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Abstract

This paper considers the estimation method of generalized beta distribution of the second kind (GB2

distribution) parameters based upon grouped data from a Bayesian point of view. As the GB2 distribution

includes several kinds of familiar distributions of income such as Singh-Maddala distribution and so on, it

is reasonable to consider the distribution. However, when the number of groups is small, it is sometimes

difficult to estimate the parameters of the distribution utilizing the existing estimation methods such as

maximum likelihood, minimum chi-square and so on. Thus, we propose a Markov chain Monte Carlo

method to estimate the parameters of the distribution. The concept of the selected order statistics is utilized

to construct the likelihood function. This method is applied to the Japanese quintile data from 1969 to 2007.

Empirical results capture the mobility of income, which is consistent with the history of postwar Japan.

JEL classification: C11; C51; D31.

Key words: Generalized beta distribution of the second kind (GB2 distribution); Grouped data; Markov
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1 Introduction

To estimate the income distribution or income inequality is one of the important themes in considering economic

policy for income redistribution. One way is to estimate it from individual or household data and the other way

is to estimate it from grouped data. However, it is sometimes difficult to access to individual or household

data in developing countries and even in developed countries. Moreover, the number of groups are small in

some cases. For example, Family Income and Expenditure Survey in Japan is available data in Japan and the
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quintile and decile data are announced. However, if we are interested in old data, only quintile data is available.

Therefore, we are required to estimate the income distribution or income inequality from small grouped data

such as quintile data.

The grouped data contains the information about interval and frequency of the groups as is shown in Table

1. Let x be the observed data and the intervals and the frequency are defined by xi and n∗
i (i = 1, . . . , k),

respectively. A raw dataset can be organized by constructing a table showing the frequency distribution of

the variable (whose values are given in the raw dataset). Such a frequency table is often referred to as a

grouped data. However, we can also regard a grouped data as a selected order statistics. Let a sample be

{X(j); j = 1, · · · , n} with size n and subsample, {X(ni); i = 1, 2, . . . , k} with size k, where the subsequence

{ni; i = 1, 2, . . . , k} is ancending order. Thus, we have selected order statistics {X(n1) ≤ X(n2) ≤ . . . ≤

X(nk)} for (1 ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n). Let the observed values of selected order statistics be

(x1, x2, . . . , xk). Figure 1 shows the example of the quintile data, that is, k = 4,
n1

n
=

n2 − n1

n
=

n3 − n2

n
=

n4 − n3

n
=

n− n4

n
= 0.2. From these information, we can draw the histogram in the figure. Then, we can

find that the definiton of xi is same and n∗
1 = n1, n∗

2 = n2 − n1, . . . , n∗
k = nk − nk−1 and n∗

k+1 = n − nk.

Moreover, it is required to estimate the true distribution (dotted line) in the figure assuming some distribution.

As is shown in McDonald and Xu (1995), the generalized beta distribution (hereafter referred to as GB)

includes several kinds of standard size distributions as special or limiting cases. Even if we focus on the

generalized beta distribution of the second kind (GB2), which is the special case of GB distribution, as is shown

in Kleiber and Kotz (2003) and McDonald (1984), it contains several kinds of size distributions including such

as the lognormal, generalized gamma and Singh-Maddala (1976) distributions, which are thought to be suitable

to the real data in Japan (see Atoda et al. (1988), Nishino and Kakamu (2011), Tachibanaki et al. (1997) and

so on). Therefore, it is reasonable to estimate the parameters of the GB2 distribution. However, it is difficult to

estimate the parameters of GB2 distribution from quintile data.

Since the seminal work by McDonald (1984), GB2 distribution is applied to the real data. However, as far

as we know, there is no research which examined the GB2 distribution from quintile data using the existing

methods such as maximum likelihood, minimum chi-square and so on, because it is difficult to estimate four

parameters from quintile data. Therefore, we propose a Bayesian method to estimate the parameters of the

distribution. Our method is applied to the Japanese quintile data from 1969 to 2007. From the empirical

results, we can capture the mobility of income distribution, which is consistent with the history of postwar

Japan.

This paper is organized as follows. In the next section, we will introduce the features of GB2 distribution

and the Bayesian Markov chain Monte Carlo estimation procedure. In Section 3, we will examine the Japanese

data and state the empirical findings. In Section 4, we conclude the discussion and state the remaining issues.
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2 The Generalized Beta Distribution of the Second Kind (GB2)

2.1 The Density and Cumulative Distribution Functions

While various probability distributions are used to estimate an income distribution, the generalized beta distri-

bution of the second kind (GB2) includes the various probability distributions as the special or limiting cases.

The GB2 distribution has 4 parameters (a, b, p, q) and its probability density function is written by

f(x) =
axap−1

bapB(p, q)
[
1 +

(x
b

)a]p+q , x > 0, (1)

where B(p, q) is a beta function. For example, if we set p = 1, the distribution is reduced to the probability den-

sity function of the Singh-Maddala distribution, which is thought as a desirable distribution in many empirical

applications.

To introduce the cumulative distribution function, let me introduce the following function

Ix(p, q) =
Bx(p, q)

B(p, q)
,

where Bx(p, q) is an incomplete beta function. Then, the cumulative distribution function is written by

F (x) = Iz(p, q), where z =

(x
b

)a

1 +
(x
b

)a . (2)

To explain the features of GB2 distribution, we introduce the mode and the moments. The mode of the GB2

distribution occurs at

xmode = b

(
ap− 1

aq + 1

)1/a

, if ap > 1

and at zero otherwise. The moments exist only for −ap < k < ap with

E[Xk] =
bkB(p+ k/a, q − k/a)

B(p, q)
.

The more details for the GB2 distribution are well written in Kleiber and Kotz (2003).

2.2 The Likelihood Function

Let θ = (a, b, p, q) be the vector of parameters and let x = (x1, x2, . . . , xk) be the vector of observations.

Then, the likelihood function of the model is obtained from a joint distribution of order statistics. From David

and Nagaraja (2003), we have a joint distribution of order statistics as follows:

L(x|θ) = n!
F (x1)

n1−1

(n1 − 1)!
f(x1)

{
k∏

i=2

(
F (xi − F (xi−1)

ni−ni−1−1)
)

(ni − ni−1 − 1)!
f(xi)

}
(1− F (xk))

n−nk

(n− nk)!
. (3)

If we substitute (1) and (2) for (3), it becomes the likelihood function for GB2. Nishino and Kakamu (2011)

applied the likelihood to the lognormal distribution. If the probability density and cumulative distribution func-

tions for the concerning distribution are available, we can apply this likelihood to the concerning distribution.
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2.3 Posterior Analysis

Since we adopt a Bayesian approach, we complete the model by specifying the prior distribution over the

parameters 1. Therefore, we apply the following prior:

π(θ) = π(a)π(b)π(p)π(q)

Given a prior density π(θ) and the likelihood function in (3), the joint posterior distribution can be expressed

as

π(θ|x) ∝ π(θ)L(x|θ) (4)

Finally, we assume the following prior distributions:

a ∼ IG(α0, β0), b ∼ IG(γ0, δ0), p ∼ IG(ϵ0, ζ0), q ∼ IG(η0, ν0),

where IG(a, b) denotes the inverse gamma distribution.

Since the full conditional distributions for each parameter are not standard forms, we adopt the random

walk Metropolis-Hastings algorithm to each parameter (see Tierney (1994), Chib and Greenberg (1995) for

details). We implement the following MCMC algorithm:

1. Initialize a, b, p, q.

2. Generate a|b, p, q,x.

3. Generate b|a, p, q,x.

4. Generate p|a, b, q,x.

5. Generate q|a, b, p,x.

6. Go to Step 2.

3 Empirical Results

Before examining empirics, we explain the data set, which is used in this section. We use the two quintile

data from Family Income and Expenditure Survey in Japan from 1969 to 2007. One is the data of two-or-

more person households and the other is that of workers’ household. The sample size is 10, 000 households

1There are some Bayesian approach using grouped data such as Chotikapanich and Griffiths (2000, 2002) and our approach is

similar to the one of Chotikapanich and Griffiths (2000). However, our approach is completely different from the one because our

approach use the exact likelihood based upon the selected order statistics.
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(n = 10, 000) and the sample is divided into five groups, that is, each group has 2, 000 households (n1 = 2, 000,

n2 = 4, 000, n3 = 6, 000 and n4 = 8, 000).

We set the hyper-parameters as α0 = β0 = γ0 = δ0 = ϵ0 = ζ0 = η0 = ν0 = 1.0. We perform the MCMC

procedure by generating 1, 000, 000 draws in a single sample path and discard the first 400, 000 draws as the

initial burn-in. Out of the remaining draws, we keep every 100 draw to obtain the posterior statistics for the

parameters. All computational results were obtained using Ox 6.21 (see Doornik (2006)).

Figure 2 shows the mobility of income distribution and the trends of mean and mode for two-or-more person

households. From the figures, we can observe that the household income concentrated at the mode first. After

that, the levels of mean and mode of the distribution moved to higher income level until 1991 and the level of

mean increased higher than that of mode. In addition, the tail of higher income became fat at the same time.

After 1991, the levels of mean and mode for the household income remained stagnant or decreased and the

movements of them are parallel. It means that the household income increased until collapse of bubbles and

higher income households decreased after collapse of bubbles.

Figure 3 displays the mobility of income distribution and the trends of mean and mode for workers’ house-

hold. From the figures, we find that the moblity and trends are similar to those for two-or-more person house-

holds. However, the difference appears in the trends of mean and mode after 1991. The level of mean moved

similar to that of two-or-more person households. On the other hand, the mode decreased more drastically than

that for two-or-more person households, that is, the distribution of the income moved to lower income but some

of the higher income households remain in higher income. It means that the effect of collapse of bubbles is

smaller for higher income households for workers’ household. Therefore, from thsese figures, we can conclude

that the wealthy people without job damaged by the collapse of bubbles. This results are consistent with the

history of postwar Japan.

4 Conclusions

This paper considered a Bayesian Markov chain Monte Carlo method to estimate the parameters of the GB2

distribution and applied to the Japanese quintile data from 1969 to 2007. Based upon the concept of the

selected order statistics, the likelihood function was constructed and the posterior distribution was derived from

the function and the prior distributions. From the empirical results, we captured the mobility of income in

Japan. In the beginning, the distribution concentrated at the mode and the mode lay on lower income. Toward

the collapse of bubbles in 1991, the mode moved to higher income and the height of the distribution around the

mode became lower. The tail of higher income became fat, that is, the rich people increased at that time. After

the collapse of bubbles, the mode moved to lower income and the height of the mode became higher. It means

that the rich people decreased and the household income concentrated on mode. Especially, such phenomena
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can be captured in two-or-more person households. This result is consistent with the history of postwar Japan.

We will state the remaining issues. First, we utilize a random walk Metropolis-Hastings algorithm. How-

ever, this algorithm is inefficient and requires a lot of random draws. Thus, we need more efficient algorithm

to estimate the parameters of the distribution. Second, GB distribution, which has five parameters, includes

more size distribution than GB2 distribution (see McDonald and Xu (1995)). Thus, it is important to extend the

model to GB distribution. Finally, it is also important to calculate the Gini coefficient, because the Gini coeffi-

cient is sometimes used to formulate an income distribution policy. Therefore, the trend of Gini coefficient is

another concern.

References

[1] Atoda, N., T. Suruga and T. Tachibanaki (1988) “Statistical inference of functional forms for income

distribution,” The Economic Studies Quarterly, 39, 14–40.

[2] Chib, S. and E. Greenberg (1995) “Understanding the Metropolis-Hastings argorithm,” American Statis-

tician, 49, 327–335.

[3] Chotikapanich, D. and W.E. Griffiths (2000) “Posterior distributions for the Gini coefficient using grouped

data,” Australian and New Zealand Journal of Statistics, 42, 383–392.

[4] Chotikapanich, D. and W.E. Griffiths (2002) “Estimating Lorenz curves using a Dirichlet distribution,”

Journal of Business & Economic Statistics, 20, 290–295.

[5] David, H.A. and H.N. Nagaraja (2003) Order Statistics, 3rd ed., Wiley: New York.

[6] Doornik, J.A. (2008) Ox: An Object Oriented Matrix Programming Language, Timberlake: London.

[7] Kleiber, C. and S. Kotz (2003) Statistical Size Distributions in Economics and Actuarial Science, Wiley:

New York.

[8] McDonald, J.B. (1984) “Some generalized functions for the size distribution of income,” Econometrica,

52, 647–663.

[9] McDonald, J.B. and Y.J. Xu (1995) “A generalization of the beta distribution with applications,” Journal

of Econometrics, 66, 133–152.

[10] Nishino, H. and K. Kakamu (2011) “Grouped data estimation and testing of Gini coefficients using log-

normal distributions,” Sankhya Series B, 73, 193–210.

6



[11] Singh, S.K. and G.S. Maddala (1976) “A function for size distribution of income,” Econometrica, 47,

1513–1525.

[12] Tachibanaki, T., T. Suruga and N. Atoda (1997) “Estimations of income distribution parameters for indi-

vidual observations by maximum likelihood method,” Journal of the Japan Statistical Society, 27, 191–

203.

[13] Tierney L. (1994) “Markov chains for exploring posterior distributions (with discussion),” Annals of

Statistics, 22, 1701–1762.

7



f(x)

x
x3x2 x4x1

n1

n

n2 − n1

n

n3 − n2

n

n4 − n3

n

n− n4

n

Figure 1: Quintile Data
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Figure 2: Mobility of Income Distribution for Two-or-More Person Households

250
500

750 1000 1250 1500

1970

1980

1990

2000

0.
00

25
0.

00
50

0.
00

75
0.

01
00

0.
01

25

mode mean 

1970 1975 1980 1985 1990 1995 2000 2005

100

200

300

400

500

600

700 mode mean 

Figure 3: Mobility of Income Distribution for Workers’ Households
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range frequency

x ≤ x1 n∗
1

x1 < x ≤ x2 n∗
2

...
...

xk−1 < x ≤ xk n∗
k

xk < x n∗
k+1

Table 1: Example of Grouped Data
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