
Generalized Direct Sampling for Hierarchical
Bayesian Models

Michael Braun
MIT Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142

braunm@mit.edu

Paul Damien
McCombs School of Business
University of Texas at Austin

Austin, TX 78712
paul.damien@mccombs.utexas.edu

July 30, 2012

Abstract

We develop a new method to sample from posterior distributions in hierarchical
models without using Markov chain Monte Carlo. This method, which is a variant
of importance sampling ideas, is generally applicable to high-dimensional models
involving large data sets. Samples are independent, so they can be collected in par-
allel, and we do not need to be concerned with issues like chain convergence and
autocorrelation. Additionally, the method can be used to compute marginal likeli-
hoods.

1 Introduction

Recently, Walker et. al (2010) introduced and demonstrated the merits of a non-MCMC

approach called Direct Sampling (DS) for conducting Bayesian inference. They argued

that with their method there is no need to concern oneself with issues like chain conver-

gence and autocorrelation. They also point out that their method generates independent

samples from a target posterior distribution in parallel, unlike MCMC for which, in the

absence of parallel independent chains, samples are collected sequentially. Walker et al.

also prove that the sample acceptance probabilities using DS are better than those from

standard rejection algorithms. Put simply, for many common Bayesian models, they

demonstrate improvement over MCMC in terms of its efficiency, resource demands and

ease of implementation.

However, DS suffers from some important shortcomings that limit its broad applicability.

These include the failure to separate the specification of the prior from the specifics of

the estimation algorithm. Another is an inability to generate accepted draws for even

moderately sized problems; the largest number of parameters that Walker et al. consider

is 10. Our interest is in conducting full Bayesian inference on hierarchical models in high

dimensions, with or without conjugacy, without MCMC.

The method proposed in this paper, strictly speaking, is not a generalization of the DS

algorithm, but since it shares some important features with DS, we call it Generalized

Direct Sampling (GDS). DS and GDS differ in the following respects.

1. While DS focuses on the shape of the data likelihoood alone, GDS is concerned

with the characteristics of the entire posterior density.

2. GDS bypasses the need for Bernstein polynomial approximations, which are inte-

gral to the DS algorithm.

1

3. While DS takes proposal draws from the prior (which may conflict with the data),

GDS samples proposals from a separate density that is ideally a good approxima-

tion to the target posterior density itself.

In addition to the above improvements over DS, GDS maintains many improvements

over MCMC estimation:

1. All samples are collected independently, so there is no need to be concerned with

autocorrelation, convergence of estimations chains, and so forth.

2. There is no particular advantage to choosing model components that maintain

conditional conjugacy, as is common with Gibbs sampling.

3. GDS generates samples from the target posterior entirely in parallel, which takes

advantage of the most recent advances in cluster computing and placing multiple

CPU cores in a single computer.

4. GDS permits fast and accurate estimation of marginal likelihoods of the data.

GDS is introduced in Section 2. Section 3 includes examples of GDS in action, starting

with a small, but important, two-parameter example for which MCMC is known to fail,

and concluding with a complex nonconjugate application with nearly 30,000 parameters.

In Section 4, GDS is used to estimate marginal likelihoods. Finally, in Section 5, we

discuss practical issues that one should consider when implementing GDS, including

limitations of the GDS approach.

2

2 Generalized Direct Sampling: The Method

Like DS, GDS is a variant on well-known importance sampling methods. The goal is to

sample q 2 W from a posterior density

p(q|y) = f (y|q)p(q)
L(y) =

D(q, y)
L(y) (1)

where D(q, y) is the joint density of the data and the parameters (the unnormalized

posterior density). Let q⇤ be the mode of D(q, y), and define c1 = D(q⇤, y). Choose some

proposal distribution g(q) that also has its mode at q⇤, and define c2 = g(q⇤). Also,

define the function

F(q|y) = f (y|q)p(q) · c2
g(q) · c1

(2)

Obviously

p(q|y) = F(q|y) · g(q) · c1
c2 · L(y)

(3)

An important restriction on the choice of g(q) is that the inequality 0 < F(q|y)  1 must

hold, at least for any q with a non-negligible posterior density. Discussion of the choice

of g(q) is given in detail a little later.

Next, let u|q, y be an auxiliary variable that is distributed uniformly on
✓

0,
F(q|y)
p(q|y)

◆
,

so that p(u|q, y) =
p(q|y)
F(q|y) =

c1
c2L(y)

g(q). We then construct a joint density of q|y and

u|q, y, where

p(q, u|y) = p(q|y)
F(q|y)1 [u < F(q|y)] (4)

3

From Equation 4, the marginal density of q|y is

p(q|y) = p(q|y)
F(q|y)

Z F(q|y)

0
du = p(q|y) (5)

Therefore, simulating from p(q|y) is equivalent to simulating from the target posterior

p(q|y).

Using Equations 3 and 4, the marginal density of u|y is

p(u|y) =
Z

p(q|y)
F(q|y)1 [u < F(q|y)] dq (6)

=
c1

c2L(y)

Z
1 [u < F(q|y)] g(q) dq (7)

=
c1

c2L(y)
q(u) (8)

where q(u) =
R

1 [u < F(q|y)] g(q) dq is defined as the probability that u < F(q|y) for

any q drawn from g(q).

The GDS sampler comes from recognizing that p(q, u|y) can written differently from,

but equivalently to, Equation 4.

p(q, u|y) = p(q|u, y) p(u|y) (9)

The strategy behind GDS is to sample from an approximation to p(u|y), and then sample

from p(q|u, y). Using the definitions in Equations 2, 3, and 4, we get

p(q|u, y) =
p(q, u|y)
p(u|y) (10)

=
c1

c2L(y)
1[u < F(q|y)] g(q)

p(u|y) (11)

Consequently, to sample directly from p(q|y), one needs only to sample from p(u|y) and

4

then sample repeatedly from g(q) until F(q|y) > u.

How does one simulate from p(u|y), which is proportional to q(u)? Walker et al. sam-

ple from a similar kind of density by first taking M proposal draws from the prior to

construct an empirical approximation to q(u), and then constructing a continuous ap-

proximation using Bernstein polynomials. However, in high-dimensional models, this

approximation tends to be a poor one at the endpoints, even with an extremely large

number of Bernstein polynomial components. It is for this reason that the largest num-

ber of parameters that Walker et. al. tackle is 10.

The GDS strategy to sample u|y is to sample a transformed variable v = T(u), where

T(u) = � log u. Apply a change of variables, q(v) = q(u) exp(�v). With q(v) denoting

the “true” CDF of v, let qM(v) be the empirical CDF after taking M proposal draws from

g(q), and ordering the proposals 0 < v1 < v2 < . . . < vM < •. To be clear, qM(v) is

the proportion of proposal draws that are strictly less than v. Because qM(v) is discrete,

we can sample from a density proportional to q(v) exp(�v) by partitioning the domain

into M + 1 segments, partitioned at each vi. The probability of sampling a new v that

falls between vi and vi+1 is now vi = qM(v) [exp(�vi)� exp(�vi+1)]. Therefore, we first

sample at vi from a multinomial density with weights proportional to vi, and then let

v = vi + e, where e is a draw from a standard exponential density, truncated on the right

at vi+1 � vi. One can sample from this truncated exponential density by first sampling a

standard uniform random variate h, and setting v = � log [1 � h (1 � exp(vi � vi+1)].

To sample N draws from the target posterior, we sample N “threshold” draws of v using

this method. Then, for each v, we repeatedly sample from g(q) until T(F(q|y)) < v.

Note that the inequality sign is flipped from the F(q|y) > u expression because of the

negative sign in the transformation.

In summary, the steps of the GDS algorithm are as follows:

5

1. Find the mode of D(q, y), q⇤ and compute the unnormalized log posterior density

c1 = D(q⇤|y) at that mode.

2. Choose a distribution g(q) so that its mode is also at q⇤, and let c2 = g(q⇤).

3. Sample q1, . . . , qM independently from g(q). Compute F(qm) for these proposal

draws. If F(qm) > 1 for any of these draws, repeat Step 2 and choose another

proposal distribution for which F(qm) < 1 does hold.

4. Compute vi = T(F(q|y)) for the M proposal draws, and place them in increasing

order.

5. Evaluate, for each proposal draw,

qM(v) =
M

Â
i=1

1 [vi < v] (12)

which is the empirical CDF of vi for the M proposal draws.

6. Sample N draws of v = vi + e, where a particular vi is chosen according to the

multinomial distribution with probabilities proportional to vi, and e is a standard

exponential random variate, truncated to vi+1 � vi.

7. For each of the N required samples from the target posterior, sample q from g(q)

until T(F(q|y)) < v. Consider each first accepted draw to be a single draw from

the target posterior p(q|y).

Choosing g(q) is an important part of this algorithm. Naturally, the closer g(q) is to the

target posterior, the more efficient the algorithm will be in terms of acceptance rates.

In principle, it is up to the researcher to choose g(q), which is similar in spirit to se-

lecting a dominating density while implementing standard rejection algorithms, or even

Metropolis-Hastings algorithms. For GDS, in practice, a multivariate normal proposal

6

distribution with mean at q⇤ and covariance matrix of the inverse Hessian at q⇤, mul-

tiplied by a scaling constant s, works well. There is nothing special about this choice,

except to note that it is easy to implement with a little trial and error in the selection of s.

(This is similar, in spirit, to the concept of tuning an M-H algorithm via trial and error).

If the log posterior happens to be multimodal, and the location of the local modes are

known, then one could let g(q) be a mixture of multivariate normals instead. Impor-

tantly, we address the sensitivity of the GDS algorithm to M as part of the analysis in

Section 4.

Clearly, an advantage of GDS is that the samples one collects from the target posterior

density are independent, and that lets us collect them in parallel. Some researchers have

investigated alternative approaches for MCMC-based Bayesian inference that also take

advantage of parallel computation; see, for example, Suchard et al. (2010). One notable

example is a parallel implementation of a multivariate slice sampler (MSS), as in Tibbits

et. al. (2010). The benefits of parallelizing the MSS come from parallel evaluation of the

target density at each of the vertices of the multivariate slice, and from more efficient use

of resources to execute linear algebra operations (e.g, Cholesky decompositions). But the

MSS itself remains a Markovian algorithm, and thus will still generate dependent draws.

Using parallel technology to generate a single draw from a distribution is not the same

as generating all of the required draws themselves in parallel. On the other hand, the

sampling steps of GDS can be run in their entirety in parallel.

3 Illustrative Analysis

We now provide some examples of GDS in action, especially on problems for which

MCMC fails, or for which the dimensionality, model structure, and sample size make

MCMC methods somewhat unattractive.

7

3.1 A Hierarchical Non-Gaussian Linear Model

Consider this motivating example of a linear hierarchical model discussed by Papaspiliopoulous

and Roberts (2008).

Y = X + e1 (13)

X = Q + e2 (14)

For an observed value Y , X is the latent mean for the prior on Y, Q is the prior mean

of X, and e1 and e2 are random error terms, each with mean 0. Papaspiliopoulous

and Roberts note that to improve the robustness of inference on X to outliers of Y, it is

common to model e1 as having heavier tails than e2 . Let e1 ⇠ Cauchy(0, 1), e2 ⇠ N(0, 5),

and Q ⇠ N(0, 50000), and suppose there is only one observation available, Y = 0. The

posterior joint distribution of X and Q is given in Figure 1; the contours represent the

logs of the computed posterior densities. Note that around the mode, X and Q appear

uncorrelated, but in the tails they are highly dependent. Papaspiliopoulous and Roberts

present this example as a deceptively simple case in which Gibbs sampling performs

extremely poorly. Indeed, they note that almost all diagnostic tests will erroneously

conclude that the chain has converged. The reason for this failure is that the MCMC

chains are attracted to, and get “stuck” in, the modal region where the variables are

uncorrelated. Once the chain enters the tails, where the variables are more correlated,

the chains moves slowly, or not at all.

GDS is a more effective alternative for sampling from the posterior distribution. The

posterior mode and Hessian of the log posterior at the mode, are q⇤ = (0, 0) and H =0

B@
�2.2 0.2

0.2 �0.2

1

CA. The GDS proposal distribution g(q) is taken to be a bivariate normal

with mean q⇤ and covariance �sH�1, with s = 200. This scaling factor was the smallest

8

−40

−20

0

20

40

−40 −20 0 20 40
x

Θ

log post
density

−40
−35
−30
−25
−20
−15

Figure 1: Contours of the ”true” posterior distribution of the non-Gaussian linear model exam-
ple.

value of s for which F(q)  1 for all M = 20, 000 of the proposal draws. Two hundred

independent samples were collected using the GDS algorithm.

Figure 2 plots each of the GDS draws, where darker areas represent higher values of

log posterior density. GDS not only picks up the correct shape of the regions of high

posterior mass near the origin, but also the dependence in the long tails. The acceptance

rate to collect these draws was about 0.013.

In constrast, consider Figure 3. which plots samples collected using MCMC. Specifi-

cally, we used the RH-MALA method in Girolami and Calderhead (2012), with constant

curvature, estimating the Hessian at each iteration. These are samples from 25,000 itera-

tions, collected after starting at the posterior mode and running through 25,000 burn-in

iterations, thinned every 10 draws. Just as Papaspiliopolous and Roberts predicted, the

chain tends to get stuck near the mode. It is only after some serendipitiously large pro-

posal jumps that the chain ever finds itself in the tails (hence the gaps in the plot), but

9

−40

−20

0

20

40

−40 −20 0 20 40
X

Θ

log.dens
−22.7
−22.2
−21.7
−21.2
−20.7
−20.2
−19.7
−19.2
−18.7
−18.2
−17.7
−17.2
−16.7
−16.2
−15.7
−15.2
−14.7

Figure 2: Posterior draws from non-Gaussian linear regression example, using GDS. Darker
colors represent regions of higher posterior density

the chain does not move very far along those tails at all.

3.2 Hierarchical Gaussian model

Next, we consider a hierarchical model with a large number of parameters. The depen-

dent variable yit is measured T times for heterogenous units i = 1 . . . n. For each unit,

there are k covariates, including an intercept. The intercept and coefficients bi are het-

erogeneous, with a Gaussian prior with mean b̄ and covariance W, which in turn have

weakly information standard hyperpriors. This model structure is given by:

10

−40

−20

0

20

40

−40 −20 0 20 40
X

Θ

log.dens
−22.7
−22.2
−21.7
−21.2
−20.7
−20.2
−19.7
−19.2
−18.7
−18.2
−17.7
−17.2
−16.7
−16.2
−15.7
−15.2
−14.7

Figure 3: Posterior draws from non-Gaussian linear regression example, using MCMC. Darker
colors represent regions of higher posterior density

yit ⇠ N(x0i bi, 1), i = 1 . . . n, t = 1 . . . T (15)

bi|S ⇠ MVN(b̄, W) (16)

b̄ ⇠ MVN(0, Vb) (17)

W ⇠ IW(n, A) (18)

To construct simulated datasets, we set “true” values of b̄ = (5, 0,�2, 0) and W = 0.25I.

For each unit, we simulated T = 25 observations, where the non-intercept covariates are

all i.i.d draws from a standard normal distribution. Three different values for n were

entertained: 100, 500 and 1000. In all cases, there are 14 population-level parameters, so

the total number of parameters are 414, 2014 and 4014, respectively. The parameters of

the hyperpriors are n = 10, Vb = 0.2I, and A = 0.1I.

11

Table 1 summarizes the performance of the GDS algorithm, averaged over 10 replications

of the experiment. For each case, we collected 100 samples from the posterior, with

M = 10, 000 proposal draws. The proposal distributions are all multivariate normal,

with mean at the posterior mode and the covariance set as the inverse of the Hessian at

the mode, multiplied by a scale factor that changes with n. For each value of n, we set the

scale factor to roughly find the smallest value for which F(q|y)  1 for all M = 10, 000

proposal draws. The “Mean Proposals” column is the average number of proposals it

took to collect 100 posterior draws during the accept-reject phase of the algorithm (this

is the inverse of the acceptance rate). We also recorded the time it took to run each stage

of the algorithm. The “Post Mode” column is the number of minutes it took to find

the posterior mode, starting at the origin (after transforming all parameters to have a

domain on the real line). The “Proposals” column is the amount of time it took to collect

the M = 10, 000 proposal draws. “Acc-Rej” is the time it took to execute the accept-

reject phase of the algorithm to collect 100 independent samples from the posterior, and

“Total” is the total time required to run the algorithm. The study was conducted on an

Apple Mac Pro with 12 CPU cores running at 2.93GHz and 32GB of RAM. Ten of the 12

cores were allocated to this algorithm.

Total scale Mean Minutes for GDS stages
n params factor Proposals Post Mode Proposals Acc-Rej Total

100 414 1.32 15489 0.01 0.11 1.9 2.1
500 2014 1.20 23387 0.08 0.18 11.3 11.6

1000 4014 1.14 26480 0.24 0.28 23.0 23.6

Table 1: Efficiency of GDS for hierarchical Gaussian example

Although Mean Proposals may appear to be high, assesing the efficiency of an algorithm

by examining the acceptance rate alone can be misleading. For a single estimation chain,

MCMC cannot be run in parallel, while for GDS, all draws can be generated in parallel.

For example, each of the 10 cores on the CPU was responsible for collecting 10 posterior

samples. One possible counterargument would be that MCMC can be run with multiple

12

chains in parallel, as suggested in Gelman and Rubin (1992). However, if one does

use parallel chains, all of the chains need to be burned in independently. There is no

guarantee that any one of the chains would have converged after some arbitrary number

of iterations, and there will still be residual interdependence in the final set of collected

draws. It would be more appropriate to compare the total number of proposals from

the GDS rejection sampling phase to the number of post-burn-in iterations that MCMC

runs require reaching an effective sample size of 100. It is also worth reiterating that GDS

is quite simple to implement, as the algorithm requires no ongoing tuning or adaptation

once the accept-reject phase begins.

3.3 An online advertising example of a complex, 30, 000-dimensional

model

In this section, we consider another model for which GDS should be an attractive estima-

tion method: the effectiveness of online advertising campaigns. Using GDS, we estimate

the posterior density from the model described in Braun and Moe (2012). This model

is quite complicated; for 5,803 anonymous users, they observe which website advertise-

ments (if any) were served to each user during the course of that user’s web browsing

activity. They also observe when these users visited the advertiser’s own website (if

ever), and if these website visits resulted in a conversion to a sale. The managerial objec-

tive is to develop a method for firms to identify which versions of ads are most likely to

generate site visits and sales, taking into account the fact that the return on investment

of the ad may not occur until several weeks in the future. The model allows each version

of an ad to have a contemporaneous effect in that week, but for each repeat view of the

same ad to an incrementally smaller effect. The effect of the ad campaign for an indi-

vidual builds up with each subsequent ad impression, but this accumulated “ad stock”

decays from week to week.

13

All together, there are 29,073 parameters in the model, consisting of five heterogeneous

parameters per user, plus 58 population-level parameters. The data are modeled as

being generated from zero-inflated Poisson (for ads and visits) and binomial (for suc-

cesses) distributions, with the rate parameters being correlated, and dependent on a

latent ad stock variable. The ad stock, in turn, is depends on which version of the ad

is served, along with nonlinear representations of build-up, wear-out and restoration

effects. Given complex hierarchical structure, extensive nonlinearities, and high degree

of correlation in the posterior distribution, attempts at MCMC estimation proved to be

well-nigh impossible to implement.

GDS, however, worked well. Because the user-level data are conditionally independent,

we could write the log posterior density as the sum of user-level data likelihoods, plus

the priors and hyperpriors. Algortihmic differentiation software (Bell 2012) automati-

cally computed the gradients and Hessians for the model. This allows us to find the

posterior mode, and estimate the Hessian at the mode, relatively quickly. As above, the

proposal density was a multivariate normal, centered at the posterior mode, with a co-

variance matrix of 1.02 times the inverse of the Hessian at the model. Since the model

assumes conditional independence across users, the Hessian of the log posterior has a

sparse structure. We exploit this sparsity to generate the proposal draws efficiently, and

to dramatically reduce the memory footprint of the algorithm.

To collect 100 independent draws, it took 23.75 minutes. The mean attempts per draw

is 2350. Although this may appear like a low acceptance rate, consider that we were

able to collect the draws in parallel, without any tuning or adaptation of the algorithm

beyond the initial choice of the proposal density. Also, because the sparse Hessian has a

“block-diagonal-arrow” structure, it grows only linearly with the number of users.

14

4 Estimating Marginal Likelihoods

Now, we turn to another advantage of GDS: the ability to generate accurate estimates

of the marginal likelihood of the data with little additional computation. A number of

researchers have proposed methods to approximate the marginal likelihood, L(y), from

MCMC output. Popular examples include Gelfand and Dey (1994), Newton and Raftery

(1994), Chib (1995) and Raftery, et. al. (2007). But none of these methods have achieved

universal acceptance as being unbiased, stable or easy to compute. In fact, Lenk (2009)

demonstrated that methods which depend solely on samples from the posterior density

could suffer from a “pseudo-bias,” and he proposes a method to correct for it. Through

several examples, he demonstrates that his method dominates other popular methods,

although with substantial computational effort. Thus, the estimation of the marginal

likelihood of a dataset, and its use in model selection, remains a difficult problem in

MCMC-based Bayesian statistics for which there is no satisfactory solution.

To get an estimate of the marginal likelihood from GDS output, we need the acceptance

rate from the accept-reject stage of the algorithm. Recall that q(u) is the probability that,

given a threshold value u, a proposal from g(q) is accepted. Therefore, one can express

the expected marginal acceptance probability for any posterior draw by integrating over

u.

g =
Z 1

0
q(u)p(u|y) du (19)

Substituting Equation 6,

g =
c1

c2L(y)

Z 1

0
q2(u) du (20)

15

Applying the change of variables so v = � log u, and then rearranging terms,

L(y) = � c1
c2g

Z •

0
q2(v) exp(�v) dv. (21)

The values for c1 and c2 are immediately available from the GDS algorithm. One can

estimate g by treating the number of proposals required to accept a posterior draw as a

shifted geometric random variable (an acceptance on the first proposal is a count of 1).

Thus, an estimator of g is the inverse of the mean number of proposals per draw.

What remains is estimating the integral in Equation 21. This is done by using the pro-

posal draws from Step 5 in the GDS algorithm in Section 2. The empirical CDF of these

draws is discrete, so we can partition the support of q(v) at v1 . . . vM. Also, since qM(v)

is the proportion of proposal draws less than v, we have qM(v) = i
M . Therefore,

Z •

0
q2(v) exp(�v)dv ⇡

M

Â
i=1

Z vi+1

vi

✓
i

M

◆2
exp(�vi)dv (22)

=
1

M2

M

Â
i=1

i2 [exp(�vi)� exp(�vi+1)] (23)

=
1

M2

M

Â
i=1

(2i � 1) exp(�vi) (24)

(By convention, define vM+1 = •). Putting all of this together, we can estimate the

marginal likelihood as

L(y) ⇡ c1
M2c2g

M

Â
i=1

(2i � 1) exp(�vi) (25)

As a demonstration of the accuracy of this method, consider the following normal linear

16

regression model, also used by Lenk (2009) to demonstrate the accuracy of his method.

yit ⇠ N(x0i b, s2), i = 1 . . . n, t = 1 . . . T (26)

b|s ⇠ N(b0, s2V0) (27)

s2 ⇠ IG(r, a) (28)

For this model, L(y) is a multivariate-T density. This allows us to compare the esti-

mates of L(y) from GDS with “truth.” To do this, we conducted a simulation study for

simulated datasets of different sizes (n=200 or 2000) and numbers of covariates (k=5, 25

or 100). For each n, k pair, we simulated 25 datasets. For each dataset, each vector xi

includes an intercept and k iid samples from a standard normal density. There are k + 2

parameters, corresponding to the elements of b, plus s. The true intercept term is 5, and

the remaining true b parameters are linearly spaced from �5 to 5. In all cases, there are

T = 25 observations per unit. Hyperpriors are set as r = 2, a = 1, b0 as a zero vector

and V0 = 0.2 · Ik.

For each dataset, we collected 250 draws from the posterior density using GDS, with

different numbers of proposal draws (M=1,000 or 10,000), and scale factors (s =0.5, 0.6,

0.7 or 0.8) on the Hessian (so sH is the precision matrix of the MVN proposal density,

and lower scale factors generate more diffuse proposals). The s = 0.8andn = 200 cases

were excluded because the proposal density was not sufficiently diffuse that F(q|y) was

between 0 and 1 for the M proposal draws. Table 2 presents the true log marginal

likelihood (MVT), along with estimates using GDS, the importance sampling method

in Lenk (2009), and the harmonic mean estimator (Newton and Raftery 1994). Table

3 shows the mean absolute percentage error (MAPE) of the GDS and Lenk methods,

relative to the true log likelihood. The acceptance percentages for each dataset, and the

time it took to generate 250 posterior draws (after finding the posterior mode) are also

summarized.

17

What we can see from these tables is that the GDS estimates for the log marginal likeli-

hood are remarkably close to the multivariate T densities, and are robust when we use

different scale factors. Accuracy appears to be better for larger datasets than smaller

ones, and improving the approximation of p(u) by increasing the number of proposal

draws offers negligible improvement. Note that the performance of the GDS method

is comparable to that of Lenk, but is much better than the harmonic mean estimator.

We did not compare our method to others (e.g., Gelfand and Dey 1994), because Lenk

already did that when demonstrating the importance of correcting for pseudo-bias, and

how his method dominates many other popular ones. The GDS method is similar to

Lenk’s in that it computes the probability that a proposal draw falls within the support

of the posterior density. However, note that the inputs to the GDS estimator are intrin-

sically generated as the GDS algorithm progresses, while computing the Lenk estimator

requires an additional importance sampling run after the MCMC draws are collected.

We are not claiming that our method is better than Lenk’s. Instead, this illustration

shows that one of the important advantages of GDS is the ease and accuracy with which

one can estimate marginal likelihoods.

5 Practical considerations and limitations of GDS

This section discusses some practical issues while implementing GDS. Like the entire

body of MCMC research continues to teach us, more insights will likely be gleaned as

we, and hopefully others, gain additional experience with the method. Here, we provide

some suggestions on how to implement GDS effectively, and mention some areas in

which more research or investigation is needed.

18

MVT GDS Lenk HME
k n M scale mean sd mean sd mean sd mean sd
5 200 1000 0.5 -309 6.6 -309 6.6 -311 6.8 -287 7.1
5 200 1000 0.6 -309 6.6 -309 6.7 -310 6.9 -287 6.9
5 200 1000 0.7 -309 6.6 -309 6.7 -310 6.5 -287 6.3
5 200 10000 0.5 -309 6.6 -309 6.6 -311 6.7 -287 6.7
5 200 10000 0.6 -309 6.6 -309 6.6 -310 7.5 -287 6.8
5 200 10000 0.7 -309 6.6 -309 6.7 -310 7.0 -287 7.1
5 2000 1000 0.5 -2866 46.2 -2865 46.3 -2868 46.2 -2836 46.2
5 2000 1000 0.6 -2866 46.2 -2866 46.2 -2868 45.7 -2836 45.5
5 2000 1000 0.7 -2866 46.2 -2866 46.3 -2867 45.9 -2836 45.9
5 2000 1000 0.8 -2866 46.2 -2866 46.2 -2867 46.3 -2835 46.3
5 2000 10000 0.5 -2866 46.2 -2866 46.4 -2867 46.7 -2836 46.9
5 2000 10000 0.6 -2866 46.2 -2866 46.2 -2867 45.8 -2836 46.3
5 2000 10000 0.7 -2866 46.2 -2866 46.4 -2867 46.0 -2836 46.3
5 2000 10000 0.8 -2866 46.2 -2866 46.2 -2867 46.5 -2835 46.3

25 200 1000 0.5 -387 8.1 -385 8.2 -391 7.6 -292 8.5
25 200 1000 0.6 -387 8.1 -386 8.1 -390 9.5 -292 8.8
25 200 1000 0.7 -387 8.1 -386 8.3 -390 8.0 -292 8.8
25 200 10000 0.5 -387 8.1 -385 8.5 -390 8.2 -292 8.4
25 200 10000 0.6 -387 8.1 -385 8.2 -390 8.9 -292 8.8
25 200 10000 0.7 -387 8.1 -386 8.2 -390 8.7 -292 9.1
25 2000 1000 0.5 -2990 28.7 -2989 28.8 -2994 28.3 -2865 28.8
25 2000 1000 0.6 -2990 28.7 -2989 28.7 -2993 28.4 -2864 29.0
25 2000 1000 0.7 -2990 28.7 -2989 28.9 -2991 30.0 -2864 29.5
25 2000 1000 0.8 -2990 28.7 -2990 28.7 -2992 29.6 -2864 29.4
25 2000 10000 0.5 -2990 28.7 -2988 29.2 -2992 28.5 -2864 28.9
25 2000 10000 0.6 -2990 28.7 -2989 29.1 -2993 29.4 -2864 28.9
25 2000 10000 0.7 -2990 28.7 -2990 29.0 -2993 28.9 -2864 28.9
25 2000 10000 0.8 -2990 28.7 -2990 28.6 -2993 28.2 -2865 28.2

100 200 1000 0.5 -660 6.7 -661 6.5 -683 8.8 -292 9.2
100 200 1000 0.6 -660 6.7 -660 6.6 -678 8.5 -286 9.0
100 200 1000 0.7 -660 6.7 -659 7.1 -673 7.8 -282 8.0
100 200 10000 0.5 -660 6.7 -659 6.9 -682 9.1 -288 10.4
100 200 10000 0.6 -660 6.7 -660 5.7 -678 8.8 -286 8.9
100 200 10000 0.7 -660 6.7 -658 6.7 -674 7.3 -282 8.4
100 2000 1000 0.5 -3364 24.4 -3364 24.8 -3370 27.5 -2871 27.1
100 2000 1000 0.6 -3364 24.4 -3362 24.6 -3369 24.3 -2868 25.3
100 2000 1000 0.7 -3364 24.4 -3361 23.9 -3371 25.6 -2870 25.4
100 2000 1000 0.8 -3364 24.4 -3362 23.9 -3370 26.0 -2868 26.1
100 2000 10000 0.5 -3364 24.4 -3362 24.0 -3372 25.3 -2870 25.2
100 2000 10000 0.6 -3364 24.4 -3360 24.9 -3368 25.3 -2867 25.4
100 2000 10000 0.7 -3364 24.4 -3360 24.6 -3370 25.5 -2869 25.5
100 2000 10000 0.8 -3364 24.4 -3362 24.5 -3367 24.3 -2867 24.4

Table 2: Results of simulation study for effectiveness of estimator for log marginal like-
lihood.

19

MAPE-GDS MAPE-LENK Accept % Time (mins)
k n M scale mean sd mean sd mean sd mean sd
5 200 1000 0.5 0.23 0.16 0.47 0.39 22.05 7.64 0.09 0.24
5 200 1000 0.6 0.11 0.12 0.52 0.45 40.46 10.82 0.02 0.04
5 200 1000 0.7 0.06 0.05 0.47 0.39 57.13 8.46 0.01 0.00
5 200 10000 0.5 0.17 0.08 0.50 0.37 23.99 5.32 0.04 0.01
5 200 10000 0.6 0.10 0.06 0.54 0.46 40.85 7.19 0.04 0.01
5 200 10000 0.7 0.07 0.07 0.48 0.35 55.15 9.15 0.04 0.01
5 2000 1000 0.5 0.02 0.01 0.07 0.05 22.14 7.65 0.04 0.07
5 2000 1000 0.6 0.01 0.01 0.06 0.06 37.76 10.34 0.03 0.08
5 2000 1000 0.7 0.01 0.01 0.06 0.05 49.55 13.39 0.01 0.00
5 2000 1000 0.8 0.01 0.01 0.04 0.02 64.60 12.93 0.01 0.00
5 2000 10000 0.5 0.02 0.01 0.05 0.05 25.30 6.65 0.06 0.07
5 2000 10000 0.6 0.01 0.01 0.04 0.03 36.28 7.06 0.04 0.01
5 2000 10000 0.7 0.01 0.01 0.05 0.03 51.43 14.49 0.05 0.03
5 2000 10000 0.8 0.00 0.01 0.04 0.03 71.95 11.83 0.04 0.00

25 200 1000 0.5 0.49 0.36 0.98 0.47 2.77 2.50 0.47 0.60
25 200 1000 0.6 0.26 0.13 1.06 0.46 8.07 3.36 0.13 0.18
25 200 1000 0.7 0.18 0.10 0.80 0.43 16.16 5.08 0.06 0.11
25 200 10000 0.5 0.52 0.25 0.93 0.65 1.67 0.87 1.15 1.99
25 200 10000 0.6 0.35 0.19 1.03 0.68 6.24 3.72 0.72 1.39
25 200 10000 0.7 0.11 0.05 0.88 0.77 20.01 3.23 0.04 0.01
25 2000 1000 0.5 0.04 0.03 0.11 0.10 2.69 1.98 0.28 0.25
25 2000 1000 0.6 0.06 0.03 0.09 0.06 4.57 3.03 0.75 1.02
25 2000 1000 0.7 0.04 0.03 0.09 0.09 15.44 9.61 0.59 1.36
25 2000 1000 0.8 0.01 0.01 0.09 0.07 43.14 12.62 0.03 0.02
25 2000 10000 0.5 0.10 0.05 0.08 0.06 0.75 0.68 4.34 9.53
25 2000 10000 0.6 0.07 0.03 0.09 0.05 3.65 2.76 1.97 5.95
25 2000 10000 0.7 0.03 0.03 0.08 0.06 17.07 6.33 0.42 1.45
25 2000 10000 0.8 0.01 0.01 0.10 0.08 43.27 10.27 0.05 0.01

100 200 1000 0.5 0.27 0.23 3.50 0.82 0.32 0.29 0.49 0.85
100 200 1000 0.6 0.17 0.22 2.74 0.71 0.30 0.22 1.05 3.06
100 200 1000 0.7 0.26 0.22 1.93 0.81 0.40 0.37 1.17 2.18
100 200 10000 0.5 0.20 0.12 3.21 0.93 0.04 0.03 9.64 24.67
100 200 10000 0.6 0.22 0.14 2.62 0.75 0.08 0.07 7.62 27.89
100 200 10000 0.7 0.28 0.17 2.18 0.64 0.08 0.06 1.66 1.62
100 2000 1000 0.5 0.06 0.05 0.24 0.14 0.34 0.38 12.03 26.31
100 2000 1000 0.6 0.04 0.04 0.19 0.12 0.60 0.53 4.61 10.84
100 2000 1000 0.7 0.07 0.04 0.23 0.13 1.10 0.88 3.66 8.46
100 2000 1000 0.8 0.06 0.03 0.21 0.12 3.16 2.26 2.74 8.74
100 2000 10000 0.5 0.05 0.04 0.27 0.12 0.04 0.05 52.26 85.06
100 2000 10000 0.6 0.08 0.05 0.15 0.13 0.14 0.16 64.11 189.53
100 2000 10000 0.7 0.09 0.04 0.19 0.13 0.44 0.42 11.31 23.94
100 2000 10000 0.8 0.05 0.02 0.15 0.11 3.04 1.81 2.08 4.04

Table 3: Results of simulation study for effectiveness of estimator for log marginal like-
lihood.

20

5.1 Finding the posterior mode and estimating the Hessian

Searching for the posterior mode is considered, in general, to be “good practice” for

Bayesian inference even when using MCMC; see Step 1 of the “Recommended Strategy

for Posterior Simulation” in Section 11.10 of Gelman et. al (2003). For small problems,

like the example in Section 3.1, standard nonlinear optimization algorithms, such as

those found in common statistical packages like R, are sufficient for finding posterior

modes and estimating Hessians. For larger problems, finding the mode and estimating

the Hessian can be more difficult when using those same tools. However, there are many

different ways to find the extrema of a function, and some may be more appropriate

for some kinds of problems than for others. Therefore, one should not immediately

conclude that finding the posterior mode (or modes) is a barrier to adopting GDS for

large or ill-conditioned problems; see, Section 3.3 where GDS was exemplified for a

30, 000 dimensional model.

When the log posterior density is smooth and unimodal, a natural algorithm for finding

a posterior mode is one that exploits gradient and Hessian information in a way that is

related to Newton’s Method. Nocedal and Wright (2006) describe many different non-

linear optimization methods, but most can be classified as either “line search” or “trust

region” methods. Line search methods may be more common; for instance, all of the

gradient-based algorithms implemented in the optim function in R are line search meth-

ods. But these methods could be subject to numerical problems when the log posterior

is nearly flat, or has a ridge, in which case the algorithm may try to evaluate the log

posterior at a point that is so far away from the current value that it generates numer-

ical overflow. Trust region methods (Conn, et. al., 2000), on the other hand, tend to be

more stable, because each proposed step is constrained to be within a particular distance

(the “radius” of the trust region) of the current point. One of the authors of this paper

(anonymous for blind reviewing) is developing an R package that implements a scalable

21

trust region optimizer, using the Steihaug (1983) conjugate gradient approach for solving

the trust region subproblem. The optimizers in the Optimization Toolbox in MATLAB

are also based on trust regions. In short, if one finds that a “standard” optimizer for

a particular programming environment is having trouble finding the posterior mode,

there may be other common algorithms that can find the mode more easily.

Neither line-search nor trust-region algorithms necessarily require explicit expressions

for gradients and Hessians, but generating these structures exactly can also speed up

the mode-finding step of GDS. This approach is in contrast to approximations that use

finite differencing or quasi-Newton Hessian updates. Of course, one can always derive

the gradient of the log posterior density analytically, but this can be a tedious process.

We have had success with algorithmic differentiation (AD) software such as the CppAD

library (Bell 2012). With AD, we need only to write a function that computes the log

posterior density. The AD library includes functions that automatically return deriva-

tives of that function. The time to compute the gradient of a function is a small multiple

of the time it takes to compute the original function, and otherwise does not depend on

the dimension of the problem.

Estimating the Hessian is useful not only for the mode-finding step, but also for choos-

ing the covariance matrix of a multivariate proposal density. The time it takes for AD

software to compute a Hessian can depend on the dimension of the problem, and work-

ing with a dense Hessian for a large problem can be prohibitively expensive in terms of

computation and memory usage. However, for many hierarchical models, we assume

conditional independence across heterogeneous units. For these models, the Hessian

of the log posterior is sparse, with a “block-diagonal-arrow” structure (block-diagonal,

but dense on the bottom and right margins). Thus, we can achieve substantial compu-

tational improvements by exploiting this sparsity. The advantage comes in storing the

Hessian in a compressed format, such that zeros are not stored explicitly. Not only does

22

this permit estimating larger models on computers with less memory, but it also lets us

use efficient computational routines that exploit that sparsity. For example, Powell and

Toint (1979) and Coleman and More (1983) explain how to efficiently estimate sparse

Hessians using graph coloring techniques. Coleman et al. (1985a, 1985b) offer a useful

FORTRAN implementation to estimate sparse Hessians using graph coloring and finite

differencing. Algorithmic differentiation libraries like CppAD can also exploit sparsity

when computing Hessians. Both MATLAB and R (through the Matrix package) can store

sparse symmetric matrices in compressed format.

One important consideration is the case of multimodal posteriors. GDS does require

finding the global posterior mode, and all the models discussed in this paper have uni-

modal posterior distributions. When the posterior is multimodal, one could instead use

a mixture of normals as the proposal distribution. The idea is to not only find the global

mode, but any local ones as well, and center each mixture component at each of those lo-

cal modes. The GDS algorithm itself remains unchanged, as long as the global posterior

mode matches the global proposal mode.

We recognize that finding all of the local modes could be a hard problem, and there is

no guarantee that any optimization algorithm will find all local extrema. But, by the

same token, this problem can be resolved efficiently in a multitude of complex Bayesian

statistical models if one uses the correct tools. And it is only a matter of time before

these tools are more widely available in standard statistical programming languages like

R. The nonlinear optimization literature is rife with methods that help facilitate efficient

location of multiple modes, even if there is no guarantee of finding them all. Also, note

that even though MCMC sampling chains are, in theory, guaranteed to explore the entire

space of any posterior distribution (including multiple regions of high posterior mass),

there is no guarantee that this will happen after a large finite number of iterations for

general nonconjugate hierarchical models. Other estimation algorithms that purport to

23

be robust to multimodal posteriors offer no such guarantees either.

5.2 Choosing a proposal distribution

Like many other methods that collect random samples from posterior distributions, the

efficiency of GDS depends in part on a prudent selection of the proposal density g(q).

For the examples in this paper, we used a multivariate normal density that is centered

at the posterior mode, with a covariance matrix that is proportional to the inverse of the

Hessian at the mode. One might then wonder if there is an optimal way to determine

just how “scaled out” the proposal covariance needs to be. At this time, we think that

trial and error is, quite frankly, the best alternative. For example, if we start with a small

M (say, 100 draws), and find that F(q|y) > 1 for any of the M proposals, we have learned

that the proposal density is not valid, at little computational or real-time cost. We can

then re-scale the proposal until F(q|y) < 1, and then gradually increase M until we get

a good approximation to p(u). In our experience, even if an acceptance rate appears to

be low (say, 0.0001), we can still collect draws in parallel, so the “clock time” remains

much less than the time we spend trying to optimize selection of the proposal.

For example, in the Cauchy example in Section 3.1, we set the proposal covariance to be

the inverse Hessian at the posterior mode, scaled by a factor of 200. We needed such a

large scale factor because the normal approximation at the mode shows no correlation,

even though there is obvious correlation in the tails. If one knew upfront the extent

of the tail dependence, one might have chosen a proposal density that is more highly

correlated, and that might give a higher acceptance rate. But of course one seldom,

if ever, knows the shape of any target posterior density up front. So even though an

acceptance percentage of 1.3% may appear to be low, we should consider the amount of

time it would take to improve the proposal density, and especially the number of MCMC

24

iterations it would take to get enough draws that are equivalent to the same number of

independent GDS draws.

5.3 Cases requiring further research

This paper demonstrated that GDS is a viable alternative to MCMC for a large class of

Bayesian non-Gaussian and Gaussian hierarchical models. Of course it would be myopic

to claim that GDS is appropriate for all models. By the same token, we cannot assert that

GDS would not work for any of the models described below. These models are topics

requiring additional research.

Models with discrete or combinatorial optimization elements In models that include

both discrete and continuous parameters, finding the posterior mode becomes a mixed-

integer nonlinear program (MINLP). An example is the Bayesian variable selection prob-

lem (George and McCulloch 1997). The difficulty lies in the fact that MINLPs are known

to be NP-complete, and thus may not scale well for large problems. Hidden Markov

models with multiple discrete states might be similarly difficult to estimate using GDS.

Also, it is not immediately clear how one might select a proposal density when some

parameters are discrete.

Intractable likelihoods or posteriors There are many popular models, namely binary,

ordered and multinomial probit models, for which the likelihood of the observed data

is not available in closed form. When direct numerical approximations to these likeli-

hoods (e.g., Monte Carlo integration) is not tractable, MCMC with data augmentation

is a popular estimation tool (e.g., Albert and Chib 1993). That said, recent advances in

parallelization using graphical processing units (GPUs) might make numerical estima-

25

tion of integrals more practical than it was even 10 years ago; see Suchard et al. (2010).

If this is the case, and the log posterior remains sufficiently smooth, then GDS could be

a viable, efficient alternative to data augmentation in these kinds of models.

Missing data problems MCMC-based approaches to multiple imputation of missing

data could suffer from the same kinds of problems: the latent parameter, introduced

for the data augmentation step, is only weakly identified on its own. Normally, we are

not interested in the missing values themselves. If the number of missing data points is

small, perhaps one could treat the representation of the missing data points as if they

were parameters. But the implications of this require additional research.

Spatial models, and other models with dense Hessians GDS does not explicitly re-

quire conditional independence, so one might consider using it for spatial or contagion

models (e.g., Yang and Allenby 2003). However, without a conditional independence

assumption, the Hessian of the log posterior will not be sparse, and that may restrict the

size of datasets for which GDS is practical.

6 Conclusions

In this paper, we presented a new method, Generalized Direct Sampling (GDS), to sam-

ple from posterior distributions. This method has the potential to bypass MCMC-based

Bayesian inference for large, complex models with continuous, bounded posterior densi-

ties. Unlike MCMC, GDS generates independent draws that one could collect in parallel.

The implementation of GDS is straightforward, and requires only a function that returns

the value of the unnormalized log posterior density. In addition, GDS allows for fast

26

and accurate computation of marginal likelihoods, which can then be used for model

comparison.

There are many other ways to conduct Bayesian inference, and continued improvement

of MCMC remains an important stream of research. Nevertheless, it would be hard to

ignore the opportunities for parallelization that make algorithms like GDS very attractive

alternatives. Of course, one could employ parallel computational techniques as part of

a sequential algorithm. But, to repeat an earlier sentence, using parallel technology to

generate a single draw is not the same as generating all of the required draws themselves

in parallel. By exploiting the advantages of parallel computing, as in this paper, GDS

could prove to be a successful addition to the Bayesian practitioner’s computational

toolkit.

References

[1] Atchade, Y. F. (2006) An Adaptive Version for the Metropolis Adjusted Langevin Algorithm
with a Truncated Drift. Methodology and Computing in Applied Probability 8, 235-254.

[2] Bell, B. (2012) CppAD: A Package for C++ Algorithmic Differentiation. Computational Infras-
tructure for Operations Research htpp://www.coin-or.org/CppAD.

[3] Braun, M. and Moe, W. (2012) Online Advertising Response Models: Incorporating Multiple
Creatives and Impression Histories. Working paper.

[4] Coleman, T. F., Garbow, B. S. and Moré, J. J. (1985a) Software for Estimating Sparse Hessian
Matrices. ACM Transactions on Mathematical Software 11(4) 363-377.

[5] Coleman, T. F., Garbow, B. S. and Moré, J. J. (1985b) Algorithm 636: FORTRAN Subroutines
for Estimating Sparse Hessian Matrices. ACM Transactions on Mathematical Software 11(4)
378.

[6] Conn, A., Gould, N., and Toint, P. (2000) Trust-Region Methods Philadelphia: Society for
Industrial and Applied Mathematics and Mathematical Programming Society.

27

[7] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and
Rossi, F. (2009) GNU Scientific Library Reference Manual, 3rd edition, Network Theory, Ltd.
http://www.gnu.edu/software/gsl.

[8] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003) Bayesian Data Analysis. Boca
Raton, Fla.: Chapman and Hall.

[9] George, E. I. and McCulloch, R. E. (1997) Approaches for Bayesian Variable Selection. Sta-
tistica Sinica 7, 339-373.

[10] Geyer, C. J. (2009) trust: Trust Region Optimization. R package version 0.1-2.
http://www.stat.umn.edu/geyer/trust

[11] Girolami, M., and Calderhead, B. (2011) Riemann Manifold Langevin and Hamiltonian
Monte Carlo. Journal of the Royal Statistical Society, Series B (with discussion), 73, 1-37.

[12] Lenk, P. (2009) Simulation Pseudo-Bias Correction to the Harmonic Mean Estimator of In-
tegrated Likelihoods. Journal of Computational and Graphical Statistics, 18(4) 941-960.

[13] Martin, A. D., Quinn, K. M., and Park, J. H. (2011) MCMCpack: Markov Chain Monte Carlo
in R. Journal of Statistical Software 42(9) 1-21. http://www.jstatsoft.org/v42/i09.

[14] Nocedal, J. and Wright, S. J. (2006) Numerical Optimization New York: Springer.

[15] Papaspiliopoulous, O. and Roberts, G. (2008). Stability of the Gibbs Sampler for Bayesian
Hierarchical Models. Annals of Statistics, 36, 95-117.

[16] Plummer, M., Best, N., Cowles, K. and Vines, K. (2010) coda: Output Analysis and Diag-
nostics for MCMC. R package version 0.14-2. http://CRAN.R-project.org/package=coda.

[17] Powell, M. J. D. and Toint, Ph. L. (1979) On the Estimation of Sparse Hessian Matrices. SIAM
Journal on Numerical Analysis 16(6) 1060-1074.

[18] Tibbits, M.M., Haran, M. and Liechty, J.C. (2010). Parallel Multivariate Slice Sampling. Statis-
tics and Computing, 21(3), 415-430.

[19] Walker, S.G., Laud, P.W., Zantedeschi, D., and Damien, P. (2010). Direct Sampling. Journal of
Computational and Graphical Statistics, 20(3), 692-713.

[20] Suchard, M.A., Wang, Q., Chan, C., Frelinger, J., Cron, A., and West, M. (2010). Understand-
ing GPU Programming for Statistical Computation: Studies in Massively Parallel Massive
Mixtures. Journal of Computational and Graphical Statistics, 19(2), 419-438.

[21] Yang, S., and Allenby, G. (2003) Modeling Interdependent Consumer Preferences. Journal of
Marketing Research 40(3), 282-294.

28

