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Abstract

A Bayesian semiparametric stochastic volatility model for financial data is de-
veloped. This nonparametrically estimates the return distribution from the data
allowing for stylized facts such as heavy tails of the distribution of returns whilst
also allowing for the leverage effect, which is the correlation between the returns
and changes in volatility. An efficient MCMC algorithm is described for infer-
ence. The model is applied to simulated data and two real data sets. These show
that choosing a parametric return distribution can have a substantial effect on es-
timation of the leverage effect.

1. Introduction

In the last couple of decades, stochastic volatility (SV) models have enjoyed
great popularity for analyzing financial data. This is mainly attributed to the devel-
opment of new, more advanced techniques in econometrics, as well as the avail-
ability of rapidly increasing computing power. The SV model as introduced by
Taylor (1982) captured the heterogeneity of daily returns of sugar prices using a
latent autoregressive process of order 1, AR(1), for the logged variance of a nor-
mal return distribution. However, this model was unable to capture other features
of financial data such as heavy tails of the conditional distribution of returns, price
jumps and the leverage effect. Black (1976) introduced the term leverage effect
when observing that an increase in a stock price tends to lead to a smaller increase
in its variance than a fall in the stock price of the same size. Ever since, many
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extensions of the SV model have been introduced that incorporated such stylized
features. This paper will address the issue of building an SV model with a leverage
effect and heavy tails within the Bayesian nonparametric framework.

Harvey and Shephard (1996) introduced a nonlinear SV model that could cap-
ture the leverage effect. Let Pt denote the daily price of an asset or a stock index
at time t for t = 1, . . . , n. The daily return of the asset or the stock index at time t
is defined to be yt = Pt

Pt−1
− 1. The nonlinear SV model with leverage of Harvey

and Shephard (1996) is represented as

yt = β exp (ht/2) εt, (1)

ht+1 = μ+ φ (ht − μ) + ηt,

where ht is the log-volatility at time t and β is the modal instantaneous volatility,
which for identification reasons is set to β = 1. The persistence parameter is φ,
which is assumed to be |φ| ≤ 1 to ensure the stationarity of ht, and μ is the overall
mean of the log-volatility. Unlike earlier SV models, the error terms (εt, ηt) are
independently and identically distributed according to a bivariate normal distribu-
tion with mean 0 = (0, 0)

′
and covariance matrix

Σ =

(
1 ρση
ρση σ2

η

)
,

where σ2
η is the variance of the log-volatility and ρ is the correlation between the

error terms. The addition of this parameter introduces correlation between the er-
rors in the return distribution and the changes in the log-volatility and so allows
the model to capture the leverage effect. The volatility at time t = 1 is drawn

from the stationary distribution which is h1 ∼ N
(
μ,

σ2
η

1−φ2

)
, where x ∼ N(m, σ2)

represents that x follows a normal distribution with mean m and variance σ2.
Omori et al. (2007) discussed Markov chain Monte Carlo (MCMC) methods for
this model. They worked with y� = log(yt + c)2 where c is small and so lin-
earize the model of Harvey and Shephard (1996). The error terms of the return
equation in this representation, log ε2t , which follow a logχ2

1 distribution, can be
accurately approximated by a 10-component mixture of normals. Nakajima and
Omori (2009) extended the work of Omori et al. (2007) to incorporate jumps and
heavy tails. An extension of the stochastic volatity to include leverage and heavy
tails was also proposed by Jacquier et al. (2004) who make posterior inference
using the non-linear representation of the model.
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Several Bayesian nonparametric approaches to modelling the heavy tails in fi-
nancial time series have recently been proposed. Ausı́n et al. (2010) and Kalli et al.
(2011) introduced GARCH semiparametric models. Ausı́n et al. (2010) suggested
modelling the error terms of the return equation with a Dirichlet process mixture
of normals model. After fitting their semiparametric model to the Bombay Stock
Exchange Index and the Hang Seng Index, they found evidence that their model
better described the tail behaviour of the return distribution. Kalli et al. (2011)
introduced an alternative semiparametric GARCH model where the error terms
of the return equation are modelled using an infinite mixture of scaled uniform
distributions. The empirical findings are similar to those discussed in Ausı́n et al.
(2010). In stochastic volatility models, Jensen and Maheu (2010) and Delatola
and Griffin (2011) introduce nonlinear and linear semiparametric SV models re-
spectively using Dirichlet process mixture of normal models. Both models were
shown to be better at capturing the tail behaviour of the returns than a simple SV
model with a normal error distribution.

The scope of this paper is to extend the work of Nakajima and Omori (2009)
using Bayesian nonparametric techniques. The error terms of the SV model will
be flexibly modelled using the Dirichlet process mixture model (DPM) which al-
lows for several of the stylized features, as discussed previously, to be captured.
The flexibility of the DPM avoids the need to introduce extra parameters to cap-
ture some features of the return distribution. An alternative semiparametric SV
model with leverage was introduced by Jensen and Maheu (2011) who used a bi-
variate DPM in the nonlinear SV model with leverage. In the empirical analysis
of both Jacquier et al. (2004) and Nakajima and Omori (2009), there was evi-
dence that their SV model with heavy tails and leverage fitted the examined data
better than models based on the assumption of normality. These findings show
that the commonly-made assumption of normality of error terms does not hold in
many cases. However, both parametric models have computationally challenging
schemes for updating both the the heavy tails and the leverage coefficient. On the
contrary, the heavy tails in a semiparametric model can be captured by nonpara-
metric techniques.

The paper is structured as follows: Section 2 describes our Bayesian nonpara-
metric model with leverage (SVL-SPM), Section 3 reviews the sampling strategy
for MCMC estimation of this model, Section 4 reports applications of the method
to simulated and financial data examples (Microsoft asset prices and the S & P
500 index), and Section 5 concludes.
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2. Semiparametric stochastic volatility model with leverage

This section presents a flexible version of the linear state-space representation
of the SV model with leverage (SVL-SPM). The SVL-SPM extends the paramet-
ric model with leverage presented by Omori et al. (2007) which will be referred
to as the SVL-PM. The next two subsections summarise the concepts of the SVL-
PM and the Dirichlet process mixture (DPM) model respectively which will be
used to build the SVL-SPM.

2.1. Parametric stochastic volatility model with leverage

A linear state-space representation of the non-linear SV model with leverage
(SVL-PM) in (1) is derived by taking the logarithm of the squared returns. Hence,
the SVL-PM is

y�t = ht + zt,

ht+1 = μ+ φ (ht − μ) + ηt,

where y�t = log (y2t + c), c = 10−4 is the offset parameter and zt = log ε2t . The
correlation between εt and ηt can be accommodated using the following argument.
Firstly, p(zt) can be accurately approximated by a mixture of normals

p(zt) =

10∑
j=1

wjN(zt|μj, σ
2
j ) (2)

where N(x|m, σ2) represents the density of a normal distribution with mean m
and variance σ2 (the values of w1, . . . , w10, μ1, . . . , μ10 and σ2

1 , . . . , σ
2
10 are given

in Omori et al. (2007)). It is useful to write this mixture in terms of allocation
variables, st, which allocate an observation to a component of the mixture model

zt|st = j ∼ N(μj, σ
2
j ), p(st = j) = wj.

If we define dt = sign(yt) = I(yt > 0)− I(yt ≤ 0), then

ηt|zt, dt ∼ N
(
dtρση exp{zt/2}, σ2

η(1− ρ2)
)

which Omori et al. (2007) suggest approximating (using a first-order Taylor series
expansion of exp{x}) by

ηt|zt, dt ∼ N
(
dtρση exp{μst/2} (ast + bst(zt − μst)) , σ

2
η(1− ρ2)

)
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where aj = exp{σ2
j /8} and bj = aj/2 (their values can be found in Omori et al.

(2007)). The full parametric model can be written(
y�t
ht

)∣∣∣∣ dt, st, ρ, σ2
η =

(
μst + σstε

(1)
t

dtρση exp
{μst

2

}
(ast + bst(y

�
t − ht − μst)) + ση

√
1− ρ2ε

(2)
t

)
where (

ε
(1)
t

ε
(2)
t

)
∼ N2

(
0,

(
1 0
0 1

))
.

2.2. Dirichlet process mixture model

As we mentioned in the introduction, the idea of using Bayesian nonparamet-
ric techniques to model the behaviour of financial data is not novel. We will follow
much of the literature by assuming nonparametric forms for some distributions in
our model to define a semiparametric model. Infinite component mixture models
offer flexibility to capture many features of the conditional distribution of the re-
turn that cannot be obtained using a parametric model without introducing extra
parameters.

The DPM of Ferguson (1983) and Lo (1984) is an infinite component mixture
model which assumes that a sample z1, . . . , zn are independent and identically
distributed from an unknown distribution. It builds on the Dirichlet process (Fer-
guson, 1973) which is a prior over probability distributions. The prior has two
parameters: a mass parameter M > 0 and a probability distribution H . A Dirich-
let process with these parameters will be written DP(M,H). A distribution G
generated by a Dirichlet process are almost surely discrete and so can be written

G =
∞∑
j=1

ζjδθj

where θj
i.i.d.∼ H and δx is the Dirac delta function which places measure one

on x. We will refer to ζ1, ζ2, . . . as the weights of a Dirichlet process with mass
parameter M . The DPM assumes that the distributio of zi is represented as

p(zi) =
∞∑
j=1

ζjN
(
zi|μj, σ

2
j

)
where ζ1, ζ2, . . . are the weights generated by a Dirichlet process with mass pa-

rameter M and (μj, σ
2
j )

i.i.d.∼ H . The prior can be considered the limit of a finite
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mixture model. Suppose that

p(zi) =
K∑
j=1

ζjN
(
zi|μj, σ

2
j

)
where ζ ∼ Di(M/K, . . . ,M/K) and (μj, σ

2
j )

i.i.d.∼ H . The limit of this model
as K → ∞ is the DPM. This use of an infinite component mixture model avoids
the need to choose a value of K. The number of components with non-neglible
weights (i.e. the j for which ζj > ε for some small ε) is finite and so represents
an effective value of the number of clusters. Its value is controlled by M with
smaller values of M implying less non-neglible components on average a priori.

In this paper, the representation of the DPM as introduced by Griffin (2010)
will be employed. This representation allows for a non-informative prior structure
for location and scale parameters of the DPM. The model can be represented as:

p(zt) =

∞∑
j=1

ζjN
(
zt|μ′

j, ασ
2
z

)
, (3)

where ζ1, ζ2, . . . are the weights generated by a Dirichlet process with mass pa-
rameter M and μ

′
j ∼ N (μ0, (1− α)σ2

z). This model assumes that the component
variances are constant. The parameter σ2

z is the prior variance of zt and α plays the
role of the smoothing parameter, 0 < α < 1. The prior expected distribution of zt
is normal with mean μ0 and variance σ2

z . The parameter α controls the variability
of the distribution of zt around its expectation. For values of α close to one, the
distribution of zt will be close to a normal distribution. While for values of α close
to zero, the distribution of the errors zt will be multimodal and far from normal.
The hyperparameters can be treated as the location (μ0), scale (σz) and smooth-
ness (α) of the density. In fact, small values of α indicate a multimodal density
while values bigger that 0.5 indicate a density closer to the normal distribution.

Griffin (2010) also introduced a model where component variances can differ
but also allows the same non-informative prior structure as (3). This different
component variance model is:

p(zt) =
∞∑
j=1

ζjN

(
zt

∣∣∣∣μ′
j, α

ζ

μζ

σ2
z

)
where ζ1, ζ2, . . . are the weights generated by a Dirichlet process with mass pa-
rameter M and μ

′
j ∼ N (μ0, (1− α) σ2

z), where μζ = E(ζ) , ζ ∼ IG(ζ0, 1) and
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ζ0 > 1. Griffin (2010) finds little evidence that this model can estimate the the
density of zt better than the model with constant variance across components in (3)
and, therefore, we use the simpler model with constant variances in our analysis.

2.3. The model (SVL-SPM)

The SVL-PM model approximates the distribution of the error terms in the
return equation, which follow the logχ2

1 distribution, by the ten component mix-
ture model in (2). As mentioned earlier the assumption of normality is restrictive.
Thus, an alternative approach pursused in this paper assumes that the error terms
of the return equation are modelled nonparametrically using the representation of
the DPM described in the previous section. Our proposed model, the SVL-SPM,
is defined as

y�t = ht + zt,

ht+1 = μ+φ (ht − μ)+dtρση exp

{
μ

′
st

2

}[
a� + b�

(
yt − ht − μ

′
st

)]
+ση
√

1− ρ2ε�t ,

(4)
zt|st ∼ N(μ′

st, ασ
2
z), and p(st = j) = ζj

where ζ1, ζ2, . . . are the weights of the Dirichlet process with mass parameter M ,

0 < α < 1, μ
′
j
i.i.d.∼ N(0, (1− α)σ2

z) and ε�t follows a standard normal distribution.
The value of a� and b� are derived using the same argument as Omori et al. (2007),
described in Section 2.1, and depend on the variance of each component. In this
case, we have

a� = exp

{
ασ2

z

8

}
b� = 0.5a�. (5)

These are independent of the component indices which contrasts with the para-
metric model where aj’s and bj’s differs between components. The SVL-SPM is
an extension of the semiparametric SV model (SV-SPM) of Delatola and Griffin
(2011), which allowed for heavy tails in the return distribution but not a leverage
effect. Similar to the SV-SPM, the information about the sign of the return yt is
lost, when taking the logarithm of the squares. The distribution of εt can only be
recovered by making assumption about the conditional distribution of d t|zt (that
is the sign of εt given the log of the squared of εt). The simplest assumption is that
εt is symmetric.

Similarly to other semiparametric models, see e.g. Bush and MacEachern
(1996) and Jensen and Maheu (2010), an identifiability constraint must be im-
posed in order to be able to conduct inference. The constraint is h�

t = ht − μ,
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z�t = zt + μ (or μ
′�
j = μ

′
j + μ) and h�1 ∼ N

(
0,

σ2
η

1−φ2

)
. Under this identifiability

aint, the SVL-SPM becomes
y�t = h�t + z�t (6)

h�t+1 = φh�t + dtρση exp

{
μ

′�
st

2

}[
a� + b�

(
yt − h�t − μ

′�
st

)]
+ ση

√
1− ρ2ε�t .

This model no longer includes the intercept term μ which is subsumed into z �t .
As in the SV-SPM model of Delatola and Griffin (2011), a connection between

error terms of the return equation z�t and the error terms of the return equation of
the nonlinear model εt can be obtained. The variance of εt can be approximated
by

exp{μ}V (εt) ≈ exp{E (z�t ) + V (z�t ) /2}
and the kurtosis of εt can be approximated by

K(εt) ≈ Var (z�t )− 1.

The mean and variance of z�t can be approximated using the output from the
MCMC algorithm needed to fit the SVL-SPM model. The mean of z�t conditional
on the output from one iteration of the MCMC algorithm is

E[z�t |ψ] =
k∑

j=1

nj

n+M
μ

′
j +

M

M + n
μ0, (7)

where n is the number of observations, the observations are allocated to the K
clusters, nj is the number of observations allocated to the j th cluster, and ψ =
(K, n1, . . . , nK , μ

′
1, . . . , μ

′
k, μ0, a, σ

2
z ,M). The parameter μ is not directly esti-

mated in our model. It is useful to define the value μ = E[z�] + 1.2704 which
would be the value of μ in the parametric model if εt is standard normally dis-
tributed. The variance is

V[z�t |ψ] =
∑k

j=1

(
nj

(
ασ2

z + μ
′2
j

))
+M (μ2

0 + σ2
z)

n+M
− E[z�t |ψ]2 (8)

Unlike Delatola and Griffin (2011), the value of α is inferred from the data
and given a uniform prior distribution (in our experience, the SVL-SPM does
not suffer from small draws of α, which lead to poor mixing as in the model of
Delatola and Griffin (2011)). The priors for the other parameters of the SVL-SPM
model are, respectively

φ ∼ N[−1,1] (0, 10) , σ2
η ∼ IG (2.5, 0.025) , ρ ∼ N[−1,1] (0, 10) ,
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where IG (a, b) is an inverse Gamma distribution with mean (if a > 1) b
a−1

and

variance (if a > 2) b2

(a−1)(a−2)
and N[a,b] (μ, σ

2) represents a normal distribution

with mean μ and variance σ2 restricted to the interval (a, b). The truncated prior
for φ imposes stationarity on the log-volatility process. The mass parameter of the
Dirichlet process, M , has a prior suggested by Escobar and West (1995), which is
an exponential distribution with mean 2, M ∼ Exp (2).

3. MCMC Algorithm for SVL-SPM

This section is devoted to presenting the steps of the MCMC algorithm for
the SVL-SPM. The representation of the SVL-SPM as a linear state-space model
in (6) will be used to conduct inference. The model in (4) is a non-conjugate
Dirichlet process mixture model and so some important modifications are needed
to the sampling scheme for the SV-SPM described in Delatola and Griffin (2011).

As is common with MCMC schemes for mixture models, allocation variables
st are introduced as in (4). Let y� = {y�t }nt=1, h

� = {h�t}nt=1, µ
′� =

{
μ

′�
j

}n
j=1

and

s = {st}nt=1. It is assumed that there are K distinct values of s1, . . . , sn, and that
there are nj observations for which st = j. The steps for the MCMC algorithm
are the following:

• Initialise φ, σ2
η, ρ, σ

2
z , μ0,µ

′�,M, α.

• Sample h�|y�, s, φ, ρ, σ2
η, σ

2
z ,µ

′�.

• Sample s|y�,h�, σ2
z ,µ

′�,M, α.

• Sample µ
′�|s,y�,h�, α, σ2

z , μ0.

• Sample μ0|s,y�,h�, α, σ2
z ,µ

′�.

• Sample σ2
z , α|s,µ′�, μ0.

• Sample M |µ′�, μ0.

• Sample φ, ρ, σ2
η|y�,h�.
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3.1. Updating the log-volatilities

The sampling scheme to update the log-volatilities is in line with the forward
filtering backward sampling (FFBS) algorithm of Carter and Kohn (1994) and
Frühwirth-Schnatter (1994). The equations of the FFBS are based on the defini-
tion of the state-space model as given by De Jong (1991).

Definition 1. Let a random vector y� = (y�1, y
�
2, . . . , y

�
n) be generated from a state

space model for t = 1, . . . , n, then

y�t = ct + Zth
�
t +Gtut (Observation Equation), (9)

where t = 0, . . . , n, and

h�t+1 = ft + Tth
�
t +Htut (System Equation). (10)

The assumptions made are:

• ut ∼ N (0, 1),

• h�0 = 0,

• ct and ft are assumed known.

The FFBS can be used for the SVL-SPM with

ft = dtρση exp {μ′�
st/2}

[
a� + b�

(
y�t − μ

′�
st

)]
,

G = ασ2
z , Ht = ση

√
1− ρ2 and Tt =

(
φ− dtρση exp {μ′�

st/2}b�
)
.

3.2. Updating the allocation variables

The allocation variables s are updated using algorithm 8 of Neal (2000). The
allocation variables appear both in the log-return equation and in the log-volatility
equation. The parameter st is updated conditional on

s−t = (s1, . . . , st−1, st+1, . . . , sn).

LetK−t be the number of distinct values in s−t and let n−
j be the number of obser-

vations in s−t for which sk = j. A number, m, of empty clusters are introduced in
the algorithm. Typicallym is chosen to be small (m = 3 was used in the examples
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in this paper). The full conditional distribution of st is a discrete distribution with
K +m possible values. The probability that st = j is

pj ∝ w�
j exp

{
−
(
y�t − h�t − μ

′
j

)2
2ασ2

z

}

× exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
h�t+1 − φh�t − dtρση exp

{
μ
′�
j

2

}[
a� + b�

(
y�t − h�t − μ

′�
j

)])2

2σ2
η (1− ρ2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭,
for j = 1, . . . , K +m where the allocation weight w�

j is

w�
j =

⎧⎨⎩
nj

(M+n−1)
√

ασ2
zσ

2
η(1−ρ2)

, for j = 1, . . . , K

M/m

(M+n−1)
√

ασ2
zσ

2
η(1−ρ2)

, for j = k + 1, . . . , K +m.

The above formulae are valid only for t = 1, . . . , (n − 1). Omori et al. (2007)
showed in the parametric counterpart of the leverage model that the allocation
probability for the observation at time t = n is different from times t = 1, . . . , n−
1. Thus, pj for t = n should be

pj ∝ w�
j exp

{
−
(
y�n − h�n − μ

′�
j

)2
2ασ2

z

}
,

where w�
j is defined as before.

3.3. Updating the Location Parameters
In this step, a Metropolis-Hastings independence sampler is employed to draw

µ
′
. For each component, the proposal is sampled from a normal distribution

μ
′�can
j ∼ N

⎛⎝∑
{t|st=j}(y

�
t−h�

t )

α
+ μ0

1−α
nj

α
+ 1

1−α

,
σ2
z

nj

α
+ 1

1−α

⎞⎠ .

Each candidate is accepted with probability

p = min

(
1,
f
(
μ

′�can
j |μ′�

j

)
f
(
μ

′�
j |μ′�can

j

)) ,
where f

(
μ

′�
j |μ′�can

j

)
= exp

⎧⎪⎨⎪⎩
∑

{t|st=j}

(
h�
t+1−φh�

t−dtρση exp

{
μ
′�
j
2

}[
a�+b�

(
yt−h�

t−μ
′�
j

)])2

2σ2
η(1−ρ2)

⎫⎪⎬⎪⎭.
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3.4. Updating μ0

The full conditional for μ0 follows a normal distribution

μ0 ∼ N

(∑K
i=1 μ

′�
i

K
,
(1− α)σ2

z

K

)
.

3.5. Updating the Smoothing Parameter

Initial simulations studies were carried out using the representation of the
DPM as shown in (3). However, using this representation caused mixing prob-
lems in the algorithm. Specifically, the smoothing parameter α and the variance
parameter σ2

z were negatively correlated. Griffin (2006) introduced a representa-
tion of the DPM allowing joint updating of α and σ2

z . The representation of the
DPM as suggested by Griffin (2006) is

zt|μ′
j ∼ N

(
μ

′
j, σ

2�
z

)
(11)

and
μ

′
j ∼ N

(
μ0, σ

2′
z

)
.

This is a reparameterization of α and σ2
z in the SVL-SPM with σ2�

z = ασ2
z and

σ2′
z = (1− α)σ2

z .
The parameters (α, σ2

z) will be updated simultaneously using an independence
Metropolis-Hastings sampling step based on the reparameterization of Griffin
(2006). The proposal is given by Griffin (2006) and can be rejection sampled.
For purposes of completeness it is also presented here. Suppose that α̂ is the
current value of α, a value is simulated from the proposal by sampling from the
rejection envelope

σ2�can
z ∼ IG

(
n

2
+ α̂− (1− α̂) ,

1

2

n∑
i=1

(
y�t − h�t − μ

′�
s�t

)2)
and

σ2′can
z ∼ IG

(
K

2
− α̂ + (1− α̂) ,

1

2

K∑
i=1

(
μ

′�
i − μ0

)2)
.

The sampled value is accepted as a draw from the proposal with probability

1

σ2�can
z + σ2′can

z

2
(
σ2�can
z

α̂

)2α̂(
σ2′can
z

1− α̂

)2(1−α̂)

.
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The acceptance probability for the Metropolis-Hastings sampling step is

p = min

(
1,
f
(
σ2′can
z , σ2�can

z |σ2′
z , σ

2�
z

)
f (σ2′

z , σ
2�
z |σ2′can

z , σ2�can
z )

)
,

where

f
(
σ2′
z , σ

2�
z

)
=
(
σ2�
z

)−n/2
(
σ2′
z

)−K/2

exp

⎧⎪⎨⎪⎩−
∑K

j=1

(
μ

′�
j − μ0

)2
2σ2′

z

−
∑n

t=1

(
y�t − h�t − μ

′�
s�t

)2
2σ2�

z

⎫⎪⎬⎪⎭
× exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑n−1

t=1

⎛⎝h�
t+1−φh�

t−dtρση exp

⎧⎨⎩μ
′�
s�t
2

⎫⎬⎭
[
exp{σ2�

z /8}+0.5 exp{σ2�
z /8}

(
y�t−h�

t−μ
′�
s�t

)]⎞⎠2

2σ2
η(1−ρ2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭.
3.6. Updating the Mass Parameter

The mass parameter M can be updated uisng the sampling scheme suggested
by Escobar and West (1995).

3.7. Updating the Volatility Parameters

The parameters of the volatility equation are updated using adaptive Metropolis-
Hastings random walks. The likelihood f

(
y�| {dt}nt=1 , s, φ, ρ, σ

2
η

)
for sampling

the parameters φ, ρ and σ2
η of the volatility equation is

f(y�) ∝ (1− ρ2
)−n−1

2
(
1− φ2

)− 1
2
(
σ2
η

)−n
2 exp

{
−h

2�
1 (1− φ2)

2σ2
η

}
×

exp

⎧⎪⎨⎪⎩−
∑n−1

t=1

(
h�t+1 − φh�t − dtρση exp {μ′�

s�t
/2}
[
a� + b�

(
y�t − h�t − μ

′�
s�t

)])2
2σ2

η (1− ρ2)

⎫⎪⎬⎪⎭.
Each parameter of the volatility equation is updated individually conditional

on the other parameters using the adaptive Metropolis-Hastings random walk al-
gorithm of Atchadé and Rosenthal (2005). We use the transformed parameters
zφ = logφ − log(1 − φ), zρ = log ρ − log(1 − ρ) and zη = log σ2

η . These trans-
formed parameters are updated using a usual Metropolis-Hastings sampling step.
Let σ2

ρ , σ2
φ and σ2

σ2
η

be the variance of a normal increment in the random walk for
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zφ, zρ and zη respectively. The variance of the increment is updated at each iter-
ation of the algorithm. For example, the variance term for zρ would be updated
by

σ2
ρ = σ2

ρ +
1

j0.5
(p− 0.3) ,

where j is the iteration at the current point, p is the acceptance rate for updating
ρ and 0.3 is the acceptance rate. Thus, the scaling parameter is adapted at each
iteration.

4. Examples

This section describes the results of fitting the semiparametric SV model with
leverage (SVL-SPM) to both simulated and empirical data sets. The empirical
data sets were the asset returns of Microsoft on the NASDAQ and the S&P 500
stock index of the New York Stock Exchange. The predictive performance of the
model was compared to the performace of two other models: the SVL-PM and
the semiparametric SV model (SV-SPM) of Delatola and Griffin (2011).

The codes for all three models were written in MatLab and run using two quad
core Xeon 2.53Ghz CPUs. Each sampler was run with a burn-in period of 100 000
iterations. After this period, the code was run for an additional 50 000 iterations
storing every 5th draw. Table 1 shows the CPU times in seconds for the two
models with leverage (SVL-SPM and SVL-PM). The SVL-SPM takes between
20% and 60% longer than the SVL-PM over the three data sets.

SVL-SPM SVL-PM
Simulated 6150 4985
Microsoft 9861 6148
S&P 500 10719 7942

Table 1: CPU times (in seconds) for the SVL-SPM and SVL-PM. The CPU times were calculated
when running the samplers for 10 000 iterations in an 2GHz Intel Core 2 Duo processor.

The predictive performance of the models were assessed by both the average
log-predictive score for one-step ahead predictions (LPS) of Kim et al. (1998)
and the conditional likelihood score (CL) of Diks et al. (2011). Both criteria are
proper scoring rules and so can be used to compare the predictions of the models.
The model parameters are θ = (φ, σ2

η, ρ, F ) where F is the distribution of z∗t . The
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average log predictive score for one-step ahead predictions is given by

LPS = − 1

T

T∑
i=1

log p
(
y�i

∣∣∣y�
1:(i−1), θ̂

)
,

where y�
1:t = (y�1, y

�
2, ..., y

�
t ) and θ̂ is the posterior mean of the model parameters.

The one-step ahead predictive density is given by

p
(
y�i

∣∣∣y�
1:(i−1), θ̂

)
=

∫ ∫
p
(
y�i

∣∣∣hi, θ̂) p(hi ∣∣∣hi−1, θ̂
)
p
(
hi−1

∣∣∣y�
1:(i−1), θ̂

)
dhidhi−1.

The predictive distribution was accurately and efficiently approximated using a
sequential Monte Carlo algorithm. Smaller values of the LPS indicate a model
giving better one-step ahead predictions. A drawback with the LPS is that all pre-
dictions contribute equally to the score. In practice, we may be more interested
in the ability of models to predict extreme returns than returns in the centre of
their distribution. Models which predict these events better are typically more ac-
curately modelling the tails of the return distribution. By definition, these events
are relatively rare and so the difference may not be clearly shown by the LPS
method. Diks et al. (2011) discussed proper scoring rules and tests of predictive
performance when the scoring rule concentrates on a subset of the observations.
Their conditional likelihood method was used to give a scoring rule which con-
centrates on extreme events (and so the tails of the return distribution). We use the
conditional likelihood score

CL = − 1∑T
i=1 I (y

�
i ≥ zb)

T∑
i=1

I (y�i ≥ zb) log

⎛⎝ p
(
y�i

∣∣∣y�
1:(i−1), θ̂

)
∫∞
zb
p
(
y�j

∣∣∣y�
1:(j−1), θ̂

)
dy�j

⎞⎠,
where zb represents the upper 100α% point of the empirical distribution of the
squared returns. Only predictions for returns with absolute value in the upper
100α% of their empirical distribution are included in the score and the score re-
places the full distribution used by the LPS with the conditional distribution given
that the return is above zb. Again, the score with the smallest value indicates the
better fit. Diks et al. (2011) showed that this type of score can effectively discrim-
inate between the predictive ability of models in the tails.

4.1. Simulated Example
The three models were initially compared using data generated to have both

leverage and heavy tails. The data had 3000 observations and were simulated from
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True SVL-SPM SVL-PM SV-SPM
φ 0.97 0.956 (0.923,0.971) 0.903 (0.883,0.948) 0.956 (0.929,0.975)
μ 0.00 0.124 (0.000,0.240) 0.163 (0.047,0.328) -0.716 (-1.038,-0.392)
ση 0.150 0.173 (0123,0.226) 0.322 (0.228,0.349) 0.194 (0.142,0.255)
ρ -0.600 -0.576 (-0.713,-0.427) -0.422 (-0.548,-0.277)
α 0.178 (0.072,0.345) 0.001 (0.000, 0.005)
σ2 4.771 (4.577,4.928) 5.646 (4.776,10.371)
M 1.117 (0.321,2.872) 0.456 (0.131, 1.149)
k 11 (5,23) 2 (2,4)

Table 2: Simulated data: Posterior medians and 95% credible intervals for the SVL-SPM, the
SVL-PM and the SV-SPM with c = 10−4.

the following model:

yt = exp (ht/2) εt

√
λ−1
t , λt ∼ Ga(7/2, 7/2),

and
ht+1 = 0.97 ht + ηt

where(
εt
ηt

)
∼ N

((
0
0

)
,

(
1 −0.6×√

0.0225

−0.6 ×√
0.0225 0.0225

))
.

The model implies that the marginal distribution of εt is a Student t distribution
with 7 degrees of freedom, which has substantially heavier tails than a normal
distribution. The leverage effect, ρ, is −0.6.

Table 2 presents the posterior medians and 95% credible intervals (CI) of the
model parameters under the parametric and semiparametric models. The parame-
ter estimates for the SVL-PM were based on the assumption that the error terms of
the return equation follow a normal distribution with the estimates reweighted to
take into account the error of approximationg the logχ2

1 distribution by a mixture
of normals. The SVL-PM clearly failed to estimate the parameters well and to
capture the behaviour of the data. The persistence parameter φ and the leverage
effect ρ were underestimated while μ and ση were overestimated. The model also
tended to infer much larger increase in volatility in response to large values of
εt and so underestimates φ and overestimates ση. The SV-SPM tends to under-
estimate μ since the correlation between εt and ηt is not included in the model.
The SVL-SPM performs much better than both models with the true values of all
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Figure 1: Simulated data: Posterior mean volatilities for the SVL-SPM, the SVL-PM and the
SV-SPM (Panel A); Posterior mean densities for SVL-SPM and SV-SPM (Panel B).

parameters within the 95% credible interval. The kurtosis of the Student t distribu-
tion with 7 degrees of freedom is 5. The variance σ2 can be used to approximate
K(εt) under the SVL-SPM and gives a value of the kurtosis around 4. The ap-
proximation underestimates the kurtosis here but it does illustrate the useful of
this method as an indication of the heaviness of the tails of the return distribution.

Figure 1 depicts posterior estimates of the volatilities and the distribution of
z�t for the different models. The posterior median for the volatilities under the
SVL-PM had more peaks than the SVL-SPM which accommodated the extreme
price movements generated by the Student t-distribution. This illustrates the ef-
fect of the underestimated persistence and the overestimated volatility of the log-
volatilities (the parameters φ and σ2

η) on the estimated volatilities. The SV-SPM
tended to systematically underestimate volatility which directly links to the under-
estimation of the mean of the log-volatility (the parameter μ) under this model. On
the contrary, the SVL-SPM gives smoother estimates of the volatility. The esti-
mated density of z�t under the SVL-SPM gave a good approximation to the log t27
distribution. The SV-SPM model introduced an extra mode in this distribution
around −10 and so allowed for the lack of a leverage effect by introducing a large
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number of very small returns.
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Figure 2: Simulated data: Autocorrelation plot for SVL-SPM.

Figure 2 shows the mixing of the different parameters of the SVL-SPM. Most
parameter mixed well but there were some indications that the volatility parame-
ters (φ, ρ and σ2

η) suffered from relatively slow mixing in this example.

SVL-SPM SVL-PM SV-SPM
LPS 2.22 2.23 2.58
CL 0.37 1.19 0.45

Table 3: Simulated data: Log-predictive scores and conditional likelihood score for the SVL-SPM,
the SVL-PM and the SVL-PM for c = 10−4.

Finally, Table 3 compares the fits of the the models. Both models with lever-
age had similar LPS’s which were much smaller than the score with the SV-SPM.
Therefore, it was hard to distinguish which model with leverage had a better over-
all fit. The CL score for both semiparametric models were much smaller than the
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score for the SVL-PM and indicated that these models were better at capturing the
tail behaviour of the conditional distribution of returns. Overall, the SVL-SPM
was better than the other models according to both scores.

4.2. Microsoft Asset Prices

The daily price series of Microsoft from January 4, 1993 to December 31,
2008, which has n = 4030 data points, were analyzed using the three models.
The data were expressed as compounded returns in percentages and can be seen
in Panel A of Figure 3.
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Figure 3: The log returns of (a) Microsoft asset prices and (b) the S&P500 index.

Table 4 presents the posterior estimates of the parameters under the different
models. The posterior median of φwas larger for the SVL-SPM and SV-SPM than
for the SVL-PM. The posterior estimate of the leverage, ρ, for the SVL-SPM was
negative and zero was not contained in the 95% credible interval. In contrast, the
SVL-PM had a larger posterior median of ρwhich was positive with zero included
in the 95% credible interval. This suggested evidence of no leverage effect under
the SVL-PM, unlike the SVL-SPM which provided evidence of a leverage effect.
In the case of ση , the posterior median was much smaller under the SVL-SPM
than both SV-SPM and SVL-PM. These estimates reflected the misspecification
of these models for these data. The SVL-PM could not capture the distribution
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SVL-SPM SVL-PM SV-SPM
φ 0.998 (0.997,0.998) 0.985 (0.974,0.992) 0.997 (0.995,0.999)
μ 1.813 (1.069,2.508) 1.142 (0.783,1.524) 1.255 (-0.068,3.233)
ση 0.042 (0.035,0.050) 0.165 (0.126,0.208) 0.070 (0.067,0.074)
ρ -0.161 (-0.273,-0.080) 0.025 (-0.176,0.196)
α 0.002 (0.001,0.003) 0.000 (0.000,0.000)
σ2 6.262 (6.221,6.300) 5.799 (5.509,6.054)
M 7.115 (4.396,11.014) 42.695 (30.033,62.25)
k 59 (43,81) 197 (155,259)

Table 4: Microsoft asset prices: Posterior medians and 95% credible intervals for the SVL-SPM,
the SVL-PM and the SV-SPM for c = 10−4.

of the data and so ση is overestimated in a similar way to the simulated exam-
ple. One reason the posterior median of ση was larger under the SV-SPM than
the SVL-SPM was probably that the model could not capture the correlation be-
tween the errors εt and ηt which led to larger estimates of the variabilities. The
posterior median of σ2 suggested that the distribution of εt was heavy tailed. In-
terestingly, the mass parameter of the DPM differed significantly between the two
semiparametric models.

The posterior estimates of the volatility and the predictive distribution of the
SVL-SPM, the SVL-PM and the SV-PM can be seen in Figure 4. The poste-
rior median of the volatility was much smoother under the SVL-SPM. This was
consistent with a much smaller value of the posterior median of the volatility of
the log-volatility, ση , under this model. Similarly, the posterior medians of the
volatilities under the SV-SPM were smoother in comparison to the SVL-PM. The
estimated density was multimodal for both semiparametric models. The posterior
median of the number of components, k, were 59 and 197 for the SVL-SPM and
the SV-SPM respectively.

SVL-SPM SVL-PM SV-SPM
LPS 2.17 2.17 2.09
CL 0.42 0.68 0.50

Table 5: Microsoft asset prices: Log-predictive scores and conditional likelihood score for the
SVL-SPM, the SVL-PM and the SV-SPM for c = 10−4.

The LPS and CL score for the three models are reported in in Table 5. The
SV-SPM outperformed the two models with leverage under the LPS and so pro-
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Figure 4: Microsoft asset price: Posterior mean volatilities for the SVL-SPM, the SVL-PM and
the SV-SPM (Panel A); Posterior mean densities for SVL-SPM and SV-SPM (Panel B).

vided better overall predictions. However, the SVL-SPM had a smaller CL score
than the SV-SPM (with both semiparametric models outperforming the SVL-PM)
which indicated that this model gave better prediction of extreme returns.

4.3. S&P 500 Index

The compounded returns of the S&P 500 index were taken from March 13,
1980 to June 6, 2000 which led to 5136 data points. The returns are plotted in
Panel B of Figure 3

Table 6 reports the parameter estimates under the SVL-SPM, the SVL-PM and
the SV-SPM. Many of the findings were similar to the ones using the Microsoft
asset price data. For example, the posterior median for the persistence parameter
φ was much larger under the semiparametric models than the SVL-PM with the
95% credible intervals under the semiparametric models not crossing the inter-
val for the SVL-PM. The same behaviour was observed for the volatility of the
log-volatility, the posterior median was two times larger under the SVL-PM than
under the semiparametric models. These results coincide with the ones found by
Delatola and Griffin (2011) using the same data. Furthermore, the posterior me-
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SVL-SPM SVL-PM SV-SPM
φ 0.992 (0.986,0.996) 0.976 (0.966,0.986) 0.994 (0.989,0.998)
μ -0.114 (-0.396,0.305) -0.186 (-0.363,0.037) -0.102 (-0.568,0.370)
ση 0.086 (0.067,0.111) 0.166 (0.126,0.208) 0.073 (0.058,0.091)
ρ -0.477 (-0.598,-0.329) -0.542 (-0.568,-0.346)
α 0.080 (0.035,0.151) 0.001 (0.000,0.003)
σ2 4.820 (4.714,4.928 4.843 (3.945,7.161)
M 1.518 (0.508,3.512) 0.685 (0.236,1.533)
k 15 (7,29) 4 (3,8)

Table 6: S&P500 index: Posterior medians and 95% credible intervals for the SVL-SPM, the
SV-PM and the SV-SPM for c = 10−4.

dian of the smoothing parameter α was much bigger under the SVL-SPM with
this dataset than with the Microsoft asset prices, suggesting a smoother density
for this data. The posterior median for α was smaller under the SV-SPM than that
under the SVL-SPM. The leverage effect was much stronger in this data than the
Microsoft asset price data with a posterior median of -0.54 under the parametric
model and -0.48 under the semiparametric model with leverage.

Figure 5 compares the posterior estimates of the log-volatility using the dif-
ferent models. The figure in Panel A shows that the estimated volatility was much
smoother under the semiparametric models than the SVL-PM, which was prone
to introduce large peaks in response to large absolute returns. The SV-SPM gave
much smoother volatility estimates than the SVL-SPM. The estimated density
of z�t was bimodal under the SV-SPM but unimodal under the SVL-SPM. This
corroborates the finding of the simulated example where the the SV-SPM model
introduced an extra component around -10 in the estimated density to allow for
the lack of a leverage effect term.

SVL-SPM SVL-PM SV-SPM
LPS 2.12 2.12 1.88
CL 0.44 0.53 0.56

Table 7: S&P500 index: Log-predictive scores and conditional likelihood score for the SVL-SPM,
the SVL-PM and the SV-SPM for c = 10−4.

The LPS and CL score were calculated and are shown in Table 7. The SV-SPM
gave a lower LPS than both the SVL-SPM and the SVL-PM and so indicated a
better overall. However, the SVL-SPM was the best performing model under the

22



13/3/1980 27/2/1984 9/2/1988 23/12/1991 6/12/1995 6/6/2000 13/3/1980 27/2/1984 9/2/1988 23/12/1991 6/12/1995

1

2

3

4

(A)

 

 

−20 −15 −10 −5 0 5
0

0.1

0.2

(B)

 

 

SVL−SPM SVL−PM SV−SPM

SVL−SPM
SV−SPM

Figure 5: S&P500 index: Posterior mean volatilities for the SVL-SPM, the SVL-PM and the
SV-SPM (Panel A); Posterior mean densities of SVL-SPM and SVL-SPM (Panel B).

CL score indicating that it could better fit the data in the tail of the conditional
return distribution.

5. Discussion

This paper has discussed including a leverage effect in a Bayesian semipara-
metric model for volatility, which also allows for heavy tails. The application of
this model to financial data shows that these changes to the model can have a con-
siderable effect on the estimates of the leverage effect and lead to more sensible
results. The semiparametric model without a leverage (SV-SPM) tends to include
an extra mode in the conditional distribution of the squared returns if the data ex-
hibit a strong leverage effect. The model can be fitted efficiently by updating the
volatilities as a single block using standard forwards-backwards algorithms for
state space models. However, although model is semiparametric, it assumes that
the return distribution is symmetric, that the relationship between the innovations
of the return and volatility equations are linearly related and that the innovations
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of the volatility equation are normally distributed. Future work will address these
limitations of the model.
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