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Abstract

The symmetric alpha stable (SAS) prior has appeared in the image processing field as a wavelet

shrinker. The SAS prior includes the normal and Cauchy priors as special cases and has some de-

sirable properties for the shrinkage problem such as spike at zero and heavy tail. However, the use

of the SAS prior is currently quite limited, because it does not allow a closed form density. The

non-existence of a closed form density causes to difficulty in estimating the hyperparameter, which

plays an important role for shrinkage to be data adaptive. We propose a convenient way to estimate

the regression model under the prior distribution with intractable density with the hyperparameter

estimated from the data. We develop an Markov chain Monte Carlo algorithms coupled with the

technique of approximate Bayesian computation. Our method can be applied to the case of the gen-

eralised Linnik prior, which can be regarded as an extension of the SAS prior. The proposed method

is demonstrated using the simulated datasets and the real dataset.
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1 Introduction

Consider the linear regression model given by

yi = µ + x′iβ + ei, i = 1, . . . , n, (1)

where yi is the dependent variable, µ is the intercept parameter, xi is the k × 1 vector of independent

variables, β is the coefficient parameter, and ei is the error term which independently follows N(0, σ2).

We do not impose any restriction on p and n. In many fields of application, there is a growing interest in

the case where p >> n. For example, in the economic growth model, the number of nations n can be no

larger than approximately 200 while the independent variables include geographical, demographic, and

policy variables and p is not restricted. In the gene microarray analysis, there are thousands of candidate

genes to explain the relationship with a certain phenotype, but the number of subjects is quite limited.

In such a case, our goal is to obtain a sparse estimate β̂ such that only a subset of its components differs

from zero.

In the Bayesian framework, extracting the nonzero components is achieved through placing a prior

distribution on β. A shrinkage prior ought to have a certain property, as studied by Polson and Scott (2010),

such as tail robustness and predictive efficiency. Park and Casella (2008) and Hans (2009) proposed

the Bayesian Lasso based on the double exponential (Laplace) distribution. It is known that the rela-

tively light tails of the double exponential prior causes overshrinking of large coefficients. Caron and

Doucet (2008) and Griffin and Brown (2010) considered the normal-gamma prior which includes the

Bayesian Lasso as a special case. The double Pareto prior considered by Armagan et al. (2012) permits a

similar mixture representation to the normal gamma prior. Li and Lin (2009) and Hans (2011) proposed

the Bayesian elastic net based on the scale mixture of normal representation. The bridge estimator based

on the exponential power prior was proposed by Polson and Scott (2011a) using the scale mixture of

normal representation and later was represented using the mixture of Bartlett-Fejer kernel by Polson and

Scott (2011b). The horseshoe prior of Carvalho et al. (2010) used the Cauchy mixing distribution for the

2



scale mixture of normal and resulted in some desirable property as a shrinkage prior.

In this paper, we consider another class of prior distribution for β, namely the symmetric α stable

(SAS) prior and the symmetric generalised Linnik prior (SGL) distributions. The SAS prior has appeared

in the image processing field as a wavelet shrinker (Achim et al., 2003; Boubchir and Fadili, 2006).

Although SAS includes some interesting special cases, such as normal and Cauchy and presumably has

a desirable property as a shrinkage prior, it has not gather much attention in the literature of shrinkage

prior. This is particularly because that SAS does not have a closed form density. The non-existance of

the prior density cases serious computational difficulty when we try to estimate the hyperparameter from

the data in order that the shrinkage is data adaptive. The SGL prior can be regarded as an extension of

the SAS prior. The flexible SGL has many known distributions as special cases, including the double

exponential distribution. However, just as SAS, the density for SGL does not generally exist.

To overcome the computational difficulty due to the intractable prior density, we develop an Markov

chain Monte Carlo (MCMC) algorithm coupled with the technique of approximate Bayesian computa-

tion (ABC). While ABC is usually used to approximate the intractable likelihood function (see Sisson

and Fan, 2011; Marin et al. 2011). The ABC algorithm is intended to sample from the posterior distri-

bution by finding parameter values under which the simulated values are close to the observed values.

Since it is easy to simulate from SAS and SGL, our MCMC algorithm with ABC is expected to be com-

putationally efficient. To our knowledge, this work is the first to apply the ABC method to approximate

the intractable prior distribution. Although we use ABC in a irregular way approximating the intractable

prior density, the simulation study shows that our method performs well under an appropriate choice of

tuning parameter.

The rest of this paper is organised as follows. Section 2 introduces the SAS and SGL prior distri-

butions and briefly look at the shrinkage pattern of those priors. In Section 3, we develop the MCMC

algorithms coupled with ABC for the SAS and SGL priors. We conduct some simulation study in Sec-

tion 4 to examine how ABC approximation to the posterior distribution of the hyperparameter influences
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the performance of the shrinkage prior. In Section 5, we apply the priors to a high dimensional dataset

and compare the performance with other existing prior distributions. Finally, we have some concluding

remark in Section 6.

2 Stable priors

2.1 Symmetric α stable prior

The SAS distribution does not generally allow an analytical form of density function. Instead, it is best

characterised by the characteristic function given by

φS AS (t) = exp
{−τ|t|α} , (2)

where τ > 0 is the scale parameter, and α ∈ (0, 2] is the parameter called characteristic exponent. The

parameter α controls the heaviness of the tails. As it approaches to 2, the tails behave like normal distri-

bution. Under small value of α, particularly for α < 1, the tails decay more slowly and the distribution

is more peaked around the centre (see e.g., Burnecki et al., 2008). In fact, SAS includes two important

special cases, normal distribution when α = 2 and Cauchy distribution when α = 1.

SAS allows a convenient mixture of normal representation. If a random variable X ∼ SαS (α, τ),

then

X =
√
τ2λZ, λ ∼ S+

(
α

2

)
, N(0, 1), (3)

where S+(a) denotes the positive stable distribution with a ∈ (0, 1).

2.2 Symmetric generalised Linnik prior

We consider another prior distribution, SGL prior. It is known that the density of Linnik distribution is

more peaked at zero and heavier tail than SAS (Burnecki et al., 2008). Thus, it is expected that SGL has

better performance on controlling the noise. SGL is also defined only by the characteristic function,

φS GL(t) =
1

(1 + τα|t|α)γ , (4)
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where τ is the scale parameter, α is the characteristic exponent, and γ is the shape parameter. The extra

γ parameter is expected to introduce further flexibility into the prior. SGL also includes some important

special cases. This class of prior nests double Pareto, meridian, Cauchy, and double exponential (Polson

and Scott, 2011b). Therefore, stable priors provide an alternative approach to an extension of the mixture

of Bartlett-Fejer kernel for the Bayesian bridge.

SGL can be also represented using the scale mixture of normal. If Y ∼ SGL(α, τ, γ), then

Y = ξ1/α
√
τ2λZ, ξ ∼ Ga(γ, 1), λ ∼ S+

(
α

2

)
, Z ∼ N(0, 1), (5)

see Devroye (1996). Therefore, it is possible to sample β from its full conditional distribution using

Gibbs sampling.

2.3 Shrinkage coefficient

Apart from being tail robust (see Choy and Smith, 1997 for SAS), little is known about the shrinkage

rules of the SAS and SGL priors. Here we have a look at the densities of the shrinkage coefficients

κ ∈ (0, 1) to get some intuitive understanding of their shrinkage rules. The behaviour of the density f (κ)

near κ = 1 will control the shrinkage of the noise while the behaviour near κ = 0 will control the tail

robustness. As stated in Carvalho et al. (2010), a prior distribution with the U-shaped f (κ) is desirable,

since it can both keep the noise near zero and extract the signal without overshrinking.

Figure 1 shows f (κ) for the SAS prior. For large values of α, for example, α = 1.5 and 1, f (κ) has

little mass around κ = 1. This implies that under large α the prior may not sufficiently suppress the noise.

On the other hand, when α < 1, the shape of the density becomes close to U-shape. Figure 2 shows f (κ)

for the SGL prior with γ = 0.5, 1, and 2. Similar to the case of SAS, large value of α for SGL would lead

to poor performance of the prior. When α > 1, the density has either no mass or finite mass at κ = 0.

Thus, under large α, the prior may overly shrink the signal. On the other hand, the SGL prior when

α < 1 results in the U-shaped density. Therefore, from our observations, for both SAS and SGL we may

restrict the support of α, example to (0, 1), for a complex problem as in our real data example.
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3 Posterior inference

3.1 SAS prior

To proceed a posterior inference, we assume the independent SAS prior for the coefficient:

β j ∼ SαS (α, σ/ν), j = 1, . . . , p, (6)

where the scale of the prior is also controlled by the error standard deviation. Furthermore, we assume

µ ∼ N(0,M0), σ2 ∼ IG
(n0

2
,

s0

2

)
, ν2 ∼ Ga

(m0

2
,

t0
2

)
. (7)

Exploiting the scale of normal representation (3) for SAS, our MCMC algorithm samples form the full

conditional distributions of β̃ = (µ, β1, . . . , βp)′, σ2, ν2, λ = (λ1, . . . , λp), and α. Except for α, it is not

difficult to sample the values from the full conditional distributions as demonstrated by Tsionas (1999).

The full conditional distribution of β̃ is given by

β̃|σ2, ν2, λ, α, y ∼ N(b1,B1), (8)

where B1 =
(
X̃′Σ−1X̃ + Λ−1

)−1
and b1 = B1X̃′Σ−1y with X̃ = (x̃1, . . . , x̃n)′, x̃i = (1, x1, . . . , xp)′, Σ =

diag(σ2, . . . , σ2), and Λ = diag(M0, σ
2λ1/ν

2, . . . , σ2λp/ν
2). The full conditional distribution of σ2 is

given by

σ2|β̃, ν2, λ, α, y ∼ IG
(n1

2
,

s1

2

)
, (9)

where n1 = n0 + n + p and s1 = s0 +
∑n

i=1(yi − x̃′i β̃)2 + ν2
∑p

j=1 β
2
j/λ j. Similarly, the full conditional

distribution of ν2 is given by

ν2|β̃, σ2, λ, α, y ∼ Ga
(m1

2
,

t1
2

)
, (10)

where m1 = m0 + p and t1 = t0 + 1
σ2

∑p
j=1 β

2
j/λ j. The full conditional density of the local variance λ j is

given by

π(λ j|β̃, σ2, ν2, α, y) ∝ λ−1/2
j exp

− ν2β j

2σ2λ j

 fα/2(λ j), j = 1, . . . , p, (11)
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where fa(·) is the density of S+(a). Although the density of positive stable distribution is not analytically

tractable, it is possible to sample the values of λ j. Following Tsionas (1999), we use independence

Metropolis-Hastings (MH) algorithm with the proposal density fα/2(·).

After integrating out the local variances λ, the full conditional density of α is given by

π(α|β̃, σ, ν, y) ∝
p∏

j=1

π(β j|α, σ, ν)π(α), (12)

where π(β j|α, σ, ν) is the density of SαS (α, σ/ν) and π(α) is the prior density for α. As mentioned

above, this density is not analytically tractable. One can use numerical integration of Nolan (1998) or

fast Fourier transform used by Tsionas (1999) and Lombardi (2007). However, since the density of

SAS must be numerically evaluated at each iteration of MCMC, those methods can be computationally

intensive and unstable for small α, in which we would be interested for shrinkage problem. Therefore, it

is desirable to avoid the direct evaluation of the prior density.

We apply the ABC technique to approximate the posterior distribution of α. We try to find the α

values under which the current value of β and the simulated value from SAS are close. Specifically,

consider the augmented posterior of α given by

πε(α,b|β̃, σ2, ν2, y) ∝ gε(β|b, α)
p∏

j=1

π(b j|α, σ, ν)π(α), (13)

where b = (b1, . . . , bp)′ is the simulation from SAS on the same space as β, gε(β|b, α) is the weighting

function which places greater weight to the point under which β and b are closer and becomes constant

when β = b, and ε is the tuning parameter which determines the precision of approximation. Popular

choice of the weighting function includes, for example,

gε(β|b, α) ∝ I(ρ(β,b) < ε), (14)

where ρ(β, b) measures the distance between β and b. We use the following particular form of distance

metric given by

ρ(β, b) =

√√√
1
p

p∑
j=1

(β( j) − b( j))2, (15)
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where β( j) and b( j), j = 1, . . . , p, are the order statistics of β and b, respectively. As ε → 0, the augmented

posterior approaches to the true posterior (see, e.g., Sisson and Fan, 2011).

Then, we implement the following MH algorithm to sample from the augmented posterior (13).

1. Suppose the current state is (α,b).

2. Draw α∗ from the proposal density q(α∗|α).

3. Draw b∗ from SαS (α∗, σ/ν).

4. Accept α∗ and b∗ with probability

min
{

1,
gε(β|b∗, α∗)π(α∗)q(α|α∗)

gε(β|b, α)π(α)q(α∗|α)

}
, (16)

Notice that the acceptance probability (16) involves no intractable prior densities (see Marjoram et al., 2003).

Since it is easy to simulate from SAS, our approach is expected to be computationally efficient.

Under a feasible choice of ε, we may approximate the posterior distribution of α well.

3.2 SGL prior

We proceed similarly to the case of SAS prior. The independent SGL prior for the coefficient is assumed:

β j ∼ SGL(α, σ/ν, γ), j = 1, . . . , p. (17)

In addition to (7), we assume

γ ∼ Ga(r0,R0). (18)

Then, our MCMC scheme samples from the full conditional distribution of β̃, σ2, ν2, λ, ξ = (ξ1, . . . , ξp),

γ, and α.

The full conditional distribution of β̃ is the normal distribution (8) with Λ in B1 replaced with Ω =

diag(M0, σ
2λ1ξ

2/α/ν2, . . . , σ2λpξ
2/α
p /ν

2). The full conditional distribution of σ2 is IG(n1/2, s2/2) where

s2 = so +
∑n

i=1(yi − x̃′i β̃)2 + ν2
∑p

j=1
β2

j

λ jξ
2/α
j

. The full conditional distribution of ν2 is Ga(m1/2, t2/2) where
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t2 = to+ 1
σ2

∑p
j=1

β2
j

λ jξ
2/α
j

. The full conditional density of λ j is proportional to λ−1/2
j exp

{
− ν2β2

j

2σ2λ jξ2/α

}
fα/2(λ j).

We may use the same independence MH algorithm as in the case of SAS prior. The full conditional den-

sity of the other local variance ξ j is given by

π(ξ j|β̃, σ2, ν2, λ, α, γ, y) ∝ ξγ−1/α−1 exp

−1
2

 ν2β2
j

σ2λ j
ξ−2/α

j + 2ξ j


 , j = 1, . . . , p. (19)

To sample from (19), we employ the independence MH algorithm with generalised inverse Gaussian

proposal distribution whose density kernel is given by

q(ξ j) ∝ ξc−1
j exp

{
−1

2

(
d2ξ−1

j + e2ξ j
)}
, (20)

where c = γ − 1/α, d2 =
ν2β2

j

σ2λ j
, and e2 = 2. The full conditional density of γ is given by

π(γ|β̃, σ2, ν2, λ, ξ, α, y) ∝
p∏

j=1

ξ
γ−1
j

(
1
Γ(γ)

)p

γr0−1 exp {−R0γ} . (21)

We use random walk MH with Gaussian proposal distribution to sample γ values. Finally, the full

conditional density of α after integrating out the local variances λ and ξ is given by

π(α|β̃, σ2, ν2, λ, ξ, γ, y) ∝
p∏

j=1

π(β j|α, σ, ν, γ)π(α), (22)

where π(β j|α, σ, ν, γ) is the density of SGL prior. Our ABC method can be applied to sample α in the

same manner as in the case of SAS.

4 Simulation study

Since the value of α plays an important role in the shrinkage problem as seen in Section 2.3, we are

interested in how the ABC approximation to the posterior of α under SAS prior influence the performance

of the prior. To this end, we try different ε values under various situations. In this simulation study, we

assume the following prior distributions for the parameters: µ ∼ N(0, 100), σ2 ∼ IG(5/2, 0.1/2), ν2 ∼

Ga(5/2, 0.1/2), and α ∼ U(0, 2).
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4.1 Simulation 1

We simulated the data from (1) with µ = 0, xi generated fromN(0,V), β generated from SαS (α, 1), and

σ2 = 1. We consider uncorrelated and correlated independent variables. The uncorrelated independent

variables were generated under V = I while the correlated independent variables were generated under

Vkl = 0.5, if k , l and 1, otherwise. In this simulation, we set α = 1.3, 0.7, n = 100, and p = 50, 200.

For ABC, we use (14) and (15) with different ε values. MCMC is run for 30,000 iterations with the

initial burn-in period of 10,000 iterations. The performance of the prior is measured through the root

mean squared errors (RMSE) given by

RMSE =

√√√
1
p

p∑
j=1

(β j − β̂ j)2, (23)

where β̂ j denotes the posterior mean of β j.

Table 1 and 2 show the posterior means, 95% credible intervals for α and σ/ν, and RMSE under the

different values of ε for the uncorrelated and correlated independent variables, respectively. It can be seen

from the tables that as ε increases the posterior mean of α become larger deviating from the true value.

This can be explained as follows. For SAS, matching of the values around the centre is easier than that

of the values in the tails and SAS does not produce b j with large magnitude under some large α. When

ε is large, α can be accepted even though the values in the tails are dissimilar. Therefore, under large ε,

the matching of the tail values can less influence the acceptance of α and the posterior distribution of α

approximated by the ABC algorithm tends to be in the region where matching of the values around the

centre is easy. On the other hand, when ε is small, the ABC algorithm would reject the α value under

which the values in the tail are dissimilar. Therefore, it was possible for the ABC algorithm to locate the

true value of α.

It is found from Table 1 that as long as n > p and the independent variables are not correlated, the

choice of ε does not seem to affect RMSE. However, when p > n, the choice of ε does affect RMSE. Thus,

the performance of the prior is more sensitive to the approximation quality of the posterior distribution of

α when p > n. Even when n > p, when the independent variables are correlated, the choice of ε affects
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the performance of the prior as seen in Table 2. Therefore, the results in Table 1 and 2 suggest that we

use smaller ε for more accurate estimation.

Although we do not show the result here, we also implemented the random walk MH sampler using

numerical integration of Nolan (1997) to estimate α. However, the algorithm was unstable and the

acceptance rate was too low to be practical.

4.2 Simulation 2

Next, we consider a sparse situation where β is designed as

β j =


2 mod ( j − 1, p/10) = 0

0 otherwise.
(24)

We set p = 100, 200. The dataset of 70 observations was generated using the same setting as Section 4.1

and then we split the data into the training and testing set of 50 and 20 observations, respectively. Here,

we focus on predicting the values in the training set and performance is measured through the prediction

RMSE given by

RMS E =

√√√
1

20

20∑
i=1

(ytest,i − ŷi)2, (25)

where ytest,i is the observation in the testing set and ŷi is the mean of the corresponding predictive distri-

bution.

Although now β j does not follow SAS, it would be assuring if the ABC approximation to the pos-

terior distribution of α works well. Therefore, it is interesting to study the impact of choice of ε on the

performance of the prior.

Table 3 and 4 show the posterior means and 95% credible intervals for α and σ/ν and prediction

RMSE under the different values of ε for the uncorrelated and correlated independent variables. Similarly

to the results in Section 4.1, it is found that as ε becomes large, the posterior mean of α shifts towards

larger values. Interestingly, RMSE becomes worse when larger ε is used. The impact of choice of ε on

the performance is profound when p = 200 and the independent variables are correlated. Combining the
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observations from Table 1 to 4, we may conclude that we should use smaller ε for better performance of

the prior.

5 Application: NIR ternary mixture data

The data consists of 95 near-infrared (NIR) spectra of ternary mixture of ethanol, water and isopropanol

at five different temperatures (Wulfuer et al., 1998; Wehrens, 2012). We consider the content of ethanol

and isopropanol measured in percentage as the dependent variables. The independent variables include

the temperature measured in Celsius and 200-channel absorbance spectrum in the wavelength range

850-1050 nm. Average pairwise absolute correlation between the spectrum is 0.726, thus the exists some

strong collinearity in the independent variables. We split the data into the training and testing set of

60 and 35 observations and consider predicting ethanol and isopropanol contents on the basis of their

infrared spectrum.

Since it is of interest to study how the SAS and SGL priors perform against some existing pri-

ors. We apply the double exponential (DE), Caushy, normal gamma (NG), horseshoe (HS), SAS,

and SGL priors for the coefficients of the spectrum. The performance of the priors are compared in

terms of prediction RMSE. We assume the following prior distributions for the rest of the parame-

ters. It is assumed the intercept and the coefficient for temperature independently follow N(0, 100),

and σ2 ∼ IG(5/2, 0.1/2), ν2 ∼ Ga(5/2, 0.1/2), γ ∼ Ga(5, 0.1). We assume α ∼ U(0, 1) in order that we

can avoid the posterior distribution of α to concentrate on a region with large α values and fully exploit

the good shrinkage pattern of the priors.

Table 5 shows RMSE under the different prior distributions. As expected, DE performed the worst

followed by NG. The performance of Cauchy, HS, SAS, and SGL seems to be quite comparable. Actu-

ally, SGL performed the best among the six priors for both ethanol and isopropanol cases. Figure 3 shows

the plots of posterior means under each prior distribution. It can be seen that DE failed to distinguish the

signals from the noise. NG managed to extract the signals, although it still picks up the noise as signal.
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Similarly to the result of Table 5, the posterior means under Cauchy, HS, SAS, and SGL appears to be

quite similar. They have peaks in the similar wavelength regions. Under the SAS prior, the posterior

mean of α was 0.792 with 95% credible interval (0.589, 0.986) for ethanol, and 0.835 with (0.502, 0.994)

for isopropanol. Under the SGL prior, the posterior mean of α was 0.903 with 95% credible interval

(0.741, 0.996) for ethanol, and 0.917 with (0.785, 0.997) for isopropanol.

6 Conclusion

We have considered two classes of shrinkage priors based on the stable distribution. To estimate the

hyperparameters of those priors for data driven shrinkage, we proposed an MH algorithm based on the

ABC method which avoids the direct evaluation of the intractable prior densities. Since our method

only needs simulation from the prior distribution, it is computationally efficient. It was found from our

simulation study that under small ε our method performs well. From the application to NIR data, we

found that SAS performs comparable with other existing priors and SGL performs the best among the

six prior distributions we considered.

A direction for the future study is as follows. In our ABC algorithm to estimate α, we compare the

order statistics of β and the simulated b. In the ABC literature, it is often recommended to use summary

statistics with lower dimension to avoid the dimensionality problem. However, from our experience, it

was difficult to find a set of appropriate summary statistics in our model setting probably due to severe

loss of information. For example, in the setting of Section 4.1, we considered using the estimators of

McCulloch (1986, 1998) which performed well in Peters et al. (2011). The method did not work well

especially when p > n and α is small. To our knowledge, the ABC method has never been applied to the

SGL distribution, it would be interesting to study which kind of statistics can be used for SGL. Therefore,

we need to develop a set of effective summary statistics for SAS and SGL in the ABC algorithm in order

that our method is more efficient. Furthermore, some analytical results on the shrinkage rule of the priors

would be required. Since both priors are derived from the infinitely divisible preocesses, we may employ
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the Lévy process approach of Polson and Scott (2012).

References

[1] Achim, A., Tsakalides, P., and Bezerianos, A. (2003). “SAR image demonising via Bayesian wavelet

shrinkage based on heavy-tailed modeling,” IEEE Transactions on Geoscience and Remote Sensing,

41, 1773–1784.

[2] Armagan, A. Dinson, D, B. and Lee, J. (2012). “Generalized double Pareto shrinkage,” arXiv:

1104.0861.

[3] Boubchir, L. and Fadili, J. M. (2006). “A closed-form nonparametric Bayesian estimator in the

wavelet domain of images using an approximate α-stable prior,” Pattern Recognition Letters, 27,

1370–1382.

[4] Burnecki, K., Janczura, J., Magdziarz, M., and Weron, A. (2008). “Can one see a competition be-
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Table 1: Effect of ε on posterior means of β with uncorrelated independent variables

Posterior of α Posterior of σ/ν

p α ε∗ Mean 95% CI Mean 95% CI RMSE

50 1.3 0.612 1.266 ( 0.735, 1.733 ) 0.874 ( 0.531, 1.229 ) 0.134

0.724 1.410 ( 0.895, 1.908 ) 0.881 ( 0.598, 1.205 ) 0.134

0.835 1.518 ( 0.905, 1.981 ) 0.871 ( 0.573, 1.199 ) 0.134

0.7 0.913 0.775 ( 0.449, 1.419 ) 0.574 ( 0.248, 1.180 ) 0.131

0.981 0.916 ( 0.485, 1.515 ) 0.678 ( 0.485, 1.515 ) 0.130

1.027 1.361 ( 0.608, 1.968 ) 1.102 ( 0.625, 1.651 ) 0.131

200 1.3 0.517 1.172 ( 0.861, 1.528 ) 0.757 ( 0.429, 1.128 ) 1.339

0.718 1.279 ( 0.904, 1.724 ) 0.825 ( 0.570, 1.120 ) 1.370

1.005 1.518 ( 0.947, 1.976 ) 0.926 ( 0.659, 1.206 ) 1.414

0.7 0.811 0.850 ( 0.599, 1.228 ) 1.136 ( 0.599, 1.228 ) 1.928

0.965 1.046 ( 0.634, 1.595 ) 1.498 ( 0.920, 1.595 ) 1.982

1.110 1.388 ( 0.714, 1.976 ) 1.838 ( 1.327, 2.443 ) 2.138

ε∗ = ε/(standard deviation of β)
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Table 2: Effect of ε on posterior means of β with correlated independent variables

Posterior of α Posterior of σ/ν

p α ε∗ Mean 95% CI Mean 95% CI RMSE

50 1.3 0.612 1.261 ( 0.818, 1.716 ) 0.830 ( 0.514, 1.164 ) 0.182

0.724 1.385 ( 0.864, 1.907 ) 0.842 ( 0.560, 1.173 ) 0.181

0.835 1.499 ( 0.884, 1.972 ) 0.838 ( 0.568, 1.151 ) 0.180

0.7 0.913 0.823 ( 0.493, 1.575 ) 0.729 ( 0.328, 1.432 ) 0.197

0.981 0.958 ( 0.510, 1.589 ) 0.796 ( 0.397, 1.589 ) 0.204

1.027 1.353 ( 0.617, 1.964 ) 1.160 ( 0.676, 1.741 ) 0.223

200 1.3 0.517 1.216 ( 0.866, 1.682 ) 0.811 ( 0.469, 1.185 ) 1.443

0.718 1.298 ( 0.917, 1.724 ) 0.873 ( 0.605, 1.151 ) 1.448

1.005 1.523 ( 0.955, 1.978 ) 0.934 ( 0.674, 1.190 ) 1.500

0.7 0.811 0.839 ( 0.579, 1.199 ) 0.947 ( 0.499, 1.630 ) 2.282

0.965 1.002 ( 0.616, 1.528 ) 1.181 ( 0.755, 1.690 ) 2.284

1.110 1.357 ( 0.689, 1.967 ) 1.496 ( 1.074, 1.996 ) 2.367

ε∗ = ε/(standard deviation of β)
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Table 3: Effect of ε under sparse β with uncorrelated independent variables

Posterior of α Posterior of σ/ν

p ε∗ Mean 95% CI Mean 95% CI RMSE

100 0.833 1.304 ( 0.874, 1.878 ) 0.092 ( 0.051, 0.187 ) 1.476

0.917 1.453 ( 0.878, 1.966 ) 0.091 ( 0.057, 0.152 ) 1.475

1.000 1.527 ( 0.923, 1.979 ) 0.090 ( 0.061, 0.136 ) 1.494

200 0.803 1.146 ( 0.854, 1.500 ) 0.038 ( 0.018, 0.066 ) 1.358

0.895 1.384 ( 0.920, 1.903 ) 0.049 ( 0.025, 0.090 ) 1.449

1.032 1.544 ( 0.963, 1.982 ) 0.058 ( 0.033, 0.147 ) 1.704

ε∗ = ε/(standard deviation of β)

Table 4: Effect of ε under sparse β with correlated independent variables

Posterior of α Posterior of σ/ν

p ε∗ Mean 95% CI Mean 95% CI RMSE

100 0.750 1.293 ( 0.742, 1.791 ) 0.121 ( 0.056, 0.199 ) 1.458

0.833 1.414 ( 0.903, 1.916 ) 0.124 ( 0.071, 0.196 ) 1.484

0.917 1.550 ( 1.007, 0.272 ) 0.135 ( 0.080, 0.224 ) 1.557

200 0.780 1.366 ( 0.976, 1.995 ) 0.078 ( 0.033, 0.210 ) 1.902

0.849 1.584 ( 1.074, 1.982 ) 0.125 ( 0.045, 0.211 ) 3.566

1.032 1.615 ( 1.094, 1.980 ) 0.129 ( 0.056, 0.199 ) 3.901

ε∗ = ε/(standard deviation of β)

Table 5: RMSE for ternary mixture data

DE Cauchy NG HS SAS SGL

Ethanol 1.083 0.637 1.067 0.646 0.665 0.624

Isopropanol 0.948 0.656 0.882 0.638 0.649 0.625
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Figure 1: Density of κ for SAS prior
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Figure 2: Densities of κ for SGL prior with γ = 0.5, 1, and 2 (from top to bottom)
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Figure 3: Posterior means for ternary data
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