximization problem of the households and the �rms, and they are

found loglinearizing, around the steady state, the respective �rst order conditions.

A standard Taylor rule (TR) closes the model. It describes how the central bank

10



conducts the monetary policy, moving the nominal interest rate it, in response to the

deviations of in�ation and output gap from their steady state.

We also suppose that the shocks in the NKIS and in the NKPC are autocorrelated,

that is

ext = �xe
x
t�1 + "xt "xt � N(0; �2x) (12)

e�t = ��e
�
t�1 + "�t "�t � N(0; �2�) (13)

Even if the last two equations do not come from the microfounded framework, this

is a standard hypothesis: its aim is to capture the empirical persistence of the data,

that the model seems to ignore. However, this is a crucial hypothesis only when the

model is described by a particular solution: the forward looking one. In all the other

cases expectations are formed taking explicitly into account the past history of the

variables, and the model is able per se to display persistence.

The model has �ve variables, three predetermined and two non predetermined.

Then, the matrix bt has dimension two. We also know that among the �ve eigenvalues

of the matrix A, in the Blanchard - Kahn form, three of them are inside the unit

circle (because �x, ��, and �i are less than one in absolute value), and one is always

outside the unit circle (see Bullard and Mitra, 2002). The remaining eigenvalue can

be inside or outside the unit circle, depending on the conduction of monetary policy.

It is straightforward to verify that, when the following condition holds,

�� > 1�
1� �

k
�x (14)

the model has two eigenvalues greater than one in absolute value. In that case, the

Blanchard - Kahn condition holds (that is the number of eigenvalues outside the unit

circle is equal to the number of non predetermined variables), and there is a unique

stable solution: the forward looking. If the condition (14) is respected we are under

"determinacy", and the monetary policy is said to be "active". Vice versa, the policy

is "passive".

We can test the validity of the stability criterion in a particular sample comparing

the relative performance of the New Keynesian model here presented, under di¤erent
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hypotheses on the set of valid solutions. In this spirit, we compare two assumptions:

one in which the stability criterion is imposed, and one in which we take solutions

excluded by the same criterion.

Model MS: the subset of stable solutions

Many researcher impose condition (14) before estimating the New Keynesian model.

This assumption can be too strong ( see, for example, Lubik and Schorfheide, 2004).

We allow for a passive monetary policy to be implemented, and we only exclude

unstable solutions. We label this case as model MS, and the matrix bt is:

bt =

24 b1;t 0

0 1

35
b1;t =

8<: 1 if �� > 1� 1��
k
�x

b1;t�1 + �t �t � N(0; �2�) otherwise.

The south east element in bt is imposed to be �1 because, in the matrix A of the

Blanchard Kahn canonical form, there is always one "explosive" eigenvalue. The �rst

element, on the other hand, is b1;t, and it follows a random walk if we have an in�nite

number of stable solutions. Otherwise, if there is also another eigenvalue outside the

unit circle, it is automatically posed equal to minus one.

Model MU : a subset of unstable solutions

The assumption, here, is that the stability criterion, in general, does not hold: we

de�ne the matrix bt as:

bt = b1;tI

b1;t = b1;t�1 + �t �t � N(0; �2�)

The set of solutions considered does not contain the stable set allowed in MS: the

intersection of the two is the forward looking solution, that is the unique possibility

for the stability criterion to hold in this case.
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The next section explains the method used to compare the two assumptions just

presented.

4 Econometric strategy

We use an econometric strategy that is thought to deal with the following peculiar-

ities: i) the model has stochastic volatility, then the likelihood distribution is not

Gaussian; ii) we are interested in tracking the behavior of bt, that can be considered

as a stochastic latent process; iii) we would like to study the �t of di¤erent mod-

els, and eventually compare them, during di¤erent periods. Then, the econometric

strategy is based on Bayesian methods, in particular on Particle �ltering, and on

Sequential model monitoring.

4.1 Particle �ltering

Start with notation: indicate with y1:t = fy1; y2; :::ytg the observed data (containing

series for in�ation, output gap and nominal interest rate); #t is the vector of latent

processes at time t, but the variable bt;  is the vector with the variances of exogenous

shocks; �nally, ! is the vector with the other parameters. We are interested in

approximating the posterior distribution:

f (#0:T ; b0:T ; !;  jy1:T )

To estimate latent processes and parameters we use the Particle Learning ap-

proach by Carvalho, Johannes, Lopes and Polson (2010). We make a sequential

inference on the parameters using their full conditional distributions, when it is pos-

sible to derive them analytically. An analytical expression is typically available for

the variances of the exogenous shocks (the vector  ), using appropriate conjugate dis-

tributions. For the other parameters, collected in !, we implement the Liu and West

(2001) approach, approximating the posterior distribution with mixtures of Normals.
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In what follows we derive the algorithm we use in making inference, starting from

the basic particle �lter.

The basic particle �lter

Consider, for the moment, the parameters as known, and indicate the latent processes

as lt = (#t; bt). lt is a Markovian process, and we are interested in the expected value:

Ef [ltjlt�1; y1:t] =
Z
ltf (ltjlt�1; y1:t) dlt

where the subscript f in the expectation operator indicates that the expected value

is computed under the density distribution f . We can write

Ef [ltjlt�1; y1:t] =
Z
lt
f (ltjlt�1; y1:t)

q (lt)
q (lt) dlt

where q (lt) is a proposal distribution for lt. Then, posing

wt =
f (ltjlt�1; y1:t)

q (lt)
(15)

we have

Ef [ltjlt�1; y1:t] =
Z
ltwtq (lt) dlt = Eq [ltwtjlt�1; y1:t]

We can draw a large number of particles N from q (lt), evaluate and normalize the

weights wt, and approximate Ef [ltjlt�1; y1:t] using

Ef [ltjlt�1; y1:t] �
1

N

NX
i=1

l
(i)
t w

(i)
t

The superscript (i) indicates the ith particle. The proposal distribution q (lt), also

called importance density, plays a crucial role. As an example, consider q (lt) =

q (ltjlt�1), that is the prior distribution. Then, the weights are simply proportional

to the likelihood, and the algorithm, known as the bootstrap �lter, is:

For every t :

1- Propagate:draw l
(i)
t from q

�
ltjl(i)t�1

�
2- Resample: compute w

(i)
t / f(ytjl(i)t ) and resample l

(i)
t according to w

(i)
t

14



The second step is optional. Using the prior as the proposal density is not very

useful. The optimal distribution, that is the one who minimizes the variance of the es-

timator, is represented by the �ltering distribution of the Kalman �lter: q (ltjlt�1; yt).

Moreover, the bootstrap �lter can be improved reversing the steps: �rst resample, and

then propagate. These two improvements lead to the Particle Learning approach.

Particle learning

We want to make inference also on the parameters. Using Particle Learning we

can do it sequentially, together with the latent variables, using their full conditional

distributions. Consider, in the set of unknowns, also the vector  , containing the

variances. For these parameters we can use su¢ cient statistics st = S(st�1; lt; yt) to

represent the posteriors. The su¢ cient statistics can be recursively updated, and

they are random variables because they depend on lt, so they can be part of the

latent vector zt = (xt; st).

To improve e¢ ciency with respect to the basic particle �lter, use q (ltjlt�1; yt)

as the importance distribution. In that case the weights are proportional to the

predictive likelihood. Moreover, use a Resample-Propagate framework. The Particle

Learning �lter is:

For every t :

1- Resample: compute w
(i)
t / f(yt+1jz(i)t ) and resample z

(i)
t according to w

(i)
t

2- Propagate: draw x
(i)
t from q

�
xtjx(i)t�1; yt

�
and s

(i)
t from S(s

(i)
t�1; x

(i)
t ; yt)

3- Draw  (i) from f
�
 js(i)t

�

Our algorithm

There are two di¢ culties in implementing Particle Learning in our framework: i)

the optimal proposal distribution is not available in our case, because the likelihood

distribution is not Gaussian; ii) we can not use su¢ cient statistics to represent the

posterior of the parameters in !.
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The �rst problem is addressed noting that we have a conditional linear model:

considering b0:T as given, the posterior f (#0:T jb0:T ; !;  ; y1:T ) is Gaussian, then we

can use the "optimal" distribution to approximate it. In fact we can write:

f (#0:T ; b0:T j!;  ; y1:T ) = f (#0:T jb0:T ; !;  ; y1:T )| {z }
approximated with optimal proposal

f (b0:T j!;  ; y1:T )| {z }
approximated with blind proposal

(16)

and we use a blind proposal to make inference only on bt. This practice, also called

"Rao-Blackwellization", use the Rao-Blackwell theorem to reduce the variance of

our estimator. Then, we use the prior as the proposal distribution for bt, that

is q(btjbt�1;  ), and the optimal proposal q (#tj#t�1; bt; !;  ; yt) for the other latent

variables.

Also the predictive likelihood, used in the Particle Learning �lter to compute

weights, is not available. We can use, instead, a predictive density that is conditional

on a good guess for bt (we use its expected value).

Finally, we want to make inference on the other parameters collected in !. We

can approximate the posterior of ! using mixtures of Normals as in Liu and West

(2001):

f(!jy1:t) =
NX
i=1

N
�
m(i);h2�

�
where

m(i) = a!(i) + (1� a)�!

� = V ar(!)

�! is the sample mean of
�
!(i)
	N
i=1
, while a and h are parameters that govern the

shrinkage and the degree of overdispersion of the mixture.

Then, we use the following algorithm:

For t = 1:::T:

0 Compute �! = E(!) and � = V ar(!). For i = 1:::N put

m(i) = a!(i) + (1� a)�!

g(b
(i)
t�1) = E(btjbt�1 = b

(i)
t�1)
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For i = 1:::N

1 Compute weights: ~w
(i)
t / w

(i)
t�1q

�
ytj#(i)t�1; g(b

(i)
t�1);m

(i);  (i)
�

2 Resample
n
~#
(i)

t�1

oN
i=1

n
~b
(i)
t�1

oN
i=1

n
~s
(i)
t�1

oN
i=1

�
~m(i)
	N
i=1

n
~ 
(i)
oN
i=1

according to

~w
(i)
t

3 Propagate:

(i) draw ~!(i) from N(!; ~m(i); h2�)

(ii) draw ~b(i)t from q
�
btj~b(i)t�1; ~ 

(i)
�

(iii) draw ~#
(i)

t from q
�
#tj~#

(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
; yt

�
4 Compute new weights: w

(i)
t =

f(ytj~#
(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
)

q(ytj~#
(i)

t�1; g(
~b
(i)
t�1); ~m

(i); ~ 
(i)
)

5 Update sufficient statistics ~s(i)t = S(~s
(i)
t�1;

~#
(i)

t ; yt)

6 Draw ~ 
(i)
from f

�
~ 
(i)j~sit

�
7 Final draws:

n
#
(i)
t

oN
i=1

n
b
(i)
t

oN
i=1

n
s
(i)
t

oN
i=1

�
!(i)
	N
i=1

n
~ 
(i)
oN
i=1

using w(i)t

The weights at step 4 are computed as indicated in equation (15):

w
(i)
t =

f
�
~#
(i)

t ;
~b
(i)
t ; ~!

(i); ~ 
(i)j~#(i)t�1;~b

(i)
t�1; yt

�
q
�
~#
(i)

t ;
~b
(i)
t ; ~!

(i); ~ 
(i)
�

where q
�
~#
(i)

t ;
~b
(i)
t ; ~!

(i); ~ 
(i)
�
is the proposal density, equal to

q
�
ytj~#

(i)

t�1; g(
~b
(i)
t�1); ~m

(i); ~ 
(i)
�
q
�
#tj~#

(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
; yt

�
q
�
btj~b(i)t�1; ~ 

(i)
�
f
�
~ 
(i)j~sit

�
N(!; ~m(i); h2�) .

Then, the weights simplify to

w
(i)
t =

f
�
ytj~#

(i)

t ;
~b
(i)
t ; ~!

(i); ~ 
(i)
�
f
�
~#
(i)

t j~#
(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
�

q
�
ytj~#

(i)

t�1; g(
~b
(i)
t�1); ~m

(i); ~ 
(i)
�
q
�
~#
(i)

t j~#
(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
; yt

� . (17)
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Consider the density q
�
~#
(i)

t j~#
(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
; yt

�
in the denominator: it can be

rewritten as

q
�
~#
(i)

t j~#
(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
; yt

�
=
f
�
ytj~#

(i)

t ;
~b
(i)
t ; ~!

(i); ~ 
(i)
�
f
�
~#
(i)

t j~#
(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
�

f
�
ytj~#

(i)

t�1;
~b
(i)
t ; ~!

(i); ~ 
(i)
�

that substituted in (17) gives the expression at step 4 in the algorithm.

4.2 Sequential model monitoring

The use of a Sequential Monte Carlo has the advantage of comparing di¤erent models

in di¤erent periods of time. To reach this goal we use the sequential Bayes factor by

West (1986), as suggested in Carvalho, Johannes, Lopes and Polson (2010).

Suppose you want to compare two models: MS and MA. You can implement the

following method:

For t = 1:::T

1 Compute the predictive likelihood: f(ytjy0:t�1;Mi) i = S;A

2 Compute the likelihood ratio

Ht =
f(ytjy0:t�1;MS)

f(ytjy0:t�1;MA)

3 Compute Wt(�) = HtHt�1:::Ht��+1

Wt(�) is called the cumulative Bayes factor and it assesses the �t of the most

recent � observations.

With the sequential model monitoring we can track the relative performance of

di¤erent models during time, and distinguish periods where a model is much better

than another.
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5 Empirical Results

5.1 Data and subsamples

We estimate the New Keynesian model of Section 3 using quarterly data for in�ation,

output gap and nominal interest rate. All the series are from the FRED database. In

particular, in�ation is computed as the �rst di¤erence in the logarithm of the price

level (Consumer Price Index) between two subsequent quarters; the output gap is ob-

tained detrending the logarithm of the real output using the Hodrick-Prescott �lter;

�nally, about the nominal interest rate, we suppose the central bank�s instrument is

the Federal Funds Rate.

Figure 1: CPI in�ation, quarterly data. Sample: 1955Q1 - 2006Q4

Figure 1 plots the in�ation series. As it is clear, from the mid Sixties until the end

of Seventies, the U.S. experienced a period of price instability, also labeled as "Great

In�ation". Then, since the �rst Eighties, when the Fed was under the chair of Paul

Volcker, prices came back under control: in�ation became low, as low became the

volatility of prices and of other macroeconomic variables. By contrast to the previous

period, these times are known as the "Great Moderation". The New Keynesian

literature explains the shift from the Great In�ation to the Great Moderation with

the shift from a passive to an active monetary policy, in the terms we referred above.
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As we underlined previously, this interpretation excludes a priori unstable paths,

despite in�ation exceeded 15%. This consideration raises the following question:

would you explain the Great In�ation with a stable system, as in the New Keynesian

literature, or with unstable dynamics? To have a better comparison of our results

with the pre-existing works (Clarida Galì Gertler, 2000, Lubik and Schorfheide, 2004,

among others), we consider two subsample: the pre-Volcker period, from 1960q1 to

1979q3, and the Volcker-Greenspan period, from 1979q4 to 1997q4.

5.2 The Evidence

Table 1 collects the priors for the parameters. Two parameters, the intertemporal

elasticity of substitution and the subjective discount factor, are calibrated to con-

ventional values. We use conjugate priors for the variance of the shocks (see the

previous section). The distributions for the other parameters are in accordance with

usual restrictions about the signs, and with the estimates found in the literature.
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Table 1

Priors and calibrations

Parameter Distribution Calibrated

� 0:99

� 1

�i U(0; 1)

�x U(0; 1)

�� U(0; 1)

�x G(0:5; 1)

�� G(2; 2)

k G(0:5; 1)

�2i IG(2; 0:001)

�2x IG(2; 0:001)

�2� IG(2; 0:001)

�2� IG(2; 0:01)

Table 2 reports the estimates of the parameters, for the two models in the two

subsamples analyzed. The convergence to these values through time (we are using an

on line estimator) is shown in the Appendix. Start considering the �rst subsample.

Under stability (model MS) the forward looking solution is selected: the estimate of

�� is greater than one, suggesting that the Fed respected the Taylor principle. Be-

cause MS excludes unstable equilibrium paths, the matrix bt is equal to the identity

by mean of the stability criterion. Then, if we restrict the solutions to the stable

ones, in a certain sense, data select "the most unstable system", instead of describ-

ing the behavior of the variables through an in�nite number of stable equilibrium

dynamics.
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Table 2

Estimates

1960Q1 - 1979Q3 1979Q4 - 1997Q4

Parameter MS MU MS MU

�i 0:57
[0:45 0:68]

0:63
[0:45 0:79]

0:74
[0:69 0:79]

0:66
[0:55 0:75]

�x 0:5
[0:12 0:78]

0:12
[0:01 0:3]

0:23
[0:11 0:39]

0:58
[0:47 0:67]

�� 0:04
[0:01 0:09]

0:03
[0:01 0:22]

0:03
[0:01 0:06]

0:06
[0:01 0:16]

k 0:04
[0:02 0:07]

0:02
[0:004 0:06]

0:01
[0:001 0:04]

0:21
[0:08 0:42]

�x 0:28
[0:25 0:32]

0:032
[0:029 0:037]

0:3
[0:29 0:34]

0:33
[0:31 0:35]

�� 1:047
[1:037 1:05]

0:58
[0:56 0:61]

1:36
[1:36 1:38]

1:37
[1:26 1:46]

�i 0:0058
[0:0051 0:0067]

0:0057
[0:005 0:0067]

0:0063
[0:0056 0:0073]

0:0072
[0:0062 0:0085]

�x 0:01
[0:009 0:013]

0:011
[0:01 0:014]

0:0089
[0:0076 0:011]

0:008
[0:007 0:01]

�� 0:0065
[0:0057 0:0075]

0:007
[0:006 0:009]

0:0068
[0:006 0:008]

0:0074
[0:0063 0:0088]

�& 0:18
[0:15 0:22]

0:3
[0:25 0:38]

90% credibility interval in brackets

The estimates of the parameters in the �rst subsample are very similar in the two

models, except for the policy parameters of the Taylor rule. The inference on those

parameters changes becauseMU gives a completely di¤erent interpretation about the

instability of that period. Independently from the Fed policy, the instability comes

from the model itself: it is not the monetary policy to destabilize the system ( ��

is less than one), but the latter is unstable because of the presence of an eigenvalue

outside the unit circle. Even if there is the possibility of selecting a stable solution,

the forward looking one chosen by MS, the model with unstable paths discards this

possibility, and it happens exactly when in�ation starts growing away from the steady

state.
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Figure 2: b1;t during the Great In�ation

This intuition is clear looking at Figure 2 that plots the �ltered estimate of b1;t

during the Great In�ation, under model MU . The latent process �uctuates close to

the forward looking value (that represents the unique stable solution) until the �rst

Seventies. Then, it walks away from one, selecting unambiguously unstable paths,

exactly when in�ation starts �uctuating between 3% and 15%.

Figure 3: Comparing MS - MU . Great In�ation

We compare the relative �t of the two models computing the Sequential Bayes

factor as in West (1986). The results for the �rst subsample are reported in Figure
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3, where we plot together the logarithm of the Sequential Bayes factor and in�ation.

Twelve quarters are compared at each time. Model MS is at the numerator and

model MU is at the denominator, and we take the logarithm so that when the Bayes

factor is zero it means that the two models have the same performance in terms

of predictive likelihood, when it is positive it means that MS is preferred, and vice

versa, we prefer MU when it is negative. The advantage of the Sequential Bayes

factor, with respect to the conventional measures in Bayesian Econometrics, is that

we can compare two models through time, and verify the sub-periods in which a

model is better than another. In our speci�c case, as expected, the unstable model

is much preferred when in�ation reaches high values.

The inference about the two models in the second subsample is very similar: in

both cases they select the forward looking solution. The Taylor principle is respected,

so that inMS the process for b1;t degenerates to the value of one. In the case of model

MS, on the other hand, b1;t remains close to one, and in the second half of the period

considered it is not statistically di¤erent from one.

Figure 4: b1;t during the Great Moderation

Now, comparing the two models as in the previous case, we �nd that the two mod-

els have the same explanatory power, except in the �rst part, when the stabilization

period is better interpreted by MS.
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Figure 5: Comparing MS - MU . Great Moderation

6 Conclusion

The empirical evidence we show in the present paper suggests that the Great In�a-

tion in the U.S. can be explained by temporary unstable paths, as in the rational

sunspots interpretation. We show that the usual practice of excluding a priori un-

stable solutions is not supported by the data. Obviously the model we use plays a

role, because it has an intrinsic source of instability (one eigenvalue is always greater

than one). It is precisely using that model that we try to confute the New Keyne-

sian interpretation about the Great In�ation period: the main cause was not the

presence of an in�nite number of stable solutions, generated by a passive monetary

policy. The results go on the opposite direction with respect to the conclusions of

popular papers like the one of Lubik and Schorfheide (2004): interpreting instability

with a stable system is not only counter-intuitive, but also not very reliable under

an empirical point of view.
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Appendix A

The solution for the simple model

Consider equation (3) in the paper:

�t =
1

�
Et�t+1 + et (18)

et = �1
�
"t "t � i:i:d:N(0; �2") (19)

In this appendix we treat the general case with a time varying bt (then, the case with

bt constant is simply obtained). Suppose that

bt = bt(�t) (20)

where �t is a random variable, called sunspot shock, orthogonal to the fundamental

shocks es (s = 1; 2; :::) and such that Et�t = 0 8t.

Following Muth (1961) and Blanchard (1979) we guess the solution for model

(18):

�t =
1X
j=1

uj;tet�j + btet +
1X
j=1

cj;tEtet+j (21)

where uj;t, bt and cj;t are coe¢ cients to be determined. Hence verify using undeter-

mined coe¢ cients:

�t =
1

�
Et�t+1 + et

1X
j=1

uj;tet�j + btet +

1X
j=1

cj;tEtet+j =
1

�
Et

 1X
j=1

uj;t+1et+1�j + bt+1et+1 +

1X
j=1

cj;t+1Etet+1+j

!
+ et

that is:

u1;tet�1 + u2;tet�2 + u3;tet�3 + ::::+ btet + c1;tEtet+1 + c2;tEtet+2 + :::

=
1

�
Et (u1;t+1et + u2;t+1et�1 + u3;t+1et�2 + :::+ bt+1et+1 + c1;t+1et+2 + c2;t+1et+3 + :::) + et
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equal coe¢ cients to �nd an expression for the u0s:

et : bt =
1

�
Etu1;t+1 + 1) Etu1;t+1 = �(bt � 1)

et�1 : u1;t =
1

�
Etu2;t+1 ) Etu2;t+1 = �u1;t

...

et�j : uj;t =
1

�
Etuj+1;t+1 ) Etuj+1;t+1 = �uj;t

and for the c0s:

et+1 : c1;t =
1

�
Etbt+1

et+2 : c2;t =
1

�
Etc1;t+1

...

et+j+1 : cj+1;t =
1

�
Etcj;t+1

These equations need an assumption on the stochastic process governing bt to be

satis�ed. Otherwise, in general the system can not be solved.

Random walk process for bt

Assume that bt is following a random walk process as bt = bt�1 + �t, with �t �

i:i:d:N(0; �2�). Then Et+1bt+1 = bt: Hence:

rt: bt =
1

�
Etu1;t+1 + 1) Etu1;t+1 = �(bt � 1)

However, given Etu1;t+1 = �(bt � 1) what can we say about u1;t+1? Assuming that

u1;t+1 = F (bt+1); the problem then is to �nd the function F such that Etu1;t+1 =

�(bt � 1), given the stochastic process for bt: Assuming that F is linear then we

are looking for a linear function such that Et (a1bt+1 + a0) = �(bt � 1), that is:

a1Etbt+1 + a0 = �bt � �) a1bt + a0 = �bt � �)

a1 = �

a0 = ��
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so

u1;t+1 = �bt+1 � � (22)

Equal coe¢ cients that multiply et�1:

Etu2;t+1 = �u1;t

Then, u1;t = �bt � � needs to be equal to 1
�
Etu2;t+1: Following the same reasoning,

assuming u2;t+1 is a linear function of bt+1; we need to solve for

Et (a1bt+1 + a0) = �u1;t = �2bt � �2:

Then, it must be

a1 = �2

a0 = ��2

so that:

u2;t+1 = �2bt+1 � �2 (23)

generally

uj;t = �jbt � �j (24)

Having solved for the u0s let�s solve for the c0s: This is easy since Et+1bt+1 = bt:

et+1: c1;t =
1

�
Etbt+1 =

1

�
bt (25)

Following the method implemented above we obtain, in general:

cj;t =
1

�j
bt (26)

Equations (24) and (26) are the coe¢ cients of equation (21), written as function

of bt. Equation (21) is a solution for model (18) only if it satis�es these restrictions.
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In our case, because the exogenous shocks are i:i:d: with zero mean, the sumP1
j=1 cj;tEtet+j in equation (21) is zero. Then, substituting equation (24) we have:

�t = (bt � 1)
1X
j=1

�jet�j + btet (27)

so that we have the pure forward looking solution when bt = 1 (equation, 5 in the

paper):

�Ft = et = �
1

�
"t

and the pure backward looking solution when bt = 0:

�Bt = �
1X
j=1

�jet�j = ��et�1 � �

1X
j=1

�jet�j�1

�Bt = �
�
�Bt�1 � �Ft�1

�
= ��Bt�1 + "t

that corresponds to equation (6). Note that equation (27) can be rewritten as:

�t = (1� bt)�
B
t + bt�

F
t (28)

that is, each particular solution depends on bt, and it can be written as a linear

combination of the backward and the forward one.

The recursive formulation

We �rst report the important equations:

�t = (1� bt)�
B
t + bt�

F
t (29)

�Bt = ��Bt�1 � ��Ft�1 (30)

�Ft = et (31)

substituting �Bt and �
F
t in the �rst equation we obtain

�t = �(1� bt)�
B
t�1 � �(1� bt)et�1 + btet (32)

Multiply for (1� bt) equation (30) and substitute in the last equation to �nd �Bt :

(1� bt)�
B
t = �(1� bt)�

B
t�1 � �(1� bt)et�1

(1� bt)�
B
t = �t � btet

�Bt =
�t � btet
(1� bt)
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Use this expression, lagged, in (32) to derive the complete set of solutions for model

(18), when bt�1 6= 1:

�t = �t�t�1 � �tet�1 + btet (33)

with �t = �
(1� bt)

(1� bt�1)
. The particular case of bt = b constant is obtainable o¤setting

the sunspot shocks, that is imposing �2� = 0. The coe¢ cient �t becomes:

�t = �
1� bt�1
1� bt�1

= �

and �t is described by equation (4):

�t = ��t�1 + "t�1 �
b

�
"t

Expectations as a weighted average of past observations

Under the rational expectations hypothesis, the expected value in model (18), can

be written as a weighted average of the past observations (see Muth, 1961):

Et�t+1 =
1X
i=1

Vi;t�t+1�i = (34)

= V1;t�t + V2;t�t�1 + V3;t�t�2 + :::

where we need to determine the coe¢ cients Vi;t. Using equation (28) we have:

Et�t+1 = V1;t

"
(bt � 1)

1X
j=1

�jet�j + btet

#
+

+V2;t

"
(bt�1 � 1)

1X
j=1

�jet�j�1 + bt�1et�1

#
+

+V3;t

"
(bt�2 � 1)

1X
j=1

�jet�j�2 + bt�2et�2

#
+ :::

Rearrange:

Et�t+1 = V1;tbtet +

+ [V1;t (bt � 1)�+ V2;tbt�1] et�1 +

+
�
V1;t (bt � 1)�2 + V2;t (bt�1 � 1)�+ V3;tbt�2

�
et�2 +

+:::
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Then, bring equation (28) one step ahead,

Et�t+1 = (bt � 1)
1X
j=1

�jet�j+1 =

= (bt � 1)
�
�et + �2et�1 + �3et�2 + :::

�
and compare coe¢ cients:

et: (bt � 1)� = V1;tbt

V1;t =
(bt � 1)
bt

�

et�1: (bt � 1)�2 = [V1 (bt � 1)�+ V2bt�1]

V2 =
(bt � 1)
btbt�1

�2

et�2: (bt � 1)�3 =
�
V1;t (bt � 1)�2 + V2;t (bt�1 � 1)�+ V3;tbt�2

�
V3;t =

(bt � 1)
btbt�1bt�2

�3

in general:

Vi;t =
(bt � 1)
i�j=1Q
0

bt�i

�i

and when bt = b constant:

Vi =
(b� 1)
bi

�i

The multivariate case

b constant

We show how to compute the complete set of solutions of a system with rational

expectations.

Consider a system with rational expectations written in the form of Blanchard

and Kahn (1980): 24 Xt+1

EtPt+1

35 = A

24 Xt

Pt

35+ Zt (35)
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Xt is a (n � 1) vector of predetermined variables and Pt is a (m � 1) vector of non

predetermined variables. Zt � i:i:d: N(0;�) is a (��1) vector of exogenous random

variables.

Use the Jordan form to rewrite A

A = C�1JC.

In the main diagonal of J there are the eigenvalues of A, ordered by increasing

absolute value. We decompose the matrices C�1, J , C and  as follows:

C�1 =

26666664
B11 B12

(n� n) (n�m)

B21 B22

(m� n) (m�m)

37777775 , C =

26666664
C11 C12

(n� n) (n�m)

C21 C22

(m� n) (m�m)

37777775 ,

J =

26666664
J1 0

(n� n) (n�m)

0 J2

(m� n) (m�m)

37777775 ,  =

26666664
1

(n� �)

2

(n� �)

37777775 .

De�ne 24 Yt

Qt

35 = C

24 Xt

Pt

35 ,

and rewrite equation (35) in terms of

24 Yt

Qt

35:
24 EtYt+1

EtQt+1

35 =
24 J1 0

0 J2

3524 Yt

Qt

35+
24 C11 C12

C21 C22

3524 1

2

35Zt . (36)

Now consider the second block of equation (36),

Qt = J�12 EtQt+1 � 
t (37)

where 
t = J�12 (C211 + C222)Zt. The system (37) has m disjoined equations,

and each of them admits an in�nite number of solutions because of the presence of
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an expected value. De�ning qi;t as the ith element of Qt, and !i;t the corresponding

disturbance, we write all the solutions of the generic row of equation (37) as

qi;t =
1X
j=1

ui;j!i;t�j + bi!i;t +

1X
j=1

ci;jEt!i;t+j . (38)

Using matrices instead of scalars the solutions can be rewritten as

Qt =

1X
j=1

uj
t�j + b
t +

1X
j=1

cjEt
t+j (39)

where uj, b and cj are diagonal matrices of coe¢ cients to be determined. Bring

equation (39) one step ahead

EtQt+1 =

1X
j=1

uj
t+1�j + Etb
t+1 +
1X
j=1

cjEt
t+1+j

and substitute in equation (37)

Qt = J�12

1X
j=2

uj
t+1�j + J�12 u1
t � 
t + J�12 Etb
t+1 + J�12

1X
j=1

cjEt
t+1+j . (40)

We �nd the coe¢ cients comparing the matrices of equation (39) to the ones of

equation (40):

b = J�12 u1 � I =) u1 = J2b+ J2

u1 = J�12 u2 =) uj+1 = J2uj j = 1:::1

c1 = J�12 b

c2 = J�12 c1 =) cj+1 = J�12 cj j = 1:::1

The matrices uj and cj are functions of b and J2, and since J2 is given, the

complete set of solutions is parametrized by b. There are two particular cases: the

pure backward looking solution, corresponding to b = 0, that implies cj = 0 and

uj = J j2 , j = 1:::1; the pure forward looking solution corresponding to b = �I,

that implies uj = 0 and cj = �J�j2 , j = 1:::1. The backward looking solution can

33



be written as follows:

QBt =

1X
j=1

uj
t�j (41)

QBt =
1X
j=1

J j2
t�j = J2
t�1 + J22
t�2 + J32
t�3 + ::::

QBt = J2
t�1 + J2
�
J2
t�2 + J22
t�3 + J32
t�4 + :::

�
QBt = J2Q

B
t�1 + J2
t�1 (A7)

The forward looking solution is

QFt = b
t +
1X
j=1

cjEt
t+j = �I
t � J�12 Et
t+1 � J�22 Et
t+2 � :::

and since Et
t+j = 0 8j � 1, we obtain

QFt = �
t . (42)

Following Blanchard (1979) we write any other solution as a linear combination of

the backward and the forward looking solutions. In compact form

Qt = �Q
B
t + (I � �)QFt (43)

where � = I + b is a diagonal matrix. The elements in the main diagonal of b are

such that b = 0) Qt = QBt , and b = �I ) Qt = QFt .

Substitute the equations (A7) and (42) in equation (43)

Qt = �
�
J2Q

B
t�1 + J2
t�1

�
� (I � �)
t

= �J2Q
B
t�1 � �J2QFt�1 + J2Q

F
t�1 � J2Q

F
t�1 � (I � �)
t .

In the last passage we have added and subtracted J2QFt�1. Since both J2 and � are

diagonal matrices the commutative property holds and we can write

Qt = J2
�
�QBt�1 + (I � �)QFt�1

�
+ J2
t�1 � (I � �)
t

Qt = J2Qt�1 + J2
t�1 + b
t (44)

Equation (44) represents the in�nite number of solutions for Qt parametrized by b.

The complete set of solutions for model (35) is found using the de�nition of Qt and

the �rst n rows of the model written with the Jordan matrices:

Xt = (B11J1C11 +B12J2C21)Xt�1 + (B11J1C12 +B12J2C22)Pt�1 + 1Zt�1 (45)
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C21Xt + C22Pt = J2(C21Xt�1 + C22Pt�1) +(C211 + C222)Zt�1 +

+bJ�12 (C211 + C222)Zt (46)

In the paper we focus on the case in which the matrix A has at least n eigenvalues

inside the unit circle. This means that the model admits at least one stable solution.

If this condition is not satis�ed the equations (45) and (46) continue to represent the

complete set of solutions that are all unstable.

Adding sunspots

Add the hypothesis that each element in the main diagonal of b is described by the

following stochastic process:

bi;t = bi;t�1 + � i;t

with � i;t � i:i:d:N(0; �2�i), i = 1; 2; :::m. With this hypothesis equation (38) becomes

qi;t =
1X
j=1

u
(j)
i;t !i;t�j + bi;t!i;t

and its solution is:

qi;t = �i;tqi;t + �i;t!i;t�1 + bi;t!i;t

�i;t = J2;i
(1� bi;t)

(1� bi;t�1)

where J2;i is the ith eigenvalue in the main diagonal of J2. Putting in matrix form the

system with these m disjoined equations, we obtain the following system, analogous

to equation (44):

Qt = J2 (I + bt) (I + bt�1)
�1Qt�1 + J2 (I + bt) (I + bt�1)

�1
t�1 + bt
t

withFinally, the solution is represented by the following system:

Xt = (B11J1C11 +B12J2C21)Xt�1 + (B11J1C12 +B12J2C22)Pt�1 + 1Zt�1

C21Xt + C22Pt = J2 (I + bt) (I + bt�1)
�1 (C21Xt�1 + C22Pt�1) +

+ (I + bt) (I + bt�1)
�1 (C211 + C222)Zt�1 + btJ

�1
2 (C211 + C222)Zt
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Appendix B

I report the sequential inference on the parameters for the four cases studied.

MS Great In�ation

The variances

and the other parameters:
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MS Great Moderation

The variances:

and the other parameters:
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MU Great In�ation

The variances:

and the other parameters:
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MU Great Moderation

The variances:

and the other parameters:

39



References

Ascari, G. and P. Bonomolo (2012): "Rational Sunspots and Drifting Parame-

ters," Mimeo, Università di Pavia.

Blanchard, O. J. (1979): "Backward and Forward Solutions for Economies with

Rational Expectations," American Economic Review, American Economic Associa-

tion, vol. 69(2), pages 114-18, May.

Blanchard, O. J. and C. M. Kahn (1980): "The Solution of Linear Di¤er-

ence Models under Rational Expectations," Econometrica, Econometric Society, vol.

48(5), pages 1305-11, July.

Bullard, J. and K. Mitra (2002): "Learning about monetary policy rules,"

Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1105-1129, September.

Carvalho, C. M., M. S. Johannes, H. F. Lopes and N. G. Polson (2010),

"Particle learning and smoothing," Statistical Science, Institute of Mathematical

Statistics, vol. 25(1), pages 88-106, February.

Clarida, R., J. Gali and M. Gertler (2000): "Monetary Policy Rules And

Macroeconomic Stability: Evidence And Some Theory," The Quarterly Journal of

Economics, MIT Press, vol. 115(1), pages 147-180, February.

Cochrane, J. H. (2011): "Determinacy and identi�cation with Taylor rules," Jour-

nal of Political Economy, The University of Chicago Press, vol. 119(3), pages 565-

615, June.

Liu, J. and M. West (2001): "Combined parameters and state estimation in

simulation-based �ltering," in A. Doucet, N. de Freitas and N. Gordon (ed.), Se-

quential Monte Carlo Methods in Practice, Springer.

Lubik, T. A. and F. Schorfheide (2004): "Testing for Indeterminacy: An Appli-

cation to U.S. Monetary Policy," American Economic Review, American Economic

Association, vol. 94(1), pages 190-217, March.

40



Muth J. F. (1960): "Optimal Properties of Exponentially Weighted Forecasts",

Journal of the American Statistical Association, American Statistical Association,

vol. 55(290), pages 299-306, June.

Muth J. F. (1961): "Rational Expectations and the Theory of Price Movements,"

Econometrica, Econometric Society, vol. 29(3), pages 315-335, July.

West M. (1986): "Bayesian Model Monitoring," Journal of the Royal Statistical

Society. Series B (Methodological), Blackwell Publishing, vol. 48(1), pages 70-78

41


