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Abstract

In this paper, we develop methods for estimation and forecasting in large time-varying

parameter vector autoregressive models (TVP-VARs). To overcome computational con-

straints, we draw on ideas from the dynamic model averaging literature which achieve

reductions in the computational burden through the use forgetting factors. We then ex-

tend the TVP-VAR so that its dimension can change over time. For instance, we can have

a large TVP-VAR as the forecasting model at some points in time, but a smaller TVP-VAR

at others. A �nal extension lies in the development of a new method for estimating, in a

time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large

VARs. These extensions are operationalized through the use of forgetting factor methods

and are, thus, computationally simple. An empirical application involving forecasting in-

�ation, real output and interest rates demonstrates the feasibility and usefulness of our

approach.

Keywords: Bayesian VAR; forecasting; time-varying coe¢ cients; state-space model

JEL Classi�cation: C11, C52, E27, E37

Acknowledgements: The authors are Fellows of the Rimini Centre for Economic Analysis.

We would like to thank the Economic and Social Research Council for �nancial support under

Grant RES-062-23-2646.

1



1 Introduction

Many recent papers (see, among many others, Banbura, Giannone and Reichlin, 2010; Carriero,

Clark and Marcellino, 2011; Carriero, Kapetanios and Marcellino, 2009; Giannone, Lenza,

Momferatou and Onorante, 2010; Koop, 2011) have found large VARs, which have dozens

or even hundreds of dependent variables, to forecast well. In this literature, the researcher

typically works with a single large VAR and assumes it is homoskedastic and its coe¢ cients

are constant over time. In contrast to the large VAR literature, with smaller VARs there

has been much interest in extending traditional (constant coe¢ cient, homoskedastic) VARs

in two directions. First, researchers often �nd it empirically necessary to allow for parameter

change. That is, it is common to work with time-varying parameter VARs (TVP-VARs) where

the VAR coe¢ cients evolve over time and multivariate stochastic volatility is present (see,

among many others, Cogley and Sargent, 2005, Cogley, Morozov and Sargent, 2005, Primiceri,

2005 and Koop, Leon-Gonzalez and Strachan, 2009). Second, there also may be a need for

model change: to allow for switches between di¤erent restricted TVP models so as to mitigate

over-parametrization worries which can arise with parameter-rich unrestricted TVP-VARs (e.g.

Chan, Koop, Leon-Gonzalez and Strachan, 2012). The question arises as to whether these two

sorts of extensions can be done with large TVP-VARs. This paper attempts to address this

question.

Unfortunately, existing TVP-VAR methods used with small dimensional models cannot

easily be scaled up to handle large TVP-VARs with heteroskedastic errors. The main reason

this is so is computation. With constant coe¢ cient VARs, variants of the Minnesota prior

are typically used. With this prior, the posterior and predictive densities have analytical

forms and MCMC methods are not required. With TVP-VARs MCMC methods are required

to do exact Bayesian inference. Even the small (trivariate) TVP-VAR recursive forecasting

exercises of D�Agostino, Gambetti and Giannone (2011) and Korobilis (2012) were hugely

computationally demanding. Large TVP-VARs are typically, in practice, computationally

infeasible using MCMC methods.

A �rst contribution of this paper is to develop approximate estimation methods for large
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TVP-VARs which do not involve the use of MCMC methods and are computationally feasible.

To do this, we use forgetting factors. Forgetting factors (also known as discount factors), which

have long been used with state space models (see, e.g., Raftery, Karny and Ettler, 2010, and

the discussion and citations therein), do not require the use of MCMC methods and have been

found to have desirable properties in many contexts (e.g. Dangl and Halling, 2012). Most

authors simply set the forgetting factors to a constant, but we develop methods for estimating

forgetting factors in a time-varying way following an approach outlined in Park, Jun and Kim

(1991). This allows for the degree of variation of the VAR coe¢ cients to be estimated from

the data (without the need for MCMC).

A second contribution of this paper is to contribute to the growing literature on estimat-

ing the prior hyperparameter(s) which control shrinkage in large Bayesian VARs (see, e.g.,

Giannone, Lenza and Primiceri, 2012). Our approach di¤ers from the existing literature in

treating di¤erent priors (i.e. di¤erent values for the shrinkage parameter) as de�ning di¤erent

models and using dynamic model selection (DMS) methods with a forgetting factor to select

the optimal value of the shrinkage parameter at di¤erent points in time. We develop a simple

recursive updating scheme for the time-varying shrinkage parameter which is computationally

simple to implement.

A third contribution of this paper is to develop econometric methods for doing model

selection using a model space involving the large TVP-VAR and various restricted versions of

it. We de�ne small (trivariate), medium (seven variable) and large (25 variable) TVP-VARs

and develop methods for time-varying model selection over this set of models. Interest centers

on forecasting the variables in the small VAR and DMS is done using the predictive densities

for these variables (which are common to all the models). To be precise, the algorithm selects

between small, medium and large TVP-VARs based on past predictive likelihoods for the set of

variables the researcher is interested in forecasting. A potentially important advantage is that

this allows for model switching. For instance, with DMS, the algorithm might select the large

TVP-VAR as the forecasting model at some points in time, but at other points it might switch

to a small or medium TVP-VAR, etc. Such model switching cannot be done in conventional
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approaches and has been found to be useful in univariate regression applications (e.g. Koop

and Korobilis, 2011). Its incorporation has the potential to be useful in improving the forecast

performance of TVP-VARs of di¤erent dimensions and to provide information on which model

forecasts best (and when it does so).

These methods are used in an empirical application involving a standard large US quarterly

macroeconomic data set, with a focus on forecasting in�ation, real output and interest rates.

Our empirical results are encouraging and demonstrate the feasibility and usefulness of our

approach. Relative to conventional VAR and TVP-VAR methods, our results highlight the

importance of allowing for the dimension of the TVP�VAR to change over time and allowing

for stochastic volatility in the errors.

2 Large TVP-VARs

2.1 Overview

In this section we describe our approach to estimating a single TVP-VAR using forgetting

factors. We write the TVP-VAR as:

yt = Zt�t + "t,

and

�t+1 = �t + ut; (1)

where "t is i.i.d. N (0;�t) and ut is i.i.d. N (0; Qt). "t and us are independent of one another

for all s and t. yt for t = 1; ::; T is an M � 1 vector containing observations on M time series

variables and

Zt =

0BBBBBBB@

z0t 0 � � � 0

0 z0t
. . .

...
...

. . . . . . 0

0 � � � 0 z0t

1CCCCCCCA
;
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where Zt is M �k. zt is a vector containing an intercept and p lags of each of the M variables.

Thus, k =M (1 + pM).

Once the researcher has selected a speci�cation for �t and Qt; a prior for the initial condi-

tions (i.e. �0 and possibly �0 and Q0) and a prior for any remaining parameters of the model,

then Bayesian statistical inference can proceed in a straightforward fashion (see, for instance,

Koop and Korobilis, 2009 for a textbook-level treatment) using MCMC methods. The basic

idea underlying these methods are that standard methods for drawing from state space models

(i.e. involving the Kalman �lter) can be used for drawing �t for t = 1; ::; T (conditional on

�t; Qt and the remaining model parameters). Then �t for t = 1; ::; T (conditional on �t; Qt

and the remaining model parameters) can be drawn. Then Qt for t = 1; ::; T (conditional on

�t;�t and the remaining model parameters) can be drawn. Then any remaining parameters

are drawn (conditional on �t; Qt and �t).

This algorithm works well with small TVP-VARs, but can be computationally very de-

manding in larger VARs due to the fact that it is a posterior simulation algorithm. Typically,

tens of thousands of draws must be taken in order to ensure proper convergence of the al-

gorithm. And, in the context of a recursive forecasting exercise, the posterior simulation

algorithm must be run repeatedly on an expanding window of data. Even with constant coef-

�cient large VARs, Koop (2011) found the computational burden to be huge when posterior

simulation algorithms were used in the context of a recursive forecasting exercise. With large

TVP-VARs, the computational hurdle can simply be insurmountable.

In the next sub-section, we show how approximations using forgetting factors can be used

to greatly reduce the computational burden by allowing the researcher to avoid the use of

MCMC algorithms. The basic idea is to replace Qt and �t by estimates and, once this is done,

analytical formulae exist for the posterior (for �t) and the one-step ahead predictive density.

2.2 Estimation of TVP-VARs Using Forgetting Factors

Forgetting factor approaches were commonly used in the past, when computing power was

limited, to estimate state space models such as the TVP-VAR. See, for instance, Fagin (1964),
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Jazwinsky (1970) or West and Harrison (1997) for a discussion of forgetting factors in state

space models and, in the context of the TVP-VAR, see Doan, Litterman and Sims (1984).

Dangl and Halling (2012) is a more recent application which also uses a forgetting factor

approach. Here we explain outline the motivation for use of forgetting factor methods.

Let ys = (y1; ::; ys)
0 denote observations through time s. Bayesian inference for �t involves

the Kalman �lter, formulae for which can be found in many textbook sources and will not be

repeated here (see, e.g., Fruhwirth-Schnatter, 2006, Chapter 13). But key steps in Kalman

�ltering involve the result that

�t�1jyt�1 � N
�
�t�1jt�1;�t�1jt�1

�
(2)

where formulae for �t�1jt�1 and �t�1jt�1 are given in textbook sources. Kalman �ltering then

proceeds using:

�tjyt�1 � N
�
�tjt�1;�tjt�1

�
; (3)

where

�tjt�1 = �t�1jt�1 +Qt: (4)

This is the only place where Qt enters the Kalman �ltering formulae and, thus, if we replace

the preceding equation by:

�tjt�1 =
1

�
�t�1jt�1 (5)

there is no longer a need to estimate or simulate Qt. � is called a forgetting factor which is

restricted to the interval 0 < � � 1. A detailed discussion of and motivation for forgetting

factor approaches is given in places such as Jazwinsky (1970) and Raftery et al (2010). Equation

(5) implies that observations j periods in the past have weight �j in the �ltered estimate of

�t. Note also that (4) and (5) imply that Qt =
�
��1 � 1

�
�t�1jt�1 from which it can be seen
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that the constant coe¢ cient case arises if � = 1.

In papers such as Raftery et al (2010), � is simply set to a number slightly less than one.

For quarterly macroeconomic data, � = 0:99 implies observations �ve years ago receive approx-

imately 80% as much weight as last period�s observation. This leads to a fairly stable models

where coe¢ cient change is gradual and has properties similar to what Cogley and Sargent

(2005) call their �business as usual�prior. These authors use exact MCMC methods to esti-

mate their TVP-VAR. In order to ensure that the coe¢ cients �t vary gradually they use a tight

prior on their state covariance matrix Q which depends on a prior shrinkage coe¢ cient which

determines the prior mean. It can be shown that their choice for prior shrinkage coe¢ cient

allows for variation in coe¢ cients which is roughly similar to that allowed for by � = 0:99.1

A contribution of our paper is to investigate the use of forgetting factors in large TVP-

VARs. However, we go beyond most of the existing literature in two ways: we investigate

estimating � (as opposed to simply setting it to a �xed value)2 and we do so in a time varying

manner. To do so, we follow a suggestion made in Park, Jun and Kim (1991) and replace � by

�t in (5) where

�t = �min + (1� �min)Lft (6)

where ft = �NINT
�
"2tjt�1

�
and "tjt�1 = yt � �tjt�1Zt is the one-step ahead prediction error

produced by the Kalman �lter and NINT rounds to the nearest integer. We set �min = 0:95

and L = 1:1 (values calibrated to obtain a spread of values for the forgetting factor between

0:95 and 1:0, given our prior guess about what E
�
"2tjt�1

�
would tend to be).

A similar approximation is used to remove the need for a posterior simulation algorithm for

multivariate stochastic volatility in the measurement equation. In �nance, it is common to use

an Exponentially Weighted Moving Average (EWMA) to model volatility (see RiskMetrics,

1996 and Brockwell and Davis, 2009, Section 1.4). We adopt an EWMA estimator for the

1Note that Cogley and Sargent (2005) have a �xed state equation error covariance matrix Q, while we use a
time varying one. This does not a¤ect the interpretation of � as a shrinkage factor similar to the one they use.

2An exception to this is McCormick, Raftery, Madigan and Burd (2011) which estimates forgetting factors
in an application using logistic regression using dynamic model averaging.
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measurement error covariance matrix:

�t = ��t�1 + (1� �)b"t�1b"0t�1; (7)

where b"t�1 = yt�1 � �t�1jt�1Zt�1 is produced by the Kalman �lter. EWMA estimators also

require the selection of the decay factor, �. We set � = 0:96 which is in the region suggested

in RiskMetrics (1996). This estimator requires the choice of an initial condition, �0 for which

we use the sample covariance matrix of y� where � + 1 is the period in which we begin our

forecast evaluation.

2.3 Model Selection Using Forgetting Factors

Our previous exposition applies to one model. Raftery et al (2010), in a TVP regression

context, develops methods for doing dynamic model averaging (DMA) which can also be used

for DMS. The reader is referred to Raftery et al (2010) or Koop and Korobilis (2011) for a

complete derivation and motivation of DMA. Here we provide a general description of what it

does. In subsequent sections, we use the general strategy outlined here in two ways. First, we

use DMS so as to allow for the TVP-VAR to change dimension over time. Second, we use it

to select optimal values for the VAR shrinkage parameter in a time-varying manner.

Suppose the researcher is working with j = 1; ::; J models. The goal of DMA is to calculate

�tjt�1;j which is the probability that model j should be used for forecasting at time t, given

information through time t � 1. Once �tjt�1;j for j = 1; ::; J are obtained they can either be

used to do model averaging or model selection. DMS arises if, at each point in time, the model

with the highest value for �tjt�1;j is used for forecasting. Note that �tjt�1;j will vary over time

and, hence, the forecasting model can switch over time. The contribution of Raftery et al

(2010) is to develop a fast recursive algorithm using a forgetting factor for obtaining �tjt�1;j .

To do DMA or DMS we must �rst specify the set of models under consideration. In papers

such as Raftery et al (2010) or Koop and Korobilis (2011) the models are TVP regressions with

di¤erent sets of explanatory variables. In the present paper, our model space is of a di¤erent

nature, including TVP-VARs of di¤ering dimensions, but the basic algorithm still holds.
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DMS is a recursive algorithm where the necessary recursions are analogous to the prediction

and updating equations of the Kalman �lter. Given an initial condition, �0j0;j for j = 1:; ; :J ,

Raftery et al (2010) derive a model prediction equation using a forgetting factor �:

�tjt�1;j =
��t�1jt�1;jPJ
l=1 �

�
t�1jt�1;l

; (8)

and a model updating equation of:

�tjt;j =
�tjt�1;jpj

�
ytjyt�1

�PJ
l=1 �tjt�1;lpl (ytjyt�1)

; (9)

where pj
�
ytjyt�1

�
is the predictive likelihood (i.e. the predictive density for model j evaluated

at yt). Note that this predictive density is produced by the Kalman �lter and has a standard,

textbook, formula (e.g. Fruhwirth-Schnatter, 2006, page 405). The predictive likelihood is a

measure of forecast performance.

We refer the reader to Raftery et al (2010) for additional details (e.g. the relationship

of this approach to the marginal likelihood), but note here that the calculation of �tjt;j and

�tjt�1;j is simple and fast, not involving using of simulation methods. To help understand the

implication of the forgetting factor approach, note that �tjt�1;j (the key probability used to

select models), can be written as:

�tjt�1;j /
t�1Y
i=1

�
pj
�
yt�ijyt�i�1

���i
:

Thus, model j will receive more weight at time t if it has forecast well in the recent past

(where forecast performance is measured by the predictive density, pj
�
yt�ijyt�i�1

�
). The

interpretation of �recent past�is controlled by the forgetting factor, � and we have the same

exponential decay as we do for the forgetting factor �. For instance, if � = 0:99, forecast

performance �ve years ago receives 80% as much weight as forecast performance last period.

If � = 0:95, then forecast performance �ve years ago receives only about 35% as much weight.

These considerations suggest that, as with � (or �t) we focus on the interval � 2 (0:95; 0:99).
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2.4 Model Selection Among Priors

Given that we use a forgetting factor approach which negates the need to estimate Qt and use

an EWMA estimate for �t, prior information is required only for �0. But this source of prior

information is likely to be important. That is, papers such as Banbura et al (2010) are working

with large VARs with many more parameters than observations and prior information is crucial

in obtaining reasonable results. With TVP-VARs this need is even greater. Accordingly, we use

a tight Minnesota prior for �0. In the case where the time-variation in parameters is removed

(i.e. when �t = � and �t = 1 for all t), this Minnesota prior on �0 becomes a Minnesota prior

in a constant coe¢ cient VAR and, thus, this important special case is included as part of our

approach.

With large VARs and TVP-VARs it is common to use training sample priors (e.g. Primiceri,

2005 and Banbura et al, 2010) to elicit hyperparameters which control the degree of shrinkage.

In training sample approaches, the same prior is used as each point in time in a recursive

forecasting exercise. However, in this paper we adopt a di¤erent approach which allows for

the estimation of the shrinkage hyperparameter in a time-varying fashion. The algorithm

we develop allows for the shrinkage hyperparameter to be updated automatically (in a similar

fashion to the way the Kalman �lter updates coe¢ cient estimates). In the context of a recursive

forecasting exercise, an alternative strategy for having time-varying shrinkage would be to re-

estimate the shrinkage priors at each point in time and re-estimate the model at each point

in time (such an approach is used in Giannone, Lenza and Primiceri, 2012). This can be

computationally demanding (particularly if the shrinkage parameter is estimated at a grid of

values). Our automatic updating procedure avoids this problem and is computationally much

less demanding.

For a TVP-VAR of a speci�c dimension, we use a Normal prior for �0 which is similar

to the Minnesota prior (see, e.g., Doan, Litterman and Sims, 1984). Our empirical section

uses a data set where all variables have been transformed to stationarity and, thus, we choose

the prior mean to be E (�0) = 0. A Minnesota prior for a VAR using untransformed levels

variables would set appropriate elements of E (�0) to 1 so as to shrink towards a random walk
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and this can be trivially accommodated in the approach set out below.

The Minnesota prior covariance matrix for �0 is typically assumed to be diagonal and we

follow this practice. If we let var (�0) = V and V i denote its diagonal elements, then our prior

covariance matrix is de�ned through:

V i =

8><>:

r2
for coe¢ cients on lag r for r = 1; ::; p

a for the intercepts
; (10)

where p is lag length. The key hyperparameter in V is  which controls the degree of shrinkage

on the VAR coe¢ cients. We will estimate  from the data. Note that this di¤ers from the

Minnesota prior in that the latter contains two shrinkage parameters (corresponding to own

lags and other lags) and these are set to �xed values. Theoretically, allowing for two shrinkage

parameters in our approach is straightforward. To simplify computation we only have one

shrinkage parameter (as does Banbura et al, 2010). Finally, we set a = 103 for the intercepts

so as to be noninformative.

In large VARs and TVP-VARs, a large degree of shrinkage is necessary to produce rea-

sonable forecast performance. We achieve this by estimating  at each point in time using

the following strategy. De�ne a grid of values for : (1); ::; (G). We use the following very

wide grid for :
�
10�10; 10�5; 0:001; 0:005; 0:01; 0:05; 0:1

�
. For a Bayesian, a model contains a

likelihood and a prior. Di¤erent values for  can be thought of as de�ning di¤erent priors and,

thus, di¤erent models. We can use the DMS methods described in the preceding sub-section

to �nd the optimal value for . However, before we do this, we further augment the model

space to allow for TVP-VARs of di¤erent dimensions.

2.5 Model Selection Among TVP-VARs of Di¤erent Dimension

DMA and DMS have previously been used in time-varying regression contexts where each

model is de�ned by the set of included explanatory variables. In the previous sub-section, we

described how DMS can be used where the models are de�ned by di¤erent priors. We can

also augment the model space with models of di¤erent dimensions. In particular, we can do

11



DMS over three models: a small, medium and large TVP-VAR. De�nitions of the variables

contained in each TVP-VAR are given in the Data Appendix.

Thus, in this paper, the model space is de�ned by a value for  and a TVP-VAR dimen-

sionality. With seven values for  and three TVP-VAR sizes, we have 21 di¤erent models.

Remember that our goal is to calculate �tjt�1;j for j = 1; ::J which is the probability that

model j is the forecasting model at time t, given information through time t � 1. When

forecasting at time t, we evaluate �tjt�1;j for every j and use the value of  and TVP-VAR

dimension which maximizes it. The recursive algorithm given in (8) and (9) can be used to

evaluate �tjt�1;i. This algorithm begins with an initial condition: �0j0;j =
1
J with J = 21, which

expresses a view that all possible models are equally likely.

The predictive density, pj
�
yt�ijyt�i�1

�
, plays the key role in DMS. When working with

TVP-VARs of di¤erent dimension, yt, will be of di¤erent dimension and, hence, predictive

densities will not be comparable. To get around this problem, we use the predictive densities

for the small TVP-VAR (i.e. these are the variables which are common to all models). In our

empirical work, this means the dynamic model selection is determined by the joint predictive

likelihood for in�ation, output and the interest rate.

We refer to this approach, which allows for TVP-VARs of di¤erent dimension to be selected

at di¤erent points in time, as dynamic dimension selection or DDS. Thus, we use notation

TVP-VAR-DDS as notation for forecasting approaches which include this aspect.

3 Empirical Results

3.1 Data

Our data set comprises 25 major quarterly US macroeconomic variables and runs from 1959:Q1

to 2010:Q2. We work with a small TVP-VAR with three variables, a medium TVP-VAR with

seven and a large TVP-VAR with 25. Following, e.g., Stock and Watson (2008) and recom-

mendations in Carriero, Clark and Marcellino (2011) we transform all variables to stationarity.

The choice of which variables are included in which TVP-VAR is motivated by the choices of
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Banbura et al (2010). The Data Appendix provides a complete listing of the variables, their

transformation codes and which variables belong in which TVP-VAR.

We investigate the performance of our approach in forecasting CPI, real GDP and the

Fed funds rate (which we refer to as in�ation, GDP and the interest rate below). These are

the variables in our small TVP-VAR. The transformation codes are such that the dependent

variables are the percentage change in in�ation (the second log di¤erence of CPI), GDP growth

(the log di¤erence of real GDP) and the change in the interest rate (the di¤erence of the Fed

funds rate). We also standardize all variables by subtracting o¤ a mean and dividing by a

standard deviation. We calculate this mean and standard deviation for each variable using

data from 1959Q1 through 1969Q4 (i.e. data before our forecast evaluation period).

3.2 Other Modelling Choices and Models for Comparison

We use a lag length of 4. This is consistent with quarterly data. Worries about over-

parameterization with this relatively long lag length are lessened by the use of the Minnesota

prior variance, (10), which increases shrinkage as lag length increases. All of our remaining

modelling choices are stated above. To remind the reader of the important choices in our

TVP-VAR-DDS approach:

� We have a forgetting factor which controls the degree of time-variation in the VAR

coe¢ cients which we set to � = 0:99.

� We have a forgetting factor, �, which controls the amount of model switching of the

prior shrinkage parameter and over TVP-VAR dimensions. Consistent with Raftery et

al (2010), we set � = 0:99.

� We have a decay factor which controls the volatility, �. Following RiskMetrics (1996) we

set � = 0:96.

We compare the performance of TVP-VAR-DDS as outlined above to many special cases.

Unless otherwise noted, these special cases are restricted versions of TVP-VAR-DDS and, thus

13



(where relevant) have exactly the same modelling choices, priors and select the prior shrinkage

parameter in the same way. They include:

� TVP-VARs of each dimension, with no DDS being done.

� Time-varying forgetting factor versions of the TVP-VARs. In this case, �t is constrained

to be in the interval [0:95; 1]. We label such cases � = �t in the tables.

� VARs of each dimension, obtained by setting �t = 1 for t = 1; ::; T .

� Homoskedastic versions of each VAR.3

We also present random walk forecasts (labelled RW) and forecasts from a homoskedastic

small VAR estimated using OLS methods (labelled Small VAR OLS).

3.3 Estimation Results

The main focus of this paper is on forecasting, but it is useful to brie�y present some empirical

evidence on other aspects of our approach. Figure 1 plots the selected value of , the shrinkage

parameter in the Minnesota prior, at each point in time for TVP-VARs of di¤erent dimension.

Note that, as expected, we are �nding that the necessary degree of shrinkage increases as the

dimension of the TVP-VAR increases.

To illustrate the estimation of the time-varying forgetting factors, Figure 2 plots �t against

time for the small TVP-VARs (the medium and large TVP-VARs show similar patterns).

Note that �t does vary over the allowed interval of (0:95; 1:0) and, hence, sometimes the

VAR coe¢ cients are changing very little, but at other times much more change is allowed for.

Typically, we �nd little change in stable times such as the 1960s and 1990s, but more rapid

change in unstable times.

Figure 3 plots the time-varying probabilities associated with the TVP-VAR of each di-

mension. Note that, for each dimension of TVP-VAR, the optimum value for the Minnesota

3When forecasting yt given information through t� 1, � is estimated as 1
t�1

t�1X
i=1

b"ib"0i.
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prior shrinkage parameter, , is chosen and the probability plotted in Figure 3 is for this op-

timum value. Remember that TVP-VAR-DDS will forecast with the TVP-VAR of dimension

with highest probability. It can be seen that there is a great deal of switching between TVP-

VARs of di¤erent dimension. In the relatively stable period from 1990 through 2007, the small

TVP-VAR is being used to forecast. For most of the remaining time DDS selects the large

TVP-VAR, although there are some exceptions to this (e.g. the medium TVP-VAR is selected

for most of the 1967-1973 period).

Figure 2

3.4 Forecast Comparison

We present iterated forecasts for horizons of up to two years (h = 1; ::; 8) with a forecast

evaluation period of 1970Q1 through 2010Q2. The use of iterated forecasts does increase the

computational burden since predictive simulation is required (i.e. when h > 1 an analytical

formula for the predictive density does not exist). We do predictive simulation in two di¤erent

ways. The �rst (simpler) way uses the VAR coe¢ cients which hold at time T to forecast

variables at time T + h. This is labelled �T+h = �T in the tables below and assumes no
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VAR coe¢ cient change between T and T + h. The second way, labelled �T+h � RW in

the tables, does allow for coe¢ cient change out-of-sample and simulates from the random walk

state equation (1) to produce draws of �T+h. Both ways provide us with �T+h and we simulate

draws of y�+h conditional on �T+h to approximate the predictive density.
4

The alternative would be to use direct forecasting, but recent papers such as Marcellino,

Stock and Watson (2006) tend to �nd that iterated forecasts are better. Direct forecasting

would also require re-estimating the model for di¤erent choices of h and would not necessarily

remove the need for predictive simulation since the researcher may need to simulate �T+h from

(1) when h > 1.

As measures of forecast performance, we use mean squared forecast errors (MSFEs) and

predictive likelihoods. The latter are popular with many Bayesians since they evaluate the

forecast performance of the entire predictive density (as opposed to merely the point forecast).

It is natural to use the joint predictive density for our three variables of interest (i.e. in�ation,

GDP and the interest rate) as an overall measure of forecast performance. Thus, Tables

1 through 3 present MSFEs for each of our three variables of interest separately. Table 4

presents sums of log predictive likelihoods using the joint predictive likelihood for these three

variables.

MSFEs are presented relative to the TVP-VAR-DDS approach which simulates �T+h from

the random walk state equation. Tables 1 through 3 are mostly �lled with numbers greater

than one, indicating TVP-VAR-DDS is forecasting better than other forecasting approaches.

This is particularly true for in�ation and GDP. For the interest rate, TVP-VAR-DDS forecasts

best at several forecast horizons but there are some forecast horizons (especially h = 7; 8)

where large TVP-VARs are forecasting best. Nevertheless, overall MSFEs indicate TVP-VAR-

DDS is the best forecasting approach among the comparators we consider. Note, too, that

TVP-VAR-DDS is forecasting much better than our most simple benchmarks: random walk

forecasts and forecasts from a small VAR estimated using OLS methods.

4For longer-term forecasting, this has the slight drawback that our approach is based on the model updating
equation (see equation 9) which uses one-step ahead predictive likelihoods (which may not be ideal when
forecasting h > 1 periods ahead).
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If we consider results for TVP-VARs of a �xed dimension, it can be seen that our di¤erent

implementations (i.e. di¤erent treatments of forgetting factors or methods of predictive simu-

lation) lead to similar MSFEs. Overall, we are �nding that large TVP-VARs tend to forecast

better than small or medium ones, although there are many exceptions to this. For instance,

large TVP-VARs tend to do well when forecasting interest rates and in�ation, but when fore-

casting GDP the small TVP-VAR tends to do better. Such �ndings highlight that there may

often be uncertainty about TVP-VAR dimensionality suggesting the usefulness of TVP-VAR-

DDS. In general, though, MSFEs indicate that heteroskedastic VARs tend to forecast about

as well as TVP-VARs suggesting that, with this data set, allowing for time-variation in VAR

coe¢ cients is less important than allowing for DDS.

With regards to predictive simulation, MSFEs suggest that simulating �T+h from the

random walk state equation yields only modest forecast improvements over the simpler strategy

of assuming no change in VAR coe¢ cients over the horizon that the forecast is being made.
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Table 1: Relative Mean Squared Forecast Errors, GDP equation

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Full model

TVP-VAR-DDS, � = 0:99; �T+h = �T 1.00 1.02 1.02 1.03 1.02 1.00 1.01 0.99

TVP-VAR-DDS, � = 0:99; �T+h � RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Small VAR

TVP-VAR, � = 0:99; �T+h = �T 1.04 0.95 1.08 1.00 1.04 1.08 1.01 1.02

TVP-VAR, � = �t; �T+h = �T 1.03 0.92 1.08 1.03 1.04 1.08 1.01 1.04

TVP-VAR, � = 0:99; �T+h � RW 1.05 0.95 1.08 1.03 1.03 1.06 0.99 1.02

TVP-VAR, � = �t; �T+h � RW 1.04 0.95 1.06 1.02 1.02 1.06 1.01 1.01

VAR, heteroskedastic 1.04 0.94 1.06 1.03 1.04 1.06 1.02 1.04

VAR, homoskedastic 1.09 1.01 1.04 1.01 1.06 1.08 1.02 1.04

Medium VAR

TVP-VAR, � = 0:99; �T+h = �T 1.09 0.99 1.04 1.04 1.06 1.05 1.02 1.07

TVP-VAR, � = �t; �T+h = �T 1.09 0.99 1.03 1.04 1.07 1.05 1.02 1.06

TVP-VAR, � = 0:99; �T+h � RW 1.10 1.00 1.04 1.07 1.06 1.05 1.03 1.05

TVP-VAR, � = �t; �T+h � RW 1.05 1.00 1.04 1.04 1.06 1.05 1.01 1.10

VAR, heteroskedastic 1.10 1.00 1.02 1.05 1.09 1.02 1.02 1.10

VAR, homoskedastic 1.08 1.02 1.04 1.08 1.09 1.03 1.00 1.08

Large VAR

TVP-VAR, � = 0:99; �T+h = �T 1.03 1.04 1.02 1.06 1.07 1.07 1.06 1.10

TVP-VAR, � = �t; �T+h = �T 1.04 1.06 1.05 1.10 1.08 1.08 1.08 1.11

TVP-VAR, � = 0:99; �T+h � RW 1.02 1.05 1.03 1.06 1.06 1.08 1.07 1.09

TVP-VAR, � = �t; �T+h � RW 1.05 1.10 1.03 1.05 1.07 1.07 1.09 1.11

VAR, heteroskedastic 1.09 1.12 1.08 1.11 1.09 1.10 1.10 1.13

VAR, homoskedastic 1.02 1.05 1.04 1.04 1.03 1.03 1.03 1.05

Benchmark Models

RW 1.59 1.71 1.81 1.97 1.96 1.88 1.96 2.22

Small VAR OLS 1.19 1.13 1.53 1.29 1.31 1.36 1.27 1.29
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Table 2: Relative Mean Squared Forecast Errors, In�ation equation

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Full model

TVP-VAR-DDS, � = 0:99; �T+h = �T 1.02 0.99 1.00 1.00 1.00 1.01 0.99 1.00

TVP-VAR-DDS, � = 0:99; �T+h � RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Small VAR

TVP-VAR, � = 0:99; �T+h = �T 1.04 1.05 1.07 1.06 1.06 1.06 1.00 1.04

TVP-VAR, � = �t; �T+h = �T 1.04 1.06 1.09 1.06 1.04 1.04 1.01 1.03

TVP-VAR, � = 0:99; �T+h � RW 1.03 1.06 1.07 1.06 1.05 1.04 1.01 1.04

TVP-VAR, � = �t; �T+h � RW 1.03 1.07 1.05 1.03 1.04 1.03 0.99 1.06

VAR, heteroskedastic 1.02 1.04 1.03 1.01 1.02 1.02 0.98 1.05

VAR, homoskedastic 1.05 1.08 1.05 1.02 1.02 1.03 0.98 1.06

Medium VAR

TVP-VAR, � = 0:99; �T+h = �T 1.08 1.06 1.07 1.01 1.00 1.04 0.99 1.05

TVP-VAR, � = �t; �T+h = �T 1.12 1.07 1.09 0.99 1.01 1.03 0.98 1.07

TVP-VAR, � = 0:99; �T+h � RW 1.08 1.05 1.05 1.01 1.00 1.05 0.99 1.04

TVP-VAR, � = �t; �T+h � RW 1.07 1.05 1.06 1.02 1.02 1.02 0.97 1.07

VAR, heteroskedastic 1.07 1.06 1.02 1.00 1.02 1.02 0.96 1.07

VAR, homoskedastic 1.11 1.10 1.11 1.03 1.03 1.04 0.96 1.09

Large VAR

TVP-VAR, � = 0:99; �T+h = �T 1.01 1.02 1.02 0.95 0.99 1.04 0.97 1.04

TVP-VAR, � = �t; �T+h = �T 1.01 1.04 1.03 0.95 1.00 1.02 0.97 1.04

TVP-VAR, � = 0:99; �T+h � RW 1.01 1.03 1.03 0.95 1.01 1.04 0.97 1.02

TVP-VAR, � = �t; �T+h � RW 1.03 1.01 1.03 0.96 1.00 1.04 0.97 1.05

VAR, heteroskedastic 1.05 1.03 1.03 0.95 1.01 1.03 0.96 1.04

VAR, homoskedastic 1.05 1.05 1.04 0.96 1.01 1.05 0.97 1.07

Benchmark Models

RW 3.26 2.71 1.69 2.07 2.11 1.73 1.65 1.74

Small VAR OLS 1.09 1.23 1.12 1.14 1.16 1.05 1.02 1.18
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Table 3: Relative Mean Squared Forecast Errors, Interest Rate equation

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Full model

TVP-VAR-DDS, � = 0:99; �T+h = �T 1.03 1.00 1.02 1.00 0.99 0.99 1.00 0.99

TVP-VAR-DDS, � = 0:99; �T+h � RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Small VAR

TVP-VAR, � = 0:99; �T+h = �T 1.16 1.02 1.14 1.19 1.01 0.99 1.16 1.11

TVP-VAR, � = �t; �T+h = �T 1.18 0.99 1.13 1.12 1.02 0.99 1.08 1.07

TVP-VAR, � = 0:99; �T+h � RW 1.16 1.00 1.16 1.20 1.02 1.01 1.14 1.11

TVP-VAR, � = �t; �T+h � RW 1.19 1.01 1.14 1.16 1.02 0.96 1.11 1.08

VAR, heteroskedastic 1.19 1.00 1.12 1.09 1.00 0.96 1.05 1.01

VAR, homoskedastic 1.25 1.10 1.15 1.11 0.99 0.96 1.04 1.03

Medium VAR

TVP-VAR, � = 0:99; �T+h = �T 1.18 1.01 1.10 1.06 0.98 0.99 0.98 0.97

TVP-VAR, � = �t; �T+h = �T 1.19 1.03 1.10 1.06 0.98 1.03 0.98 0.98

TVP-VAR, � = 0:99; �T+h � RW 1.20 1.01 1.12 1.06 0.97 1.00 0.98 0.98

TVP-VAR, � = �t; �T+h � RW 1.19 0.98 1.07 1.04 1.00 1.00 0.96 0.98

VAR, heteroskedastic 1.17 0.97 1.05 1.02 0.97 1.00 0.98 0.96

VAR, homoskedastic 1.25 1.06 1.11 1.03 1.00 1.01 0.96 0.98

Large VAR

TVP-VAR, � = 0:99; �T+h = �T 1.07 0.94 1.06 0.96 0.98 1.00 0.91 0.92

TVP-VAR, � = �t; �T+h = �T 1.06 0.97 1.09 0.98 1.00 1.02 0.91 0.92

TVP-VAR, � = 0:99; �T+h � RW 1.05 0.94 1.05 0.97 0.98 1.00 0.92 0.91

TVP-VAR, � = �t; �T+h � RW 1.07 0.93 1.07 0.97 0.97 1.01 0.91 0.91

VAR, heteroskedastic 1.07 0.95 1.06 0.97 0.99 0.99 0.92 0.91

VAR, homoskedastic 1.13 0.98 1.06 0.99 1.01 1.02 0.92 0.92

Benchmark Models

RW 1.91 2.16 1.92 1.87 1.64 1.98 2.37 1.93

Small VAR OLS 1.76 1.47 1.59 2.11 1.78 1.69 2.23 2.03

Predictive likelihoods are presented in Table 4, relative to TVP-VAR-DDS. To be precise,

the numbers in Table 4 are the sum of log predictive likelihoods for a speci�c model minus the
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sum of log predictive likelihoods for TVP-VAR-DDS. The fact that almost all of these numbers

are negative supports the main story told by the MSFEs: TVP-VAR-DDS is forecasting well

at most forecast horizons. At h = 1, TVP-VAR-DDS forecasts best by a considerable margin

and at other forecast horizons it beats other TVP-VAR approaches. However, there are some

important di¤erences between predictive likelihood and MSFE results that are worth noting.

The importance of allowing for heteroskedastic errors in getting the shape of the predictive

density correct is clearly shown by the poor performance of homoskedastic models in Table

4. In fact, the heteroskedastic VAR exhibits the best forecast performance at many horizons.

However, the dimensionality of this best forecasting model di¤ers across horizons. For instance,

at h = 2 the small model forecasts best, but at h = 3 the medium model wins and at h = 4

it is the large heteroskedastic VAR. This suggests, even when the researcher is using a VAR

(instead of a TVP-VAR), DDS still might be a useful as a conservative forecasting device which

can forecast well in a context where there is uncertainty over the dimension of the VAR.
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Table 4: Relative Predictive Likelihoods, Total (all 3 variables)

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Full model

TVP-VAR-DDS, � = 0:99; �T+h = �T 0.84 0.91 2.47 4.03 4.76 3.30 6.69 4.11

TVP-VAR-DDS, � = 0:99; �T+h � RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Small VAR

TVP-VAR, � = 0:99; �T+h = �T -6.71 4.62 -3.70 -2.72 2.73 1.93 -0.32 0.68

TVP-VAR, � = �t; �T+h = �T -7.47 2.15 -5.24 -3.72 -0.41 -2.67 -2.68 -3.63

TVP-VAR, � = 0:99; �T+h � RW -5.95 4.84 -1.95 -2.56 2.20 -0.92 -1.04 -3.32

TVP-VAR, � = �t; �T+h � RW -4.77 3.70 0.13 -0.68 2.39 2.84 3.47 3.36

VAR, heteroskedastic -6.18 6.86 -1.39 1.57 12.00 6.24 5.87 9.11

VAR, homoskedastic -47.44 -29.97 -27.74 -22.87 -15.96 -18.50 -18.92 -15.93

Medium VAR

TVP-VAR, � = 0:99; �T+h = �T -23.55 0.79 -1.58 2.84 11.31 5.85 7.69 9.27

TVP-VAR, � = �t; �T+h = �T -30.24 -6.10 -3.53 0.05 9.61 3.93 3.16 10.68

TVP-VAR, � = 0:99; �T+h � RW -23.22 -0.09 -3.16 -0.54 11.33 5.07 8.13 9.80

TVP-VAR, � = �t; �T+h � RW -20.69 0.68 -1.95 1.62 8.20 2.49 8.78 4.87

VAR, heteroskedastic -20.89 1.08 5.07 8.39 15.12 14.02 14.79 14.52

VAR, homoskedastic -58.28 -31.86 -29.35 -21.09 -10.14 -13.94 -7.38 -10.65

Large VAR

TVP-VAR, � = 0:99; �T+h = �T -18.16 -7.81 -6.85 -1.32 3.03 -3.69 1.46 8.33

TVP-VAR, � = �t; �T+h = �T -21.96 -12.99 -16.46 -10.61 -5.42 -17.35 -5.08 -2.82

TVP-VAR, � = 0:99; �T+h � RW -16.14 -8.25 -9.70 -2.45 -0.24 -7.56 -1.48 2.93

TVP-VAR, � = �t; �T+h � RW -16.24 -5.20 -6.70 -0.41 2.83 -5.90 1.56 1.82

VAR, heteroskedastic -17.30 -1.63 -1.76 8.46 12.46 6.03 10.36 13.24

VAR, homoskedastic -50.33 -37.35 -35.31 -28.60 -17.52 -29.13 -22.05 -20.50

Benchmark Models

RW - - - - - - - -

Small VAR OLS -52.94 -40.42 -49.99 -52.48 -45.69 -36.48 -37.92 -49.35
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4 Conclusions

In this paper, we have developed computationally feasible methods for forecasting with large

TVP-VARs through the use of forgetting factors. We use forgetting factors in several ways.

First, they allow for simple forecasting within a single TVP-VAR model. However, inspired

by the literature on dynamic model averaging and selection (see Raftery et al, 2010), we also

use forgetting factors so as to allow for fast and simple dynamic model selection. That is, we

develop methods so that the forecasting model can change at every point in time.

DMS can be used with any type of model. We have found it useful to de�ne our models in

terms of the priors that they use and their dimension. The former allows us to estimate the

shrinkage parameter of the Minnesota prior in a time-varying fashion using a simple recursive

updating scheme. The latter allows the TVP-VAR dimension to change over time. In our

empirical exercise, we have found our approach to o¤er moderate improvements in forecast

performance over other VAR or TVP-VAR approaches.

It would be simple to extend the general modelling framework presented here in several

ways. For instance, instead of using model selection methods to select prior hyperparameters

or TVP-VAR dimension, it would have been straightforward to use model averaging. It would

also have been possible to use our methods with VARs instead of TVP-VARs (and, in our

forecasting exercise, we do this as a special case). Another extension would be to use this

approach for variable selection in a TVP-VAR. Suppose, for instance, that a researcher was

interested in forecast a particular variable (e.g. in�ation) and had 9 potential predictors. We

could de�ne a model space which includes the 10 dimensional TVP-VAR, all 9 dimensional

TVP-VARs which included in�ation as one of the variables, all 8 dimensional TVP-VARs, etc.

Doing DMS using the approach outlined over this large model space would be computationally

demanding, but would allow the researcher to select the appropriate predictors for in�ation

(and allow the set of predictors to change over time). In sum, we would argue that doing

DMS using forgetting factors is a potentially powerful tool in a wide variety of macroeconomic

forecasting exercises.
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A Data Appendix

All series were downloaded from St. Louis�FRED database and cover the quarters 1959:Q1

to 2010:Q2. Some series in the database were observed only on a monthly basis and quarterly

values were computed by averaging the monthly values over the quarter. All variables are

transformed to be approximately stationary following Stock and Watson (2008). In particular,

if zi;t is the original untransformed series, the transformation codes are (column Tcode below):

1 - no transformation (levels), xi;t = zi;t; 2 - �rst di¤erence, xi;t = zi;t � zi;t�1; 3 - second

di¤erence, xi;t = zi;t � zi;t�2; 4 - logarithm, xi;t = log zi;t; 5 - �rst di¤erence of logarithm,

xi;t = ln zi;t � ln zi;t�1; 6 - second di¤erence of logarithm, xi;t = ln zi;t � ln zi;t�2.

Table A1: Series used in the Small VAR with n = 3

Series ID Tcode Description

GDPC96 5 Real Gross Domestic Product

CPIAUCSL 6 Consumer Price Index: All Items

FEDFUNDS 2 E¤ective Federal Funds Rate

Table A2: Additional series used in the Medium VAR with n = 7

Series ID Tcode Description

PMCP 1 NAPM Commodity Prices Index

BORROW 6 Borrowings of Depository Institutions from the Fed

SP500 5 S&P 500 Index

M2SL 6 M2 Money Stock
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Table A3: Additional Series used in the Large VAR with n = 25

Series ID Tcode Description

PINCOME 6 Personal Income

PCECC96 5 Real Personal Consumption Expenditures

INDPRO 5 Industrial Production Index

UTL11 1 Capacity Utilization: Manufacturing

UNRATE 2 Civilian Unemployment Rate

HOUST 4 Housing Starts: Total: New Privately Owned Housing Units

PPIFCG 6 Producer Price Index: All Commodities

PCECTPI 5 Personal Consumption Expenditures: Chain-type Price Index

AHEMAN 6 Average Hourly Earnings: Manufacturing

M1SL 6 M1 Money Stock

OILPRICE 5 Spot Oil Price: West Texas Intermediate

GS10 2 10-Year Treasury Constant Maturity Rate

EXUSUK 5 U.S. / U.K Foreign Exchange Rate

GPDIC96 5 Real Gross Private Domestic Investment

PAYEMS 5 Total Nonfarm Payrolls: All Employees

PMI 1 ISM Manufacturing: PMI Composite Index

NAPMNOI 1 ISM Manufacturing: New Orders Index

OPHPBS 5 Business Sector: Output Per Hour of All Persons
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