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Abstract

This paper proposes a panel Markov-Switching (MS-) VAR model suitable for a

multi-country analysis of the business cycle. We study the business cycles fluctuations

of a group of countries, analyse the transmission of shocks across cycles allowing for

heterogeneity and asymmetries among countries, and predict the turning points of the

country-specific cycles. We focus on the European Monetary Union (EMU) and compare

the results obtained by analysing the EMU at a disaggregated level. We propose a

forecast combination approach for aggregating the turning points of the EMU countries

in order to obtain a possibly better prediction of the turning points for the EMU business

cycle and understand its sources. A Bayesian approach has been applied to estimate

the panel MS-VAR model and to forecast the turning points.

JEL codes: C11, C15, C53, E37.

Keywords: Forecast Combination, Bayesian Model Averaging, Panel VAR, Markov-

switching, EMU Business Cycles.

1 Introduction

In this paper, we contribute to the literature on the analysis of the business cycle of large

panel of countries. The analysis of the world business cycle has been proposed by Gregory

et al. (1997), who consider a panel of trivariate series (output, consumption and investment)

for the G7 countries and estimate dynamic factor model featuring a common (world) cycle, a

country specific component and a series specific (fully idiosyncratic) one. The specification

of the model is based on an extension of the single index model of coincident indicators

by Stock and Watson (1991). They conclude that both the world and the country specific

factors captures a significant amount of the fluctuations. Kose et al. (2003) reaches similar

conclusions, using a larger data set on 60 countries and using a Bayesian dynamic factor

model. They conclude that real output growth depends on an international factor, a regional
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factor, plus an idiosyncratic one. The overall finding is again that the world factor explains

a substantial fraction of economic fluctuations. In a recent paper, Kose et al. (2008) find

however that the relative importance of the common factor has been declining over time

and that the cycle of emerging economies has become decoupled from that of industrialized

countries. Hess and Shin (1997, 1998) propose analysing the ”intra-national” business

cycle (i.e. the co-movements within a country) in order to gain understanding of the

transmission mechanism of shocks that enables to abstract from the trade frictions that

affect international economics. They use disaggregated U.S. State level data on productivity

growth for several industries and assess, by a descriptive decomposition technique, the role

of the common intra-national cycle, that of the industry specific and the state-specific cycles.

They conclude that the role of the state specific cycle is much reduced and sector specific

shocks are more important in a common currency area. Lumsdaine and Prasad (2003)

assess the relative importance of country specific versus common shocks, using industrial

production growth for a set of 17 countries. They estimate the common component

of international fluctuations by the aggregation with time-varying weights (derived from

the reciprocal of the conditional variance of the series, estimated by fitting a univariate

GARCH model), which aims at downweighting the idiosyncratic variation, of the industrial

production growth rates. In the present paper we focus on the business cycle of the European

Monetary Union (EMU) and the cycles of 12 countries of the EMU. First, we aim to measure

the cycle by using multivariate series and to extract the turning points of the country-

specific business cycles. Secondly, we investigate the similarities between the EMU cycle at

an aggregated level and the cycles of the 12 countries considered in our analysis.

Another aim of the paper is to verify the sources business cycle co-movements, i.e. on the

channels through which business cycle fluctuations are transmitted across countries of the

international economic system. We will focus on the following sources of transmission:

interest rates (financial sector) and the oil prices (world shocks). In this respect, the

literature has focused on the determinants on two main sources: trade and financial

integration. Theoretically, there is no consensus in the literature on the role of trade in

the international transmission of shocks. As argued by Frankel and Rose (1998), on the one

hand trade has a positive direct impact on business cycle synchronisation, whilst on the other

hand it could have an indirect negative effect through specialisation. Greater specialisation

would lead to lower concordance, as countries may be more prone to sector-specific and

idiosyncratic (or asymmetric) shocks (Bayoumi and Eichengreen (1993)). As a consequence,

the direction of the link between trade openness and business cycle concordance is largely

regarded as an empirical issue. Imbs (2004) estimates a simultaneous equations system to

explain the observed cross-correlation of, say output growth, using explanatory variables

that measure trade openness, financial integration and the degree of specialization. He

concludes that trade has a strong effect on business cycle synchronization, but a sizable

portion of this effect is found to actually work through intra-industry interlinkages.

Financial integration also has a prevailing direct positive effect on synchronization. Canova

and Marrinan (1998) address a different question, as to whether the international business
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cycles originate from common shocks or from a common propagation mechanism. Monfort

et al. (2003) aim at disentangling common shocks from spill-over effects. To this end, they

estimate a Bayesian dynamic factor model for the G7 real output growth, featuring a global

common factor and two area specific (North-American and Continental European) common

factors, which, being modelled as a VAR process, are interdependent. They find empirical

support for the presence of spill-over effects running from North-America to Continental

Europe, but not vice versa.

This paper also contributes to the literature on heterogeneity in cross-country panel

data models. Panel datasets are appealing because they combine the information coming

from the cross-section and the time-series dimension of the data. In the context of the

cross-country panel data models, the more recent approaches have focused on two issues:

the estimation of international cycles and the nature of the co-movements using relatively

large dimensional datasets and the introduction of country and time heterogeneity in multi

country vector autoregressive models. The first issue has been considered by Hallin and

Liska (2008), Pesaran et al. (2004), and Dees et al. (2007). The second by Canova and

Ciccarelli (2006). Hallin and Liska (2008) extend the generalized dynamic factor model by

Forni et al. (2000, 2001) to panel of time series with block structure, where the blocks are

represented by countries. They show that the extension provides the means for the analysis

of the interblock relationships, allowing the identification of strongly common factors,

which are common to all the blocks (e.g. the international common factors), the strongly

idiosyncratic factors, which are idiosyncratic for all blocks, and the weakly common/weakly

idiosyncratic factors, that are common to at least one block, but idiosyncratic to at least

another. Multi-country VAR models provide a tool for examining the propagation of

shocks across countries. Canova and Ciccarelli (2006) consider Bayesian inference for multi-

country VAR models with time varying parameters, lagged interdependencies and country

specific effects. They avoid the curse of dimensionality by a factor parameterization of

the time varying VAR coefficients in terms of a number of random effects that are linear

in the number of countries and series. The random coefficients are in turn driven by a

common component, a country specific component, a variable specific component and a

idiosyncratic component. The factor loadings assumed to evolve according to a stationary

vector first order autoregression, whereas the idiosyncratic component is assumed to be

serially uncorrelated. The disturbances driving the evolution of the factors are also allowed

to be heteroscedastic. The paper proposes a Monte Carlo Markov Chain sampling scheme

to estimate the posterior distribution of the coefficients and to carry out impulse response

analysis. Canova and Ciccarelli (2006) analyze the transmission of shocks in the G7

countries focusing on four macroeconomic variables: real growth, inflation, employment

growth and rent inflation; oil prices are considered as exogenous. In this paper, we build

on Canova and Ciccarelli (2006) and extend their panel VAR model in order to model

asymmetry and the turning points in the business cycles of different countries. Our paper

is also strictly related to Kaufmann (2010), where a panel of univariate Markov-switching

(MS) regression models is considered. The early contributions in the business cycle literature
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consider nonlinear models such as the MS models (see for example Goldfeld and Quandt

(1973) and Hamilton (1989)) and the threshold autoregressive models (see Tong (1983) and

Potter (1995)), both of which are able to capture the asymmetry and the turning points

in business cycle dynamics. In this paper we focus on the class of MS models. We take

the models of Hamilton (1989) and Krolzig (2000) as points of departure and consider

Markov-switching dynamics for the VAR coefficients and covariance matrices.

The remainder of this paper is organized as follows. Section 1 presents the Bayesian

panel MS-VAR model that has been used for the analysis. Section 2 discusses the prior

choice and the Bayesian inference framework. Section 3 presents the empirical evidence on

cross-country asymmetries in the business cycle and the comparison with the EMU and US

cycle. The same session presents the asymmetries in the shocks transmission mechanism.

Finally, Section 4 concludes.

2 A Panel Markov-switching VAR model

Let yit ∈ RK , i = 1, . . . , N and t = 1, . . . , T , be a sequence of K-dimensional vectors of

observations. N is the number of units (countries) and T the number of time observations.

We introduce a general specification of the panel Markov-switching VAR (PMS-VAR) model

yit = ai(si t) +

N∑
j=1

p∑
l=1

Aijl(si t)yjt−l +Di(si t)zt + εit, (1)

i = 1, . . . , N , with εit ∼ NK(0,Σi(si t)) and zt ∈ RG a vector of variables, common to all

units.

The {si t}t are unit-specific and independent M -states Markov-chain processes with

values in {1, . . . ,M} and transition probability P(si t = k|si t−1 = j) = pi,kj , j ∈ {1, . . . ,M}.
We assume the chains are stationary and irreducible. As regards to the choice of the number

of regimes, we notice that for more recent data one needs an adequate business cycle model

with more than two regimes (see also Clements and Krolzig (1998)) and a time-varying

error variance. For example, Kim and Murray (2002) and Kim and Piger (2000) propose a

three-regime (recession, high-growth, and normal-growth) MS model while Krolzig (2000)

suggests the use of a model with regime-dependent volatility for the US GDP. In our paper

we consider data on EMU industrial production, for a period of time including the 2009

recession and find that four regimes (high-recession, contraction, normal-growth, and high-

growth) are necessary to capture some important features of the US and EMU cycle in the

strong-recession phases.

The generality of the propose statistical model comes from the fact that the coefficients

vary both across units and across time. Moreover the interdependencies between units are

allowed whenever Aijl(si t) ̸= 0 for i ̸= j.

In order to define the parameter shifts more clearly and to simplify the exposition of

4



the inference procedure we introduce the indicator variable ξikt = δk(si t), where

δk(si t) =

{
1 if si t = k

0 otherwise

for k = 1, . . . ,M , i = 1, . . . , N , and t = 1, . . . , T and the vector of indicators ξit =

(ξi1t, . . . , ξiMt)
′, which collects the information about the realizations of the i-th unit-specific

Markov chain over the sample period. The indicators allow us to write the parameter shifts

as

ai(si t) =

M∑
k=1

ai,kξikt, Aijl(si t) =

M∑
k=1

Aijl,kξikt

Di(si t) =

M∑
k=1

Di,kξikt, Σi(si t) =

M∑
k=1

Σi,kξikt.

In our applications we will assume the following restrictions hold: E(εitε′jt) = OK×K

with On×m the (n×m)-dimensional null matrix, and there are no interdependencies among

the same variable across units, that is Aijl,k = Ail,kδi(j) +OK×K(1− δi(j)). Clements and

Krolzig (1998) found in an empirical study that most forecast errors are due to the constant

terms in the prediction models. They suggest considering, for example, MS models with

regime-dependent volatility. In this paper, we follow Krolzig (2000) and Anas et al. (2008)

and assume that both the unit-specific intercepts, ai(si t), and volatilities, Σi(si t), are driven

by the regime-switching variables {si t}t and assume constant autoregressive coefficients

Ail,k = Ail, ∀k. In the same spirit we assume that the coefficients of the common variables

do not change over time, that is Di,k = Di, ∀k.
Let w̄′

it = (1, . . . ,y′
it−1, · · · ,y′

it−p, z
′
t), t = 1, . . . , T be the sequence of (1 + Kp + G)-

dimensional column vectors of regressors for the PMS-VAR model, that includes the

constant term, the lagged dependent variables, and the set of common variables. Moreover

define the regressors, Wit = w̄′
it ⊗ IK , and coefficients, Ai,k = (ai,k, Ai1,k, · · · , Aip,k, Di),

matrices of dimension (K(1 +Kp + G) ×K) and (K ×K(1 +Kp + G)) respectively. By

using the allocation variables ξit and the unit independence assumptions, given above, the

PMS-VAR model can be rewritten as

yit = Ai,1Witξi1t + . . .+Ai,MWitξiMt + εit, εit ∼ NK(0,Σit) (2)

or in a more compact form as yit = (ξit ⊗ Wit)vec(Bi) + εit where Bi =

(vec(Ai,1), vec(Ai,2), · · · , vec(Ai,M )), Σit = Σi(ξit ⊗ IK) and Σi = (Σi1, · · · ,ΣiM ). For

reason of convenience we consider the partition of the set of regressors w̄it into M + 1

subsets x̄i0t and x̄imt, m = 1, . . . ,M , that are a K0-dimensional vector of regressors with

regime-invariant coefficients and M vectors of Km regime-specific regressors with regime-

dependent coefficients. Under this assumption the previous model writes as

yit = Xi0tγi0 + ξi1tXi1tγi1 + . . .+ ξiMtXiMtγiM + εit (3)
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where Xi0t = (x̄′
i0t ⊗ IK) and Ximt = (x̄′

imt ⊗ IK).

3 Bayesian Inference

3.1 Independent Priors

We assume a conjugate priors for the coefficients and the variance of the panel MS-VAR.

For the coefficients γi0 and γim we consider independent normals priors

γi0 ∼ NK0(γi0
,Σi0) (4)

γim ∼ NKm(γim
,Σim), m = 1, . . . ,M (5)

i = 1, . . . , N . We assume independence across units, that is: Cov(γi0,γj0)) = 0 and

Cov(γim,γjm)) = OKm×Km , for i ̸= j. For the inverse covariance matrix Σ−1
im we assume

the Wishart priors

Σ−1
im ∼ WK(νim/2,Υim/2), m = 1, . . . ,M (6)

with possibly regime-specific degrees of freedom νim and precision Υim parameters. We

assume Cov(Σ−1
im ,Σ−1

im) = OK2
m×K2

m
.

When using Markov-switching processes, one should deal with the identification issue

associated to the label switching problem. See for example Celeux (1998) and Frühwirth-

Schnatter (2001) for a discussion on the effects of the label switching and the unidentification

on the results of a MCMC based Bayesian inference. In the literature, different routes have

been proposed for dealing with the label switching (see Frühwirth-Schnatter (2006) for a

review). One of the most efficient approach is the permutation sampler (see Frühwirth-

Schnatter (2001)), which can be applied under the assumption of exchangeability of the

posterior distribution. This assumption satisfied when assuming symmetric prior on the

transition probabilities of the switching process. As an alternative one could impose

some identification constrains on the parameters. This practice is largely diffused in

macroeconomics and is related to the natural interpretation of the different regimes as

the different phases (e.g. recession and expansion) of the business cycle. In this work we

follow this approach and include the constrains

γij1 < γij2 < . . . < γijM

j = 1, . . . ,K and i = 1, . . . , N , that corresponds to a total ordering, across the different

regimes, of the constant terms in the equations of the system.

For the rows pi,j., j = 1, . . . ,M , of the transition probability matrix we assume the

independent Dirichlet distributions

pi,j. ∼ D(di,1, . . . , di,M ) (7)
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with di,j = di.

3.2 Hierarchical Prior

As an alternative to the independent prior assumption, a hierarchical priors could be used

as in Canova and Ciccarelli (2006). This prior specification strategy allows to model

dependence between the cross-sectional units through common latent variables. We will

not consider hierarchical priors in our applications and briefly describe here a possible

specification for further extensions of our work

γi0 ∼ NK0(Riγ̄0,Σi0) (8)

γ̄0 ∼ NK0(γ0
,Σ0) (9)

γim ∼ NKm(γ̄m,Σim), m = 1, . . . ,M (10)

γ̄m ∼ NKm(γm
,Σm), m = 1, . . . ,M (11)

i = 1, . . . , N , where Ri = IK . We assume independence across units, that is:

Cov(γi0,γj0|γ̄0) = OKm×Km and Cov(γim,γjm|γ̄m) = 0, for i ̸= j. For the inverse

covariance matrix Σ−1
im we assume the Wishart priors

Σ−1
im ∼ WK(νim/2, Ῡim/2), m = 1, . . . ,M (12)

Ῡ−1
m ∼ WK(νm/2,Υm/2), m = 1, . . . ,M (13)

i = 1, . . . , N , that allow us to maintain the assumption of regime-specific degrees of freedom

νim and precision Υim parameters. We assume Cov(Σ−1
im ,Σ−1

im |Ῡ−1
m ) = OK2

m×K2
m
.

Modeling dependence between the chains is a difficult issues to deal with. The

hierarchical prior specification allow us to introduce dependence between the unit-specific

Markov-chains. In a hierarchical prior setting there are many ways to introduce dependence.

With the above given specification of the coefficients γim it is possible to have dependence

between the different regimes. Another way to introduce dependence is through a

hierarchical prior for the transition matrices. In particular for the i-th unit, the rows

pi,j., j = 1, . . . ,M , of the transition probability matrix we assume

pi,j. ∼ D(di,1, . . . , di,M ) (14)

with di,j = d, that are conditionally independent and symmetric Dirichlet distributions. We

assume d ∼ Be(1/2, 1/2).

3.3 Gibbs sampler

We extend the Gibbs sampler of Krolzig (1997) and Frühwirth-Schnatter (2006) to our

PMS-VAR model with the informative priors given in the previous sections. Under both

the independent and hierarchical prior settings the full conditional posterior distributions
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of the equation-specific blocks of parameters are independent. Thus the Gibbs sampler

can be iterated over different blocks of parameters avoiding the computational difficulties

associated with the inversions of large covariance matrices. We give the full conditional

distributions of the parameters in Eq. 2. We apply a further blocking step. We follow the

Markov-switching regression framework in Frühwirth-Schnatter (2006) and separate the

unit-specific parameters into two different blocks: the regime-independent parameters and

the regime-specific parameters.

The likelihood function associated to the PMS-VAR model is

p(y|Ξ,γ,Σ) = (2π)−
TKN

2

T∏
t=1

|Σt|−
1
2 exp

{
−1

2

T∑
t=1

u′
tΣ

−1
t ut

}
(15)

where y′ = (y′
11, . . . ,y

′
N1, . . . ,y

′
1T , . . . ,y

′
NT ), Ξ = (ξ11, . . . , ξN1, . . . , ξ1T , . . . , ξNT ) and

ut = yt− ((1, ξ′1t, . . . , ξ
′
Nt)⊗ INK)Xtγ. Under the independence assumption, the likelihood

factorises as

N∏
i=1

p(yi|Ξi,γi,Σi) =
N∏
i=1

(2π)−
TK
2

T∏
t=1

|Σit|−
1
2 exp

{
−1

2

T∑
t=1

u′
itΣ

−1
it uit

}
(16)

where y′
i = (y′

i1, . . . ,y
′
iT ), Ξi = (ξi1, . . . , ξiT ), γ

′
i = (γ ′

i1, . . . ,γ
′
iM ), uit = yit − ((1, ξ′it) ⊗

IK)Xitγi and

Xit =


Xi0t Xi1t 0
...

. . .

Xi0t 0 XiMt


Let us introduce the auxiliary variables yi0t = yit − ξi1tXi1tγi1 + . . . +

ξiMtXiMtγiM and the notation γi(−m) = (γi1, . . . ,γim−1,γim+1, . . . ,γiM ) and Σi(−m) =

(Σi1, . . . ,Σim−1,Σim+1, . . . ,ΣiM ).

Then the full conditional distribution of the regime-independent parameter γi0 is a

normal with density function

f(γi0|yi,Ξi,γi,Σi) ∝ (17)

∝ exp

{
−1

2

N∑
i=1

T∑
t=1

(yi0t − γi0)
′Σ−1

it (yi0t − γi0)−
1

2
(γi0 − γ

i0
)′Σ−1

i0 (γi0 − γ
i0
)

}

∝ exp

{
−1

2
γ ′
i0

(
T∑
t=1

X ′
i0tΣ

−1
it Xi0t +Σ−1

i0

)
γi0 + γi0

(
T∑
t=1

X ′
i0tΣ

−1
it yi0t +Σ−1

i0 γ
i0

)}
∝ NK0(γ̄i0, Σ̄i0)

where γ̄i0 = Σ̄−1
i0 (Σ−1

i0 γ
i0
+
∑T

t=1X
′
i0tΣ

−1
it Xi0t) and Σ̄−1

i0 = (Σ−1
i0 +

∑T
t=1X

′
i0tΣ

−1
it Xi0t).

The full conditional distributions of the regime-dependent parameters γim, with m =
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1, . . . ,M are normal with density function

f(γim|yi,Ξi,γi0,γi(−m),Σ) ∝ (18)

∝ exp

−1

2

∑
t∈Tim

u′
itΣtuit −

1

2
(γim − γ

im
)′Σ−1

im(γim − γ
im
)


∝ exp

−1

2
γ ′
i

∑
t∈Tim

X ′
imtΣ

−1
it Ximt +Σ−1

im

γi + γ ′
i

∑
t∈Tim

X ′
imtΣ

−1
it yimt +Σ−1

imγ
im


∝ NKm(γ̄im, Σ̄im) (19)

with γ̄im = Σ̄−1
im(Σ−1

imγ
im

+
∑

∈Tim X ′
imtΣ

−1
it Ximt) and Σ̄−1

im = (Σ−1
im +

∑
∈Tim X ′

imtΣ
−1
it Ximt),

where we defined Tim = {t = 1, . . . , T |ξimt = 1} and yimt = yit −Xi0tγi0.

The full conditional distributions of the regime-dependent inverse variance-covariance

matrix Σim, with m = 1, . . . ,M are Wishart distributions with density

f(Σim|yi,Ξi,γi0,γi,Σi(−m)) ∝ (20)

∝
T∏
t=1

|Σit|−
1
2 exp

−1

2

∑
t∈Tim

u′
itΣ

−1
it uit

 |Σ−1
im |

νim+K+1

2 exp

{
−1

2
tr
(
ΥimΣ−1

im

)}

∝ |Σ−1
im |

νim+Tim+K+1

2 exp

−1

2
tr

Υim +
∑
t∈Tim

uimtu
′
imt

Σ−1
im


∝ WK(ν̄im/2, Ῡim/2) (21)

where Tim =
∑T

t=1 I(ξimt = 1), uimt = yit − Xi0tγi0 − Ximtγim, ν̄im = νi + T and

Ῡim = Υim +
∑

t∈Tim uimtu
′
imt. The full conditional distribution of the k-th row of the

transition matrix is

f(pi,k.|yi,Ξi,γi0,γi) ∝
M∏
j=1

p
dj
i,kj

T∏
t=1

M∏
j=1

p
ξijtξikt
i,kj (22)

∝ D(d1 +Ni,k1, . . . , dM +Ni,kM )

where

Ni,kj =

T∑
t=1

I(si,t = j)I(si,t−1 = k)

counts the number of transitions of the i-th chain from the k-th to the j-th state.

In Krolzig (1997) the multi-move Gibbs sampler (see Carter and Kohn (1994) and

Shephard (1994)) is presented for Markov-switching vector autoregressive models as an

alternative to the single-move Gibbs sampler given, for example, in Albert and Chib (1993).

The multi-move procedure, also known as forward-filtering backward sampling (FFBS)

algorithm, is particularly useful in our context because the Gibbs sampler makes use of

two relevant quantities, the filtering and the smoothing probabilities, that can be used for
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turning point analysis.

The filtering probability at time t, t = 1, . . . , T , is determined by iterating the prediction

step

p(ξt = ιj |y1:t−1) =

m∑
i=1

p(ξt = ιj |ξt−1 = ιi)p(ξt−1 = ιi|y1:t−1) (23)

and the updating step

p(ξt|y1:t) ∝ p(ξt|y1:t−1)p(yt|yt−1−p:t−1, ξt) (24)

where p(ξt = ιj |ξt−1 = ιi) = pij , with ιm the m-th column of the identity matrix and

p(yt|yt−p−1:t−1, ξt) the conditional distribution of the variable yt from a MSIH(m)-AR(p).

We shall notice that the prediction step can be used at time t to find the predictive

density of ξt+1

p(ξt+1|y1:t) ∝ P ′ p(ξt|y1:t) (25)

and the one of yt+1

p(yt+1|y1:t) =
m∑
i=1

p(ξt+1 = ιi|y1:t)p(yt+1|yt+1−p:t, ξt+1) (26)

which, for a Gaussian MS-AR process, is a discrete mixture of normal distributions.

The smoothing probabilities given by

p(ξt = ιj |y1:T ) ∝
m∑
i=1

p(ξt = ιj |ξt+1 = ιi,y1:t)p(ξt+1 = ιi|y1:T ) (27)

are evaluated recursively and backward in time for t = T, T − 1, . . . , 1. These quantities

are the posterior probabilities of the observation yt to be in one of the m regimes at time t,

given all the information available from the full sample of data. The conditional distribution

p(ξt|ξt+1,y1:t), that is the building block of the smoothing probability formula, is used in

the FFBS algorithm to sample the allocation variables from their joint posterior distribution

sequentially and backward in time for t = T, T − 1, . . . , 1. See Frühwirth-Schnatter (2006),

ch. 11-13, for further details.

As discussed in previous sections, when using data-dependent priors the generation of

the allocation variables should omit draws that yield to impropriety of the posterior. In

our prior settings, the set of non-troublesome grouping is S = Sν ∩ Sσ = Sσ. Thus, each

time the set of allocation variables ξ1:T , does not assign at least two observations to each

component of the dynamic mixture, the entire set ξ1:T , is rejected and a new set is drawn

until a proper set is obtained.

The smoothing probabilities are usually employed also to detect the turning points. In

this paper, we will not consider the cycle generated by the smoothing probabilities and

instead applied a non-parametric approach (see the next section) to extract the turning

points from the forecasting values of yt+h.
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3.4 Regime Probability Combination

Let ∆[0,1]M be the standard simplex and ηi,t ∈ ∆[0,1]M , i = 1, . . . , N and t = 1, . . . , T , be

a sequence M -dim vectors of smoothing (or predictive) probabilities for the M different

regimes of the N unit-specific Markov-chains used in the PMS-VAR model. These

probabilities reveal information on the dynamics of the endogenous variables both at the

unit-specific and aggregated levels. We propose a method to summarize the information

contents of the different units. We combine the smoothing (or predictive) probabilities and

get a new probability vector sequence, ηt ∈ ∆[0,1]M , t = 1, . . . , T . We define a general

aggregation scheme as a map ϕ : ∆N
[0,1]M

7→ ∆[0,1]M

ηt = ϕ(η1,t, . . . ,ηN,t) (28)

such that ηt ∈ ∆[0,1]M , that is ηt can be interpreted as a probability.

We consider here two alternative aggregation schemes:

• Equal weights

Let

ŝi,t = argmax
k∈{1,...,M}

{ηi1,t, . . . , ηiM,t}

the MAP estimate of the unit-specific regime at time t. A simple aggregation method

is

ηkt =
1

N

N∑
i=1

δk(ŝi,t) (29)

k = 1, . . . ,M , where we assigned equal weights to the unit-specific regime probabilies.

When k = 1 we get a measure of the proportion of countries which are in a ”‘strong

recession”’ regime.

• Unit-specific weights

Let ŝi,t as above, then we define the second combination scheme

ηkt =
N∑
i=1

ωitδk(ŝi,t) (30)

where, in order to have a properly defined vector of probability, we assume

(ω1t, . . . , ωNt)
′ ∈ ∆[0,1]N . The unit-specific weight ωit, can be driven, for example,

by the relative IPI growth rate or IPI size of the i-th unit in the sample with respect

to the other units.
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Figure 1: Top: log-change in percent (top chart) of the EMU area Industrial Production
Indexes (IPI). Middle: term spread (TS), that is the difference between 3-month and 10-
year interest rates. All variables are at a monthly frequency for the period: January 1960
to December 2010. Black lines: average value of the variable across countries. Gray lines:
maximum and minimum values across countries. Bottom: square of the IPI log-change
series.

4 Business Cycle Analysis

4.1 Data Description

As dependent variables in our PMS-VAR model we consider for yi1,t the Industrial

Production Index (IPI) and for yi2,t the short term (3 months) and long term (10 years)

interest rate differentials, for the EMU area. All data are from the Eurostat and OECD

databases and are sampled at a monthly frequency, from January 1960 to December

2010. As our aim is to analyse the individual contribution of the EMU countries to

the fluctuations of the EMU area business cycle, we do not consider the variables at the

Euro zone level, but at a country level. More specifically we consider IPI and interest

rates for 12 countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,

Luxembourg, Netherlands, Portugal and Spain. Data for the EMU countries are seasonally

adjusted and working day adjusted. The data are available with different sample sizes for

12



Begin dates of the series

Country IPI 3m-IR 10y-IR

Austria 1960M01 1989M06 1990M01
Belgium 1960M01 1960M01 1960M01
Finland 1960M01 1987M01 1988M01
France 1960M01 1970M01 1960M01
Germany 1960M01 1960M01 1960M01
Greece 1962M01 1997M06 2001M01
Ireland 1975M07 1984M01 1970M12
Italy 1960M01 1978M10 1991M03
Luxembourg 1960M01 1999M01 1993M10
Netherlands 1960M01 1986M01 1960M01
Portugal 1960M01 1992M01 1993M07
Spain 1965M01 1977M01 1980M01

Table 1: Begin date for the series of the Industrial Production Index (IPI) and of the 3-
months (3m-IR) and 10-years (10y-IR) interest rates in 12 countries of the EMU. The end
date for all of the series is December, 2010.

the EMU countries (see Tab. 1). The problem of sample with different sizes has been

handled in a Bayesian setting, through a suitable specification of the prior distribution (see

Section 3). Moreover, since Phillips-Perron and Dickey-Fuller stationarity tests point out

the non-stationarity of the IPI, we considered in our analysis the log-changes of the IPI

index.

Another aim of the analysis is to capture the shock transmission mechanism from the

financial sector to the real one. We consider, as a source of financial shocks, the spread

between long and short interest rates. For the EMU countries, interest rate data are

available with different sample sizes (see Tab. 1). As a source of global shocks for the

EMU area we consider log-changes in the oil West Texas Index (WTI) of spot prices, that

is available from the Bloomberg database, from January 1961.

We apply the proposed PMS-VAR model to IPI grow rate and term spread series (upper

and mid charts in Fig. 1). The presence of time-varying volatility and volatility clustering

(bottom chart in Fig. 1) suggests that the model should account for different regimes in

the volatility level.

4.2 Parameter Estimates

The posterior distributions of the PMS-VAR model parameters are approximated through

a kernel density estimator applied to a sample of 1,000 random draws from the posterior. In

order to generate 1,000 i.i.d. samples from the posterior, we run the Gibbs sampler, given

in Section 3, for 110,000 iterations, discard the first 10,000 draws to avoid dependence from

the initial condition, and finally apply a thinning procedure with a factor of 100 samples, to

reduce the dependence between consecutive Markov-chain draws. As regards to the number

of iterations, we should say that the choice of the initial sample size and the convergence

13



detection of the Gibbs sampler remain open issues (see Robert and Casella (1999)). In

our application we choose the sample size on the basis of both a graphical inspection of

the MCMC progressive averages and the application of the convergence diagnostic (CD)

statistics proposed in Geweke (1992). We let n = 110, 000 be the MCMC sample size

and n1 = 10, 000, and n2 = 30, 000 the sizes of two non-overlapping sub-samples. For a

parameter θ of interest, we let

θ̂1 =
1

n1

n1∑
j=1

θ(j), θ̂2 =
1

n2

n∑
j=n+1−n2

θ(j)

be the MCMC sample means and σ̂2
i their variances estimated with the non-parametric

estimator

σ̂2
i

ni
= Γ̂(0) +

2ni

ni − 1

hi∑
j=1

K(j/hi)Γ̂(j),

Γ̂(j) =
1

ni

ni∑
k=j+1

(θ(k) − θ̂i)(θ
(k−j) − θ̂i)

′

where we choose K(x) to be the Parzen kernel (see Kim and Nelson (1999)) and h1 = 100

and h2 = 500 the bandwidths. Then the following statistics

CD =
θ̂1 − θ̂2√

σ̂2
1/n1 + σ̂2

2/n2

(31)

converges in distribution to a standard normal (see Geweke (1992)), under the null

hypothesis that the MCMC chain has converged.

Figures 2 and 3 show the approximated posterior distributions of the parameters

γim = (ai1,m, ai2,m)′, (σi 11,m) and (σi 22,m), m = 1, . . . ,M and i = 1, . . . , N , that

represent the value of the unit- and variable-specific time-varying intercepts and volatilities

of the PMS-VAR model. The posterior mean and the credibility region of the parameters

γim = (ai1,m, ai2,m)′ and Σim = (σi kj,m)k<j , are given in Tab. 2-4.

As regards to the intercept posterior ((see first column of Fig. 2)), there are at least

two groups of countries. The first one is Belgium, France and Germany, with intercept

parameters, ai1,m, for the IPI growth rate, that do not differ to much across the regimes,

m = 1, 2, 3, (see coloured lines within each chart in Fig. 2). From Tab. 2 the average

intercept values are -0.17, -0.27 and 0.2 for the first, second and third regime, respectively.

The rage of variation of the intercept parameters, ai1,m, of the remaining group of countries,

that are Austria, Finland, Greece, Ireland, Italy, Luxembourg, Netherland, Portugal and

Spain, differ substantially across the regimes, in terms of location and shape. The average

intercept values are -3.635, -0.57 and 3.365 in the first, second and third regime, respectively.

Within the second group, Austria, Portugal and Spain have similar intercept posteriors, in

terms of location and dispersion, across the first (strong recession) and the second regime

14
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Figure 2: Posterior distribution of the Markov-switching intercepts, γim = (ai1,m, ai2,m)′,
i = 1, . . . , N , m = 1, . . . ,M for IPI growth rate (left column) and TS (right column).
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Figure 3: Posterior distribution of the square root of the diagonal elements, σi kj,m,
k, j = 1, . . . ,K, with k = j, of the Markov-switching covariance matrices, Σim, i = 1, . . . , N
and m = 1, . . . ,M , for IPI (left column) and TS (right column).
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Regime 1
Country i ai1,1 ai2,1 σi 11,1 σi 22,1 σi 12,1

AU 1 -2.0242 0.8453 1.526 1.4309 0.0283
(-4.68,-.19) (-3.61,5.64) (.9,2.51) (.87,2.37) (-4.13,3.46)

BE 2 -0.1438 0.0127 5.213 1.1209 -0.5786
(-.39,-.01) (-.54,.58) (4.52,6.08) (.89,1.41) (-1.82,.64)

FI 3 -3.5669 0.1015 3.5118 1.3203 -0.331
(-8.93,-.24) (-1.68,2.13) (1.41,5.64) (.78,2.11) (-4.14,3.46)

FR 4 -0.2063 -0.0703 1.601 1.0404 -0.0537
(-.53,-.01) (-.89,.66) (1.3,1.97) (.74,1.43) (-.71,.61)

GE 5 -0.1704 0.046 2.9743 1.0345 -0.253
(-.41,-.01) (-.7,.81) (2.27,3.64) (.75,1.42) (-1.23,.67)

GR 6 -4.1517 1.013 1.5835 1.4095 -0.0286
(-7.24,-1.24) (-1.77,3.79) (.92,2.65) (.85,2.31) (-4.05,4.12)

IR 7 -0.2211 0.0583 5.4996 1.008 -0.0973
(-.62,-.02) (-.64,.78) (5.,6.08) (.74,1.33) (-1.08,.9)

IT 8 -3.6763 0.2934 1.7706 1.3322 -0.1696
(-6.33,-1.1) (-2.07,2.67) (1.14,2.66) (.83,2.1) (-3.14,2.4)

LU 9 -9.1082 0.277 1.9724 1.2999 0.0593
(-12.43,-5.56) (-2.46,2.99) (1.1,3.36) (.84,2.02) (-5.56,5.72)

NE 10 -4.6717 0.6634 1.5039 1.463 0.0532
(-9.52,-.67) (-3.75,5.21) (.9,2.51) (.87,2.37) (-4.45,5.02)

PO 11 -4.7046 0.6718 1.7238 1.3152 -0.2942
(-8.14,-1.42) (-1.89,3.28) (1.02,2.98) (.83,2.07) (-4.33,3.35)

SP 12 -0.5913 -0.0935 2.7753 1.1279 -0.2135
(-1.32,-.05) (-.87,.65) (2.33,3.28) (.82,1.52) (-1.2,.8)

Table 2: Posterior mean and credible intervals (in parenthesis) for the parameters, γim =
(ai1,m, ai2,m)′ and Σim = (σi jk,m)j<k, m = 1 (first regime) and i = 1, . . . , N , which are
driven by the Markov-switching processes. The estimates are obtained with 1,000 draws,
that are the result of 110,000 iterations of the Gibbs sampler, of a burn-in period of 10,000
draws and a thinning procedure with a thinning factor of 100 samples.

(moderate growth or recession). The posterior distribution of the unit- and variable-specific

volatilities (see first column of Fig. 3 in the different regimes (different line within the same

chart) are quite different across regimes. Belgium, Finland, Germany, Ireland and Spain

exhibit a high volatility (red lines) associated with the first regime (recession) with respect

to the volatility of the moderate recession/growth (green line) and expansion regimes. The

posterior distribution of the volatilities of the first and second regime are quite similar, for

Austria and Portugal, while for Belgium and Ireland, the volatilities in the second and third

regime are similar. For Italy all of the three regimes exhibit similar volatility features.

4.3 Turning Points

The PMS-VAR model allows us to study the business cycles fluctuations of each country in

the panel, to analyse the transmission of shocks across cycles and predict the turning points

of the country-specific cycles. The red lines in Fig. 4 present the country-specific cycles in

terms of a 3-regime Markov-chain. The regimes are: strong recession, si,t = 1, moderate
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Regime 2
Country i ai1,2 ai2,2 σi 11,2 σi 22,2 σi 12,2

AU 1 -3.5019 0.8714 1.5161 1.4219 -0.0547
(-6.79,-1.04) (-3.12,5.81) (.92,2.49) (.87,2.35) (-4.14,3.3)

BE 2 -0.2779 0.0924 2.1663 0.5164 -0.0333
(-.57,-.06) (-.4,.61) (1.93,2.43) (.39,.71) (-.34,.25)

FI 3 0.0649 0.1184 2.2306 0.7454 -0.0026
(-.6,.77) (-.45,.73) (1.97,2.54) (.55,1.01) (-.35,.3)

FR 4 -0.2968 0.0977 1.2154 0.578 -0.0166
(-.6,-.05) (-.24,.46) (1.11,1.33) (.46,.72) (-.15,.11)

GE 5 -0.2357 0.0503 1.4882 0.5187 0.0129
(-.46,-.05) (-.3,.38) (1.37,1.62) (.4,.65) (-.14,.15)

GR 6 0.112 0.0451 2.2352 1.2036 -0.0777
(-.73,.98) (-.74,.85) (1.88,2.63) (.87,1.57) (-.84,.72)

IR 7 0.9287 1.3359 1.617 1.4704 -0.0663
(-4.19,6.17) (-2.99,5.87) (.91,2.69) (.88,2.41) (-5.51,4.91)

IT 8 -0.0771 0.0687 1.4874 0.7886 0.0347
(-.62,.46) (-.48,.59) (1.32,1.68) (.58,1.03) (-.25,.31)

LU 9 -0.226 0.0602 3.2394 0.9625 0.0592
(-.95,.46) (-.61,.71) (2.9,3.59) (.68,1.27) (-.56,.67)

NE 10 0.1114 0.0366 2.5878 0.6758 -0.0144
(-.3,.52) (-.38,.45) (2.4,2.78) (.5,.89) (-.27,.25)

PO 11 -2.6537 0.9577 1.662 1.431 -0.1303
(-7.89,2.81) (-2.8,4.86) (.96,2.71) (.88,2.33) (-4.7,4.56)

SP 12 0.1082 0.0542 1.5429 0.6671 0.0041
(-.31,.51) (-.34,.47) (1.36,1.73) (.52,.85) (-.2,.21)

Table 3: Posterior mean and credible intervals (in parenthesis) for the parameters, γim =
(ai1,m, ai2,m)′ and Σim = (σi jk,m)j<k, m = 2 (second regime) and i = 1, . . . , N , which are
driven by the Markov-switching processes. The estimates are obtained with 1,000 draws,
that are the result of 110,000 iterations of the Gibbs sampler, of a burn-in period of 10,000
draws and a thinning procedure with a thinning factor of 100 samples.

recession or moderate expansion, si,t = 2, and strong expansion, si,t = 3). The smoothed

probabilities of the three regimes, p̃i,t = P(s̃i,t = 1|y1:T ), for i = 1, . . . , N are given in

Figures from 6 to 8. We observe that the regimes are often highly persistent, excluding few

cases at the end of 80’s and beginning of 90’s where few recessions were estimated with very

short life, see e.g. Finland and Ireland. On average, regime 2 is the most probable as we

could anticipate since its definition can fit both light recession and expansion periods. The

70’s and beginning of 80’s are the most volatile, with several periods of strong recessions,

but also strong expansion. The great moderation and the great financial crisis in 2008-2009

are also evident. The exception is Ireland which is estimated to be in regime 1 from the

end of 90’s. The Irish economy had experienced substantial changes from the 90’s switching

from farms and light industries to services. Our model suggests that the Irish economy was

underperforming conditional to the low term spread.

In order to have a measure of the contagion of the recession within the EMU area

we apply the combination methods given in Eq. 29 and 30. Both measures in Figure 5

indicate that the great financial crisis was the period with longer and stronger recession
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Regime 3
Country i ai1,3 ai2,3 σi 11,3 σi 22,3 σi 12,3

AU 1 0.3668 0.0344 1.8541 0.7307 -0.027
(.04,.84) (-.4,.51) (1.7,2.02) (.52,.97) (-.29,.24)

BE 2 0.1099 0.0857 2.1417 0.5782 -0.0143
(.01,.29) (-.25,.42) (1.98,2.32) (.46,.72) (-.18,.15)

FI 3 2.0781 0.0295 3.2925 1.4981 0.273
(1.03,5.88) (-1.37,1.68) (1.4,4.8) (1.05,2.09) (-2.82,3.28)

FR 4 0.2657 0.1885 1.7246 0.8334 -0.04
(.01,1.01) (-.39,.83) (1.5,2.) (.65,1.08) (-.42,.36)

GE 5 0.223 0.1074 1.9156 0.6455 0.04
(.01,.64) (-.35,.57) (1.7,2.21) (.52,.8) (-.17,.26)

GR 6 3.7886 0.8778 1.6864 1.5113 -0.0768
(1.32,7.34) (-2.63,5.09) (.95,2.83) (.9,2.5) (-4.35,4.01)

IR 7 7.3548 1.4607 1.4935 1.496 -0.1523
(2.64,12.55) (-3.31,6.23) (.88,2.47) (.89,2.45) (-4.27,4.65)

IT 8 2.9927 1.2244 1.5941 1.5433 0.1307
(1.1,6.68) (-2.28,5.32) (.93,2.61) (.91,2.5) (-4.36,4.66)

LU 9 5.4322 0.9447 1.6577 1.4504 -0.0798
(1.77,10.01) (-3.63,5.71) (.91,2.99) (.89,2.39) (-5.3,4.91)

NE 10 4.3871 0.9305 1.5606 1.4971 0.2215
(1.3,8.4) (-3.86,6.11) (.88,2.71) (.89,2.53) (-4.19,4.55)

PO 11 0.8666 0.0554 2.5702 0.8614 -0.0181
(.17,1.37) (-.46,.59) (2.34,2.82) (.64,1.11) (-.42,.37)

SP 12 3.0198 0.508 1.5576 1.4046 0.1818
(1.09,6.61) (-2.89,4.2) (.94,2.6) (.86,2.37) (-3.18,3.45)

Table 4: Posterior mean and credible intervals (in parenthesis) for the parameters, γim =
(ai1,m, ai2,m)′ and Σim = (σi jk,m)j<k, m = 3 (third regime) and i = 1, . . . , N , which are
driven by the Markov-switching processes. The estimates are obtained with 1,000 draws,
that are the result of 110,000 iterations of the Gibbs sampler, of a burn-in period of 10,000
draws and a thinning procedure with a thinning factor of 100 samples.

period. However, the equal weight averages shows that not all countries were in the deepest

point at the same time, calling for an analysis which allow for the possibility of leading

and lagging countries. The weighted average is close to 1 in several periods and it is 1 for

several consecutive months during the first and second oil shock in the 70’s, the end of 80’s

and the great financial crisis. The latter index is, however, highly volatile with some very

short living false signals.

5 Conclusion

We propose a new Bayesian panel VAR model with unit-specific Markov-switching latent

factors. We discuss the choice of the prior with particular attention to the case that some

variable are missing. We apply the resulting panel MS-VAR model and the simulation-based

Bayesian inference procedure to the analysis of the contributions of the EMU countries to

the fluctuations of the EMU business cycle. We extract the turning points of the the unit-

specific business cycle and propose an aggregation technique for the reconstruction of the

19



1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

AU

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

BE

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

FI

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

FR

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

G
E

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

G
R

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

IR

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

IT

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

LU

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

N
E

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

PO

 

 

IPI
TS
MS

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12
−9

9

SP

 

 

IPI
TS
MS

Figure 4: Country-specific endogenous variables: industrial production growth rate (IPI)
and term structure (TS); and Markov-switching (MS) processes si,t, i = 1, . . . , N and
t = 1, . . . , T .

20



1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12

0

1

η t

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12

0

0.5

1

η t

1960M08 1969M04 1977M08 1985M12 1994M04 2002M08 2010M12

0

0.5

1

η t

Figure 5: Smoothed probability (top) of being in the recession regime (regime 1) for the
Markov-switching processes si,t, i = 1, . . . , N and t = 1, . . . , T . Proportion (middle) and
weighted proportion (bottom) of countries in a ”‘strong recession”’ regime.

EMU turning points.

6 Appendix A
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Figure 7: Second regime (moderate expansion) smoothed probabilities for the Markov-
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Figure 8: Third regime (strong expansion) smoothed probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T .
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