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Abstract 

The study aims at statistical verification of breaks in the risk-return relationship for shares of 

individual companies quoted at the Warsaw Stock Exchange. To this end a stochastic 

volatility model incorporating Markov switching in-mean effect (SV-MS-M) is employed. We 

argue that neglecting possible regime changes in the relation between expected return and 

volatility within an ordinary SV-M specification may lead to spurious insignificance of the 

risk premium parameter (as being ‘averaged out’ over the regimes). Therefore, we allow the 

volatility-in-mean effect to switch over different regimes according to a discrete 

homogeneous two- or three-state Markov chain. The model is handled within Bayesian 

framework, which allows to fully account for the uncertainty of model parameters, latent 

conditional variances and state variables. MCMC methods, including the Gibbs sampler, 

Metropolis-Hastings algorithm and the forward-filtering-backward-sampling scheme are 

suitably adopted to obtain posterior densities of interest as well as marginal data density. The 

latter allows for a formal model comparison in terms of the in-sample fit and, thereby, 

inference on the ‘adequate’ number of the risk premium regimes.  
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1. Introduction 
Conceptually, the idea of a reward to a risk-averse investor for holding a risky asset appears 

theoretically sound and intuitively appealing. In a static framework a general agreement 

prevails that the more uncertain the investment, the higher the return expected by the investor. 

So far, however, a voluminous body of (mainly) empirical research has failed to 

unequivocally establish a dynamic version of the risk-return tradeoff, which postulates a rise 

of expected future income accompanying an increase in the expected volatility (risk) of some 

asset.  

Overall, the literature provides mixed (if not contradictory) results. Some of the studies 

successfully pinpoint a positive relation (see e.g. French, Schwert and Stambaugh 1987; 

Bollerslev, Engle and Wooldridge 1988; Harvey 1989; Scruggs 1998; Harrison and Zhang 

1999; Watanabe 1999; Guo and Whitelaw 2006; Ludvigson and Ng 2007; Smith 2007; Guo 

and Neely 2008). Others provide evidence of either no significant return-volatility link or a 

counterintuitive, negative relation (see e.g. Campbell 1987; Nelson 1991; Glosten, 

Jagannathan and Runkle 1993; Whitelaw 1994, 2000; Osiewalski and Pipień 2000; Pipień and 

Osiewalski 2001; Koopman and Hol Uspensky 2002; Li et al. 2005; Loudon 2006; Hibbert, 

Daigler and Dupoyet 2008; Kwiatkowski 2010; Abanto-Valle, Migon and Lachos 2011). The 

great variety of different approaches adopted in the cited papers indicates that the results on 

the risk premium phenomenon may heavily depend on the research methodology, as also 

pointed by Scruggs (1998), Harrison and Zhang (1999), Bollerslev and Zhou (2006) and 

Smith (2007). On the other hand, founded on some theoretical considerations, Backus and 

Gregory (1993) demonstrate that the theory does not exclude negative or even non-monotonic 

risk-return relationship – a stand also supported by Gennotte and Marsh (1993), Veronesi 

(2000), Whitelaw (2000) and David and Veronesi (2009). Moreover, suggestions have also 

been made on dynamic instability of the risk premium (see e.g. French, Schwert and 

Stambaugh 1987; Harvey 1989; Loudon 2006; Darrat et al. 2011), some evidence for which 

has been provided by Chou, Engle and Kane (1992), Whitelaw (2000), Fiszeder and 

Kwiatkowski (2005a, b), Kim and Lee (2008) and Kwiatkowski (2010). 

Much in line with the time-varying risk premium strand of literature we aim at empirical 

verification of Markovian breaks in the relation between expected return and volatility for 

Polish stock market data. Methodologically, the research builds heavily on our previous work 

(see Kwiatkowski, 2010), in which we have introduced Bayesian two-state stochastic 

volatility with Markov switching in mean models (or SV-MS-M, in short). Similarly as before 



 3 

we follow a simple line of reasoning that if the ‘true’ risk premium should feature different 

states (regimes), then relying on a simple volatility-in-mean model with a constant risk 

premium parameter may spuriously imply its insignificance, as neglecting a possibly regime-

changing pattern may lead to results that are somewhat ‘averaged out’ over the regimes.  

Although we make no pretence of resolving the long-lasting risk premium puzzle, our paper 

contributes to the relevant literature on several counts. On the methodological one, we allow 

for three rather than only two different risk premium regimes, and discuss the necessary 

modifications to estimation algorithm presented by Kwiatkowski (2010). Also, conditional 

upon the past moments of the K-state SV-MS-M process are derived. As regards the empirical 

facet of the present research, we follow the remarks concluding our previous study and shift 

the focus of interest from stock market indices to individual companies’ share prices, since the 

relation between risk and return may be more evident in the case of individual stocks, rather 

than market aggregates. Adopting Bayesian methodology developed in the foregoing work, 

formal inference on the ‘adequate’ number of states is also carried out (though only for two- 

and three-state model specifications). Finally, an empirical justification for the superior data 

fit of the three-state SV-MS-M models is proposed. 

The remainder of the paper is organized as follows. In the following Section we generalise the 

two-state SV-MS-M model introduced by Kwiatkowski (2010), by allowing for K distinct risk 

premium regimes. Conditional moment structure of the generalised process is also presented. 

Section 3 addresses Bayesian estimation and model comparison issues, yet focusing mainly 

on their modifications (with respect to Kwiatkowski 2010) necessitated by the model 

extension. Empirical study, presented in Section 4, is divided into two subsections. Firstly, 

general results obtained for eleven Polish stock market datasets are discussed (Subsection 

4.a). Then, we proceed with a more detailed investigation for a single company of Agora, the 

results for which appear most informative (Subsection 4.b). Finally, Section 5 concludes. 

 

2. Stochastic Volatility with Markov Switching in Mean process 
Let the sequence {St, t ∈ Z}, with Z denoting the set of integers, constitute a K-state 

homogenous and ergodic Markov chain with a generic random variable St taking on values 

within the state space S = {1, 2, ..., K}. Transition probabilities are defined as 

 pij ≡ Pr(St = j | St-1 = i), for i, j ∈ S, and form the transition matrix Kjiijp ...,,2,1,][P == . To 

ensure irreducibility and ergodicity of the chain we assume pij ∈ (0, 1) for i, j ∈ S. The K-state 
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stochastic volatility with Markov switching in mean process, SV-MS(K)-M, is defined as 

follows. 

 

Definition 1 

A stochastic process {yt, t ∈ Z} follows the SV-MS(K)-M process if for each t ∈ Z the 

following conditions hold: 

tttStt hhyy
t

ε+γ+α+α= −110 ,     (1) 

ttt hh ση+ϕ+µ= −1lnln ,      (2) 

{ } ( )2)12(
)2( ,0~,)',( IiiNttt ×∈ηε Z ,     (3) 

with iiN(2) denoting independent and normally distributed bivariate random variables, and St 

representing the K-state homogenous and ergodic Markov process defined as above. 

 

Equation (1), hereafter being referred to as the observation equation, defines a simple first-

order autoregression on yt, completed with the in-mean structure, tS h
t

γ , and the innovation 

term tt hε . From Equations (2) and (3) it follows that the innovations are governed by 

a basic stochastic volatility process (see Clark 1973; Taylor 1982, 1986; Pajor 2003). Random 

variable ht is easily shown to be the conditional variance of yt, once conditioning is made with 

respect to a σ-field generated by the lagged yt’s, the current noise term tη  and the current state 

variable St, i.e. ),,|( 1 ttttt SyVarh ηψ= − , where 1−ψt  is the past information about the process 

{yt, t ∈ Z} up to time t–1. 

The above definition extends the one presented by Kwiatkowski (2010), though with regard 

solely to the number of regimes allowed for the switching parameter 
tSγ . The latter – much in 

vein of the ARCH-in-Mean (ARCH-M) model of Engle, Lilien and Robins (1987) – is 

intended to capture contemporaneous link between current volatility (conditional standard 

deviations) and return. Note that under γi = γ for each i ∈ S the SV-MS-M process collapses 

to the SV-in-Mean structure (SV-M; cf. Koopman and Hol Uspensky, 2002), whereas 

restricting all γi’s to equal zero yields the basic SV specification – both cases leaving the 

transition probabilities and state variables unidentified.  

Although various functional forms of the in-mean structure, including the logarithm of ht and 

identity map, are common in the literature, we adopt the square root of ht as the original 

model specification developed by Engle, Lilien and Robins (1987), thereby assuming that – 
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conditionally upon the current regime, St – an increase in the conditional variance transfers to 

a less than proportional rise in the expected rate of return. Under such a choice the 

observation equation admits the following form (see Kwiatkowski 2010):  

tttt hyy ξ+α+α= −110 ,     (4) 

with tSt t
ε+γ=ξ . Since the disturbances {εt, t ∈ Z} are independent and normally 

distributed with zero mean and unit variance, it follows that – conditionally upon the 

parameters of the SV-MS-M process (θ) – distribution of ξt is a K-component mixture of 

Normals with state-dependent means: 

( ) ( )∑
=

γξπ=θξ
K

i
itNit fp

1

)1( 1,|| ,    (5) 

with ( )baf N ,|)1( ⋅  denoting density of the univariate Normal distribution with mean a and 

variance b, and ergodic probabilities )Pr( iSti =≡π  serving as the ‘weights’. For an ergodic 

K-state Markov chain the latter can be calculated according to the formula (cf. Krolzig 1997 

p.17): 
1

21 ]...[ −δ=πππ≡π KKK W ,     (6) 

where: 

• )1(]1000[ KK ×=δ  , 

• 







−

ι−
=

−

−−−−

1P
P

)]1(:1,[

1)]1(:1),1(:1[1

KK

KKKK
K

I
W , 

• ))1(1(1 ]'1...11[ −×− =ι KK , 

• ]:,:[P qpnm – a block of P, comprised of rows m to n and columns p to q 

(m, n, p, q ∈ {1, 2, ..., K}, m ≤ n, and p ≤ q), 

• 1−KI  – the identity matrix of size K−1. 

 

 

Investigating the St−1-conditional and unconditional (i.e. conditional only upon θ) moment 

structures of ξt in our previous work (see Kwiatkowski 2010) we inferred that – owing to (5) 

– the SV-MS-M process generates skewness in the past-conditional distribution of yt, i.e. 

p(yt | ψt−1, θ). With straightforward derivations deferred to the Appendix, some basic 

characteristics of the relevant distribution are presented below. 
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Theorem 1 

Let {yt, t ∈ Z} follow the SV-MS(K)-M process given by Definition 1, with the parameters 

collected in θ. Denote the past-conditional moment of order r ∈ N for random variable 
tSγ  as 

∑
=

==−−− −
γ=θγ=θψγ≡γ

K

j
jSS

r
jSt

r
St

r
S

r
tt ttttt

pSEE
1

,11
)(

1| 1
),|(),|( .  

Then, past-conditional mean, variance and skewness coefficient (based on the third-order 

central moment) of yt are given by: 

1) 






 σ+ϕ+µγ+α+α=θψ −−−−

2
1

)1(
1|1101 8

1)ln(
2
1exp),|( tttttt hyyE , 

2) 





 σ+ϕ+µ







 γ−





 σ+γ=θψ −−−−

2
1

2)1(
1|

2)2(
1|1 4

1lnexp)(
4
1exp)1(),|( ttttttt hyVar , 

3) 
( ) ( ) ( )

( ) ( ) 2
3

2)1(
1|

2)2(
1|

3)1(
1|

2)2(
1|

)1(
1|

2)1(
1|

)3(
1|

1

4
11

2
4
1exp13

4
3exp3

),|(






 γ−





 σγ+

γ+





 σ+γγ−






 σγ+γ

=θψ

−−

−−−−−

−

tttt

tttttttttt

ttySk . 

 

From Theorem 1 it follows that the SV-MS-M process features not only a time-varying past-

conditional variance, but also mean. Even under no autoregressive part in the observation 

equation (i.e. α1 = 0) conditional expectation of yt evolves over time according to the Markov 

chain {St} (through )1(
1| −γ tt ) and the volatility process. Most importantly, though, the conditional 

skewness coefficient, as predicted by Kwiatkowski (2010), generally differs from zero, 

implying asymmetry of the corresponding density. Note that ),|( 1 θψ −ttySk  depends on the 

volatility process neither through the intercept (µ) nor the ‘elasticity of volatility’ (ϕ), but 

solely through variance of the innovations to lnht (σ2). It follows that only the ‘volatility of 

volatility’, rather the mean volatility level, affects asymmetry of the past-conditional density. 

Complexity of the expression for skewness coefficient prevents one from further analytical 

investigation of ),|( 1 θψ −ttySk  as a function of the parameters. However, Figures 1.A and 

1.B – plotting the coefficient against different values of σ2 for two arbitrary SV-MS(2)-M 

specifications – suggest its monotonic dependence on the variability of volatility. Particularly, 

for a given state St−1, a shift in the asymmetry of the conditional density is possible at 

sufficiently large values of σ2. (Notice that conditioning upon the past of the process {yt} 

inherently involves conditioning on St−1. Hence ),,|(),|( 111 θψ=θψ −−− ttttt SySkySk . Since 
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St−1 ∈ S, one can consider K different conditional skewness coefficients in total). Moreover, 

the densities in question, being dependent on the Markov chain state at t−1, may exhibit 

distinct asymmetry patterns (with respect to shape and intensity of skewness) for each 

St−1 ∈ S. Incidentally, under restriction of all 
tSγ ’s being equal across the regimes, Theorem 1 

yields valid expressions for conditional moments of the SV-M process. 

As hardly manageable as the formula for conditional skewness coefficients may appear, 

Bayesian framework, equipped with MCMC techniques, enables one to obtain posterior 

densities of ),,|( 11 θ=ψ −− iSySk ttt , i = 1, 2, ..., K, with ease, thereby allowing statistical 

inference on asymmetries in the conditional data density. 

 

3. Bayesian estimation for the K-state SV-MS-M model 
3.1. General remarks 
In the Section an estimation algorithm for Bayesian SV-MS(K)-M models is presented. 

However, since our methodology is a direct generalisation of the one developed by 

Kwiatkowski (2010), we shall confine the following exposition only to the modifications 

necessitated by allowing for K rather than only two regimes. 

We establish the notation first. Let T
T Yyyyy R⊆∈= )',...,,( 21  denote vector of T 

observations on logarithmic rates of return, T
T Hhhhh +⊆∈= R)',...,,( 21  – vector of latent 

conditional variances, and T
TSSSS S∈= )',...,,( 21  – vector of hidden Markov chain state 

variables. To ensure Markov chain states’ identifiability, the risk premium parameter, 
tSγ , is 

parameterised as 

( )∑
=

≥τ+γ=γ
K

j
tjS jSI

t
2

1 ,     (7) 

with R∈γ1 , 0≤τ j  for }...,,3,2{ Kj∈ , and I(.) denoting the indicator function taking on 

the value of one if the event in parentheses occurs, and zero otherwise. Notice the cumulative 

nature of (7): 

tttt SSSS τ+γ=τ++τ+τ+γ=γ −1321 ... ,  }...,,3,2{ KSt ∈ , 

indicating that the regime with a higher number of the state index features a lower in-mean 

effect. For estimation purpose we consider 1γ  and contrasts jτ  ( }...,,3,2{ Kj∈ ), whereas 

posterior densities of γj’s are induced via (7). Parameters of the SV-MS-M model are arranged 
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in 5
21

2
1

2

)',...,,,,,,','( +⊂Θ∈στγβα=θ K
Kqqq R , with )',( 10 αα=α , )',( ϕµ=β ,  

)'...,,,( 32 Kτττ=τ , and ]...[P 1,21)]1(:1,[ −− =≡ KiiiKii pppq  (i = 1, 2, ..., K) collecting free entries 

in the i-th row of matrix P. Note that α , β  and 2σ  are common to all switching and non-

switching specifications. 

Inference on all the unknown quantities of the model is based on the joint posterior 

distribution of THSh S××Θ=Ω∈θ=ω )'',','( , represented by its density: 

)()|()|(),,|()|,,( θθθθ∝θ phpSpShypyShp ,   (8) 

where 

• ∏
=

− γ+α+α=θ∝θ
T

t
ttSttN hhyyfypShypypShyp

t
1

11000 ),|()(),,|()(),,|( , (9) 

• ∏∏
==

− −
=θ=θ∝θ

T

t
SS

T

t
tt tt

pSpSSpSpSpSpSp
1

,0
1

100 1
)(),|()()|()()|( ,  (10) 

• ∏
=

− 







σϕ+µ=θ∝θ

T

t
ttN

t

hhf
h

hphphphp
1

2
100 ),ln|(ln1)()|()()|( ,   (11) 

• 















τγσβα=θ ∏∏

==

K

i
i

K

j
j pppppppp

12
1

2 )()()()()()()( ,    (12) 

Note that in (12) we use ]...[P ,21)]:1,[ KiiiKii pppp =≡  instead of ]...[ 1,21 −= Kiiii pppq , which 

we find convenient for further considerations on prior assumptions. Initial conditions, i.e. y0, 

h0 and S0, are handled along the lines of Kwiatkowski (2010), and suppressed in the notation 

henceforth.  

 

3.2. Prior structure 
According to (12) mutual prior independence of the parameters is assumed. For all parameters 

not related directly to the in-mean structure, i.e. α, β, and σ2, we adopt the same prior 

specifications as in Kwiatkowski (2010), including truncated bivariate Normal distributions 

with zero correlations for α and β, and the Inverse-Gamma distribution for σ2: 

• ( ) )1|(|,|)( 1
1

00
)2( <αα∝α − ICdfp N , )12(0 0 ×=d , 20 01.0 IC ⋅= ,   (13) 

• ( ) )1|(|,|)( 1
00

)2( <ϕβ∝β − IAbfp N , )12(0 0 ×=b , 20 01.0 IA ⋅= ,     (14) 

• ( )21
22 ,|)( ννσ=σ IGfp , 5.11 =ν , 42 =ν ,      (15) 
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where In stands for the )( nn × -sized identity matrix and )(m
Nf  – density of the m-variate 

Normal distribution. Truncations of the parameter space, made by the inequality restrictions 

in (13) and (14), are meant to guarantee non-explosiveness of the SV-MS-M process (or its 

second-order stationarity in the limiting case of ∞→t ); see Kwiatkowski (2010). Densities 

(13)-(15) are shared across all model specifications considered in the paper, i.e. the SV, SV-M 

and SV-MS(K)-M models. To complete the prior structure we specify densities for the model-

specific parameters (i.e. Kpp ...,,,, 11 τγ ) as follows: 

• ( )∏
=

− <τΛλτγ∝τγ
K

j
j

K
N Ifp

2

1
001

)(
1 )0(,|,),( , )1(0 0 ×=λ K , KI=Λ0 ,   (16) 

• ( )iKiiiDiri aaapfpp ...,,,|)( 21= , 1=ika , }...,,2,1{, Kki ∈ ,    (17) 

with fDir standing for density of the Dirichlet distribution – a conditionally conjugate and 

therefore most common choice for p(pi) in Bayesian (Markovian) mixture models. (By 

convention one of the coordinates in pi is bound with others by an obvious restriction: 

1
1

=∑
=

K

j
ijp ). It follows that transition probabilities in each row of P are uniformly distributed 

over a unit (K−1)-simplex. Note that in the special case of a two-state model the above 

Dirichlet prior is equivalent to the Beta(1, 1) distribution.  

In the SV-M model a standard Normal prior for the risk premium parameter ( γ ) is assumed, 

reflecting our convictions on the magnitude of the in-mean effect. We emphasise that the 

truncated K-variate standard Normal in (16) induces a linear decrease in the mean and a linear 

increase in the variance of priors for consecutive γk’s. Let ( )1,0|)( )1( xfx N≡φ . Then, for 

k = 2, ..., K we have: 

)1(798.0)0()1(2)(
2

1 −−≈φ⋅−−=







τ+γ=γ ∑

=

kkEE
k

j
jk ,   (18) 

and, owing to mutual prior independence among γ1, τ2, τ3, ..., τK: 

( ) ( )[ ] )1(363.01)0(41)1(1)()( 2

2
1 −+≈φ−⋅−+=τ+γ=γ ∑

=

kkVarVarVar
k

j
jk . (19) 

The prior structure exposed in (13)-(17) is intended to represent our vague beliefs as of the 

model parameters. Particularly, (16) reflects our prior conviction as of the magnitude of the 

risk-return tradeoff, although the ‘peculiarity’ of priors induced for γj’s, manifesting itself 

through (18) and (19), may call for further search for a ‘less informative’ prior structure of the 

in-mean coefficients. This, however, is largely determined by the adopted parameterisation 
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(see (7)), which is fairly common to Markov switching models entertained in the literature 

(see e.g. So, Lam and Li 1998; Kalimipalli and Susmel 2004; Shibata and Watanabe 2005). 

 

3.3. Sampling algorithm  
According to our previous study, obtaining posterior density presented in (8) requires use of 

Markov Chain Monte Carlo (MCMC) techniques, including the Gibbs sampler, the 

Metropolis-Hastings algorithm and the forward-filtering-backward-sampling scheme (FFBS); 

see Kwiatkowski (2010). Generating a pseudo-random sample from the joint posterior (8) is 

divided into three stages, in which the three: the parameters (θ), conditional variances 

(ht, t = 1, 2, ..., T) and Markov chain state variables (St, t = 1, 2, ..., T), are sampled from their 

full conditional posterior distributions. A detailed description of each step for the two-state 

SV-MS-M model has already been presented by Kwiatkowski (2010). Therefore, only 

modifications to the MCMC algorithm, necessitated by the generalisation of the number of 

regimes, are discussed beneath. 

 

3.3.1. Sampling model parameters 
As far as model parameters are concerned, introducing more than two states in the underlying 

Markov chain affects conditional posteriors only for the in-mean parameters (γ1, τj’s) and 

transition probabilities. We opt for joint simulation of all the coefficients in the observation 

equation (1) – along with α0 and α1 – as it is generally agreed that simultaneous (block) 

sampling facilitates convergence of the MCMC chain. Below, under convention of )(λ−θ  

denoting vector θ with the λ coordinate removed, the full conditional posteriors for the 

relevant parameters are displayed: 

• ( ) ( ) ∏
=

−
τγδ− <τ<ατγα∝θτγα

K

j
jN IIGgfyShp

2
1

1
**1

)4(
),,(1 )0()1|(|,|,,,,,|,,

1
, 

where 

,0* MMGG ′+=  ( )uMgGGg ′+= −
00

1
** ,  








Λ

=
×

×

0)(

)(0
0 0

0

KK

KKC
G ,  ][ 000 ′′′= λdg , 



















=≥≥

=≥≥
=≥≥

=

−
−

−

−−

−−

)()3()2(1

)()3()2(1
)()3()2(1

5.0
11

5.0

222
5.0

11
5.0

2

111
5.0

10
5.0

1

KSISISIhyh

KSISISIhyh
KSISISIhyh

M

TTTTT 







,  



















=

−

−

−

5.0

5.0
22

5.0
11

TT hy

hy
hy

u

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• ( )**
2

*
1)( ...,,,|),,,|( iKiiiDirpi aaapfyShpp

i
=θ− , i = 1, 2, ..., K, 

where 

ijijij naa +=* , for i, j = 1, 2, ..., K 

and 

∑
=

− ===
T

t
ttij jSIiSIn

2
1 )()( . 

Conditional posteriors for β and σ2 fully coincide with the ones provided by Kwiatkowski 

(2010), and are therefore omitted in the present paper. 

 

3.3.2. Sampling conditional variances and Markov chain state variables 
Generating latent variables in the SV-MS-M models is a more challenging task, which is 

attributable to their non-standard full conditional posteriors (see Kwiatkowski 2010). 

Nevertheless, adapting the Metropolis-Hastings algorithm, developed by Jacquier, Polson and 

Rossi (1994) for simple SV structures (see also Pajor 2003), Kwiatkowski (2010) notices that 

the very same Inverse-Gamma proposal density, from which candidate values of each ht 

(t = 1, 2, ..., T) need to be drawn at each MCMC run, can successfully be utilised also in the 

case of the two-state SV-MS-M model. Noticing that the approach – requiring no further 

alterations – is also valid for the general K-state specification, we hereby refer the reader to 

the cited work for a more detailed description of the procedure. 

Similarly, the forward-filtering-backward-sampling scheme (see Carter and Kohn 1994; Chib 

1996), suitably tailored by Kwiatkowski (2010) to sample the switching process state 

variables, applies also in the present context of the SV-MS(K)-M models. A single 

modification needs to be applied to the relevant formulae presented in the aforementioned 

paper, though. Namely, every summation over the state space (S) requires now to cover all K 

– instead of only two – states. Again, a detailed exposition of the FFBS routine is to be found 

in the cited paper. 

 

4. Empirical study 
 

The main objective of the following study is to examine several stock market individual 

companies, representative of Polish major stock market sectors, in search for possible 

Markovian breaks in the risk-return relationship. To this end four model specifications are 
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estimated for each dataset: the basic stochastic volatility (SV), SV-in-Mean (SV-M), and the 

two- and three-state switching models (SV-MS(2)-M, SV-MS(3)-M). Formal Bayesian model 

comparison (via marginal data density) in terms of the in-sample fit hints at the ‘adequate’, 

data-supported number of distinct risk premium regimes, whereas a closer inspection of the 

parameters’ posterior marginal moments and (bivariate) densities allows inference on the 

switching process dynamics and regime-specific in-mean effects, providing an accompanying 

picture of the statistical uncertainty. 

 

4.1. Datasets 
In what follows we consider eleven times series of daily logarithmic rates of return (defined 

as )/ln(100 1−= ttt xxy , with xt denoting the asset closing price at time t = 1, 2, ..., T) on shares 

of selected companies quoted at the Warsaw Stock Exchange. All the equity prices have been 

obtained from www.bossa.pl. 

Following previous studies by Nelson (1991), Fiszeder and Kwiatkowski (2005) and Pipień 

(2007), who observed that netting the data of a risk free rate of return bears little impact on 

the final results, we analyse nominal rather than excess rates. Table 2 contains a detailed list 

of the series under consideration, whereas Table 3 reports on basic descriptive statistics of the 

data. Figure 2 plots the series. The companies have been selected according to the following 

key. Primarily, a company featuring the highest capitalisation (as on October 12, 2010) within 

each sectoral subindex of the Warsaw Stock Exchange Main Index (WIG) has been chosen. 

Most data series start with the commencement of each company being quoted on the Warsaw 

Stock Exchange (although data available before January 3, 2001 has been trimmed). If the 

series’ size turned up to be less than 1000 data points, then a following company – down the 

capitalisation ranking – was taken. All but one datasets end on October 11, 2010. The 

exception is made with regard to Kofola (with the sample ending as soon as on September 29, 

2008), for which modelling the entire dataset available (including observations following 

September 29, 2008) results in a lack of the MCMC convergence (as monitored via 

standardised CUMSUM plots; see Bauwens and Lubrano 1998; Pajor 2003) for both the SV-

MS-M and non-switching models. We found that what impedes the MCMC sampler is an 

abrupt rise in Kofola’s share price by ca. 35% (in terms of logarithmic rates of return) on 

September 30, 2008, which was spurred with a call for subscription for the company’s shares 

on previous day, and subsequently followed by a short period of abnormally low absolute 
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returns (until November 3, 2008). Hence, the analysed sample path comprises observations 

only up to the date before the subscription call. 

Incidentally, other datasets – despite featuring numerous outliers (see Figure 2) – have not 

raised our concerns about the convergence of the MCMC algorithm. However, the switching 

structures required more burnt-in passes as compared with the simpler SV and SV-M models, 

which remains in accord with Kwiatkowski (2010). 

Note that two companies representing the very same media sector have been taken into 

account, i.e. Agora and TVN. Although it is the latter that satisfies the condition of maximal 

capitalisation within the sector (as on October 12, 2010), the former has proved to be an 

interesting empirical material in some previous research on Polish financial market 

microstructure (see e.g. Doman 2008). Thus, based on the premise that it may also deliver 

some interesting insights into the risk-return relationship, we decided to include Agora in the 

present study as well. 

 

4.2. General results 
Below we present results obtained within four model specifications: SV, SV-M, SV-MS(2)-M 

and SV-MS(3)-M (see Table 1), estimated for each of the eleven companies (see Table 2). In 

each case posterior analysis is based on 1000000 MCMC samplings from the relevant joint 

posterior, preceded by 50000 transient runs for the non-switching models and 500000 passes 

for the switching structures. Calculations have been carried out with the author’s own codes 

run under GAUSS 10. 

We report on the model comparison first. Relevant quantities, including decimal logarithms of 

the marginal data density values and Bayes factors (against the SV specification), are 

displayed in Table 4. Marginal data density of model Ml (l = 0, 1, 2, 3) with all the parameters 

and latent variables collected in ll Ω∈ω )( , is defined as: 

∫∫
ΩΩ

ωωω=ωω=
ll

lllllllll dMpMypdMypMyp )()()()()( )|(),|()|,()|( , 

and, along the lines of Kwiatkowski (2010), numerically evaluated via the Newton and 

Raftery (1994) technique, according to formula: 
1

1
)(
)( ),|(

11)|(
−

+

+= 











ω
≈ ∑

NM

Mq l
q
l

l MypN
Myp , 

where M is the number of the burnt-in passes, N – the number of drawings from the joint 

posterior, q – the index of a single pass of the sampling procedure 
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(q = 1, 2, …, M, …, M+N−1, M+N), and )(
)(

q
lω  – the outcome on )(lω  from the q-th cycle. A 

pairwise comparison of different model structures is performed by means of Bayes factors, 

calculated as: 

)|(
)|(

,
l

k
lk Myp

MypBF = , 

Under equal prior odds of each model (i.e. 4/1)( =lMp ), lkBF ,  equals the posterior odds 

ratio of Mk against Ml. 

It appears that in all but one cases of the analysed series (TVN being an exception) the three-

state SV-MS-M model overtakes the competition. Its data fit superiority is most evident for 

Ciech and Agora, for which the SV-MS(3)-M model is more probable a posteriori than the 

non-switching specifications (SV, SV-M) by as much as ca. 26 and 23 orders of magnitude, 

respectively. About a half of that is attained by the three-state model (as compared with the 

basic SV process) in the case of Assecopol, Kogenera and PBG (with logBF3,0 hovering 

around 13). Interestingly, the two-state structure estimated for PBG performs comparably, 

indicating that introducing yet another risk premium state is superfluous. The two-state 

models estimated for Ciech and Kogenera, although favoured against simple SV by ca. 15 and 

9 orders of magnitude, respectively, seem to leave some room for improvement achieved by 

allowing for three separate regimes. With regard to the other companies, values of the 

marginal data density may indicate that the SV-MS(2)-M model performs at least as good as 

the simplest SV process. However, due to inherent numerical instability of the Newton and 

Raftery (1994) algorithm, the corresponding values of logBF2,0, ranging from −0.45 (Kofola) 

to 5.18 (TPSA), should be perceived with caution.  

As regards the specification featuring a constant risk premium parameter, only in the case of 

Kogenera, TPSA and PBG the SV-M model fit may somewhat imply a need for the risk-

return relationship to be accounted for (since logBF1,0 ≈ 4). However, the conjecture is hardly 

supported by the marginal characteristics of the in-mean parameter (see Table 5), with the 

posterior averages of γ being close to zero and the corresponding densities exhibiting 

relatively large dispersion. As a matter of fact, the aforesaid also holds for all other companies 

under consideration (see Table 5). 

Finally, bearing in mind the infinite variance of the Newton and Raftery (1994) estimator, it is 

legitimate to conclude that in the case of two equities: Kofola and TVN, all four model 

specifications perform equally well. 
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Tables 6 and 7 contain posterior means and standard deviations of the parameters related to 

the Markov switching risk-return relationship within the SV-MS(2)-M and SV-MS(3)-M 

models, respectively. In the case of the two-state structures a common pattern emerges in the 

posterior averages of γ1 and γ2, with 0),|( 21 >γ MyE  and 0),|( 22 <γ MyE  for each 

company, suggesting that the first and the second state are the ones of, respectively, positive 

and negative in-mean effect. However, the corresponding posterior distributions, 

),|( 21 Myp γ  and ),|( 22 Myp γ , exhibit a comparatively large dispersion, as indicated by 

their posterior standard deviations. The same holds also for transition probabilities’ densities, 

),|( 211 Mypp  and ),|( 222 Mypp , the means of which – fluctuating around a half – are 

hardly indicative of the regimes’ persistence one would expect. On the other hand, as far as 

the two-state models are concerned, this evidence overturning the hypothesis of Markovian 

breaks within the risk premium is of rather little surprise in view of the results on the in-

sample fit, in terms of which for most companies the SV-MS(2)-M and simple SV models 

perform comparably. The results obtained for the two exceptions: Ciech (logBF2,0 = 15.29) 

and PBG (logBF2,0 = 13.40), share the above characteristics of posterior distributions, 

although ),|( 21 MyE γ ’s are relatively more distant from zero than in the case of the other 

datasets. 

For all but one companies under study posterior analysis of the marginal characteristics 

obtained within the three-state SV-MS-M models is, again, hardly enlightening. Despite 

a common pattern of 0),|( 31 >γ MyE , 0),|( 33 <γ MyE  and ),|( 32 MyE γ  hovering around 

zero, which can easily be observed (notably for Agora, Ciech, Assecopol and PBG – datasets 

most supportive of the SV-MS(3)-M model), posterior means of the transition probabilities – 

usually staying in the vicinity of a third – along with a considerable posterior spread featured 

by γj’s and pij’s preclude any conclusive inferences on switches within the risk-return relation. 

The sole exception of Agora is discussed at length in the following subsection. 

In view of the data fit superiority enjoyed by the three-state models, the above conclusions 

may be somewhat disappointing. However, we stress that posterior distributions obtained 

within both the two- and the three-state models may exhibit multimodality and other 

irregularities that render posterior averages quite uninformative. The issue is illustrated in 

Figures 3 and 4, depicting bivariate posterior densities of the parameters in the two- and the 

three-state SV-MS-M models, respectively, obtained for returns on Ciech’s share prices – 

a dataset most supportive of the two switching specifications. Comparing the pictures outlined 

within the two- and the three-state model, it may appear that allowing for an additional risk 
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premium state alleviates the multimodality found in p(θ | y, M2) – see the left panel in Figure 

4. However, densities of the transition probabilities (see the right panel in Figure 4) contradict 

the impression. 

Although not presented in the paper, all plots obtained within the SV-MS(2)-M models 

estimated for the other datasets emerge more regular (validating – to some extent – the use of 

basic moments for posterior inferences), whereas the picture revealed for Ciech’s three-state 

model – the one of pronounced irregularities in the transition probabilities’ (rather than the 

other parameters’) posterior densities – is almost invariably shared across all the time series. 

(Relevant figures are available upon request). As gathered from Figure 5, yet again Agora 

represents a single exception, revealing – in the case of the SV-MS(3)-M model – regular and 

apparently unimodal bivariate marginal posteriors, according to which a more in-depth 

analysis – presented in the next subsection – is due. 

 

4.3. Specific results for Agora 
Since the results obtained for Agora appear most convincing (or, at least, intriguing), we 

devote the following subsection to discuss these in some more detail, with a particular focus 

on the inference within the three-state SV-MS-M model (M3). 

 

4.3.1. The SV-MS(3)-M model 
A closer inspection of the univariate marginal posteriors, presented in Figures 6 and 7, reveal 

some slight abnormalities – including minor additional modes and long tails – that made 

themselves somewhat inconspicuous in the bivariate plots (see Figure 5). In each case, 

however, posterior densities are sharply distinguishable from their prior counterparts, 

providing evidence of a strong data contribution to the inference. Particularly, as densities of 

the risk premium contrasts: τ2 ≡ γ2 − γ1, τ3 ≡ γ3 − γ2 and γ3 − γ1, are well separated from zero 

(see the bottom panels in Figure 6), it follows that the risk-return relationship is subject to 

switches over three quite distinct states, with the first and the third one pertaining to a strong 

positive and, respectively, a strong negative in-mean effect, and the second state – to a weakly 

negative relation (see Table 7). Note, however, that the two states of a pronounced in-mean 

effect (St = 1 and St = 3) are short-lived, with E(p11 | y) and E(p33 | y) hovering around 0.25 

(see Table 7) and posterior densities of expected durations (defined as )1/(1 iii pDur −= , 

i = 1, 2, ..., K; see Hamilton, 1989, p.374) squeezed close to their means of E(Dur1 | y) = 1.43 
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and E(Dur3 | y) = 1.30 trading day; see Figure 8. On the other hand, the second regime 

prevails (on average) for five times as much, with E(Dur2 | y) = 6.64 and E(p22 | y) = 0.807. 

In view of quite an unusual pattern in the P’s diagonal posterior means, which implies 

a considerable variability of the regime-switching process, providing an empirical justification 

for the SV-MS(3)-M model’s superior data-fit seems quite a challenge. It may be that the 

untypical dynamics of the underlying Markov chain, combined with state-specific in-mean 

effects, enables the model to capture conditional skewness of the data. This, however, does 

not seem to be the case, for posterior distributions of the relevant coefficients,  

Sk(yt | ψt−1, St−1 = i, θ), i = 1, 2, ..., 3 (see Theorem 1) – with zero enjoying relatively high 

density values – do not reject conditional symmetry of the returns. (Incidentally, notice a left-

hand skew in the prior densities of the coefficients. The asymmetry is attributable to the 

asymmetric priors of γj’s – somewhat enforced by the parameterisation in (7)). 

Actually, the answer is provided by scatter plots in Figure 10, displaying posterior 

probabilities of each state at day t = 1, 2, …, T: 

( ) ( )∑
+

+=

=≈=
NM

Mq

q
tt ySI

N
yS

1

)( |11|1Pr , 

against the modelled log-returns on Agora’s daily share prices, yt. Apparently, the right-tailed 

observations are assigned with high posterior probabilities of the first state, whereas the left-

tailed ones – with high probabilities of the third state (see the left- and the right-hand panels 

in Figure 10, respectively). For the ‘middle zone’ of the empirical data distribution it is the 

second state that appears most probable (see the mid-panel in Figure 10). In view of the above 

it is obvious now that the three-state SV-MS-M model exploits the underlying Markov 

switching in-mean mechanism to capture the outlying rates of return. Building upon the 

conclusion, as well as on the posterior averages of the transition probabilities (see Table 7) 

a general pattern in the switching process outlines as follows. Predominantly, the chain 

remains in the second state, with a probability of leaving it – most likely to the first state – 

totalling E(p21 | y) + E(p23 | y) = 0.115 + 0.077 ≈ 0.19 (see Table 7). A sharp rise in the equity 

price, resulting in a right-tailed return, is captured as a shift to St = 1. Since E(p11 | y) = 0.30, 

there is (on average) a 30 percent chance of another consecutive strong price increase. On the 

other hand, a downright plunge to follow immediately an abnormal positive return – that is 

a switch directly from St = 1 to St = 3 – is hardly possible, as E(p13 | y) = 0.085. It appears that 

abrupt price soars are usually followed with ‘typical’ returns, for E(p12 | y) = 0.619. Still, if the 

price was to drop drastically (resulting in St = 3, regardless of the preceding state), then 
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chances of the chain moving to any of the three states are quite similar (E(p31 | y) = 0.382, 

E(p32 | y) = 0.390, E(p33 | y) = 0.228).  

Admittedly, the above results are rather non-standard, as they document some non-trivial 

pattern in dynamics of sharp price movements. It would merit a further research to compare 

the SV-MS(3)-M model with some common fat-tailed SV specifications (see e.g. Jacquier, 

Polson and Rossi 1999, 2004), which – by construction – neglect any dynamics in the 

occurrence of outliers. The issue goes beyond the current study, though, and shall be 

addressed elsewhere. 

 

4.3.2. Posterior analysis of the common parameters 
In this final part of our study we gain an insight into the differences in posterior outcomes on 

the common parameters across the models. Since marginal posterior densities of these 

parameters (i.e. α0, α1, µ, ϕ and σ2) are of a very regular, unimodal shape (relevant figures – 

not presented in the paper – are available upon request), we restrict further considerations to 

basic posterior characteristics, including means and standard deviations (see Table 8). 

With regard to parameters of the volatility equation (i.e. µ, ϕ and σ2; see Table 1) we notice 

that introducing a constant risk premium parameter to a simple SV specification does not 

affect the log-volatility dynamics. However, as long as allowing for the two-state switches in 

the risk-return relationship modifies the relevant posterior means only marginally, in the 

three-state SV-MS-M model they change quite remarkably. Firstly, E(µ | y, M3) drops by ca. 

0.114 (with respect to SV and SV-M), amounting to around 70% of E(µ | y, M0) and 

E(µ | y, M1). Such a change transfers to a decrease in the mean log-volatility level (in each 

model calculated as )1/()|(ln ϕ−µ=θthE , 1|| <ϕ ), from 

[ ] [ ] 409.1,|)|(ln,|)|(ln 10 =θ=θ MyhEEMyhEE tt  to [ ] 881.0,|)|(ln 3 =θ MyhEE t  (see 

Table 9). One can also observe a sizeable rise in the volatility persistence –  

945.0),|( 3 =ϕ MyE  as opposed to 88.0),|( ≈ϕ iMyE  (for i = 0, 1, 2) – accompanied with 

a perceptibly lower variability of the log-volatility process (as implied by the results for σ2 

and )1/()|(ln 22 ϕ−σ=θthVar , 1|| <ϕ ; see Tables 8 and 9). A smoother path of posterior 

averages of lnht’s in the SV-MS(3)-M model (see Figure 11) arises from its capability of 

handling the outliers, with similar results having already been recognised in the fat-tailed SV 

literature (see e.g. Pajor 2003; Jacquier, Polson and Rossi 2004). 
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Notice comparable posterior standard deviations of each volatility parameter across different 

model structures (see Table 8). However, this is no longer a case for the parameters common 

to the models’ observation equations, i.e. α0 and α1, with respect to which a few comments 

can be made. Firstly, introducing a constant in-mean term to the basic SV structure does not 

bear any influence on posterior moments of the autoregression coefficient, α1, since 

059.0),|(),|( 0111 =α=α MyEMyE  and 022.0),|(),|( 0111 =α=α MyDMyD ; see Table 8. 

Secondly, allowing for Markovian breaks in the risk-return relationship decreases posterior 

mean of α1, with the largest drop noted within the three-state SV-MS-M model. We 

conjecture that it is due to a hidden Markov process, with the second state featuring a relative 

persistence ( 807.0),|( 322 =MypE ), explaining a ‘part’ of the log-returns’ autocorrelation. 

Thirdly, as compared with the SV and SV-M specifications, results obtained within the 

switching models exhibit slightly more dispersion of the parameter in question, which may be 

attributable to a higher number of parameters involved in the observation equation. Finally, 

posterior characteristics of the intercept, α0, vary across the models quite markedly. 

Particularly, introducing a constant risk premium parameter to the SV model considerably 

raises the parameter’s posterior standard deviation ( 113.0),|( 10 =α MyD  as compared with 

038.0),|( 00 =α MyD ), with even higher dispersion in the case of the switching models 

( 146.0),|(),|( 3020 =α≈α MyDMyD ); see Table 8. A possible explanation for higher 

posterior uncertainty about the intercept – upon inclusion and further switching extension of 

the in-mean structure – is that all the parameters in the observation equation are involved in 

modelling a single quantity of unconditional mean of the observable process {yt, t ∈ Z}, i.e. 

)|( θtyE , the formula for which can easily be derived for the SV-MS-M process given by 

Definition 1. Taking expectation on both sides of Equation (1), 

)|()|()|( 5.0
110 θγ+θα+α=θ − tStt hEyEyE

t
, 

and noting that 
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the result – under second-order stationarity conditions (supposedly, 1|| 1 <α  and 1|| <ϕ ; see 

Kwiatkowski, 2010) – is obtained immediately: 
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A corresponding formula for the SV-M model can be deduced from (20), assuming jγ=γ  for 

each j = 1, 2, ..., K: 
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According to (21) one can expect a ‘tradeoff’ between α0 and γ, or – to be more precise – 

a negative posterior correlation between the two parameters, which in fact is the case, as 

Corr(α0, γ | y, M1) = −0.941. Posterior correlation coefficients between the observation 

equation parameters within the two- and the three-state SV-MS-M model usually reveal 

weaker linear interrelations among the parameters (see Tables 10 and 11). 

 

5. Concluding remarks 
In the paper we extend the methodology of Bayesian stochastic volatility models with 

Markovian breaks in the in-mean structure developed by Kwiatkowski (2010), by allowing for 

three rather than only two states of the underlying chain. The MCMC algorithm is suitably 

modified and presented for a general K-state SV-MS-M model. Also, the past-conditional 

moments’ structure of the SV-MS-M process is discussed in some detail, particularly with 

respect to the model’s capability of capturing data skewness. 

The methodology is employed to investigate a possibly switching pattern in the risk-return 

relationship among individual companies’ share prices, representing major Polish financial 

market sectors. Perhaps to one’s dismay, the overall results do not provide compelling 

evidence of either a constant or regime switching market risk premium. Despite superior data 

fit of the SV-MS-M models (reported for most of the datasets), it seems that introducing 

Markovian switches into the in-mean parameter does not resolve the issue of its apparent 

insignificance indicated by the results obtained within simple SV-M models. Moreover, 

inference on the Markov switching risk premium – via basic posterior characteristics – is 

handicapped by multimodality and a relatively large dispersion of posterior marginals. Results 

for Agora, representing a single exception in this regard, are discussed at length. It is found 

that the best in-sample performance of the three-state SV-MS-M model may stem from its 

empirical capability of capturing outlying observations and some non-trivial dynamics in their 
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occurrence. Therefore, it is deemed that future research should address a comparison of the 

SV-MS-M models against common fat-tailed SV structures, with respect to the in-sample fit, 

as well as in more practical terms of, for instance, market risk analysis – hinged upon 

modelling the outliers. 
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Appendix 

In what follows derivation of the past-conditional moments of the SV-MS-M process (see 

Theorem 1) is briefly outlined.  

Let  
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be the past-conditional moment of order r ∈ N for random variable 
tSγ . For further 

considerations note that – due to independence between the Markov chain {St} and 

conditional variance process {ht} – the following identity holds for each k, l ∈ R: 
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Conditionally upon ψt−1, the logarithm of conditional variance ht is normally distributed with 

mean 11 ln),|(ln −− ϕ+µ=θψ ttt hhE  and variance 2
1 ),|(ln σ=θψ −tthVar . Hence, the past-

conditional distribution of conditional variance ht itself is Log-Normal, with  
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Past-conditional mean of the SV-MS-M process is obtained immediately: 
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To derive the second-order central moment note that: 
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which coincides with the result presented in Theorem 1. 

Calculation of the conditional skewness coefficient: 
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requires derivation of a third-order central moment, related with ordinary moments via the 

identity: 



 27 

( )[ ]
).,|(2),|(),|(3),|(

,|),|(

1
3

1
2

11
3

1
3

1

θψ+θψθψ−θψ=

θψθψ−

−−−−

−−

tttttttt

tttt

yEyEyEyE
yEyE

 (A.5) 

Some tedious algebra leads to the formula: 
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Dividing (A.6) by  
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reduces the last exponent term in both expressions and yields the formula for conditional 

skewness coefficient presented in Theorem 1. 
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Appendix – Tables and Figures 

 

Tables 
 
Table 1: Mean and volatility equation specifications for the analysed models 

Model Observation equation Log-volatility equation 

M0: SV tttt hyy ε+α+α= −110  

ttt hh ση+ϕ+µ= −1lnln  M1: SV-M ttttt hhyy ε+γ+α+α= −110  

M2: SV-MS(2)-M 
tttStt hhyy

t
ε+γ+α+α= −110  

M3: SV-MS(3)-M 

 
Table 2: Dataset list 

No. Company Sector Sample range Sample 
size (T) Start End 

1 AGORA media Jan. 3, 2001 

Oct. 11, 2010 

2455 
2 ASSECOPOL IT Jan. 3, 2001 2455 
3 CIECH chemicals Feb. 11, 2005 1422 
4 GTC developers May 7, 2004 1618 
5 KOFOLA food Sep. 2, 2003 Sep. 29, 2008 1276 
6 KOGENERA energy Sep. 3, 2002 

Oct. 11, 2010 

2034 
7 PBG construction July 7, 2004 1575 
8 PKN ORLEN oil & gas Jan. 3, 2001 2455 
9 PKO BP banking Nov. 12, 2004 1487 

10 TPSA telecommunication Jan. 3, 2001 2455 
11 TVN media Dec. 8, 2004 1469 

 
 
Table 3: Descriptive statistics for the analysed datasets 

Company min max average standard  
deviation skewness excess 

kurtosis 
AGORA -16.919 10.851 -0.047 2.424 -0.225 2.781 

ASSECOPOL -30.561 14.622 -0.007 2.706 -0.736 11.064 
CIECH -17.313 13.604 -0.011 2.465 -0.008 6.076 
GTC -14.660 17.280 0.051 2.835 0.276 3.768 

KOFOLA -18.848 14.953 0.003 2.749 -0.030 4.297 
KOGENERA -13.976 20.067 0.105 2.394 0.784 7.259 

PBG -10.003 9.278 0.119 2.179 0.004 2.209 
PKN ORLEN -12.158 12.866 0.023 2.196 -0.024 1.955 

PKO BP -12.223 9.973 0.040 2.360 -0.014 1.955 
TPSA -9.022 10.178 -0.019 2.083 0.063 1.264 
TVN -15.932 12.859 0.063 2.599 -0.261 3.587 
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Table 4: Bayesian model comparison 

Company 
M0: SV M1: SV-M M2: SV-MS(2)-M M3: SV-MS(3)-M 

log p(y) R log p(y) log BF1,0 R log p(y) log BF2,0 R log p(y) log BF3,0 R 
AGORA -2306.04 3 -2307.86 -1.81 4 -2303.82 2.23 2 -2282.61 23.43 1 

ASSECOPOL -2347.05 3 -2348.47 -1.42 4 -2344.01 3.04 2 -2332.72 14.32 1 
CIECH -1253.90 4 -1253.23 0.66 3 -1238.61 15.29 2 -1227.30 26.60 1 
GTC -1617.81 4 -1615.72 2.09 3 -1613.54 4.27 2 -1611.15 6.67 1 

KOFOLA -1224.32 3 -1223.61 0.71 2 -1224.77 -0.45 4 -1220.81 3.51 1 
KOGENERA -1788.17 4 -1783.49 4.68 3 -1778.55 9.62 2 -1775.02 13.15 1 

PBG -1409.74 4 -1406.26 3.47 3 -1396.34 13.40 2 -1395.90 13.84 1 
PKN ORLEN -2263.53 4 -2262.33 1.20 3 -2260.17 3.36 2 -2255.60 7.93 1 

PKO BP -1393.95 4 -1393.70 0.25 2 -1393.81 0.13 3 -1386.24 7.71 1 
TPSA -2216.74 4 -2212.58 4.16 3 -2211.56 5.18 2 -2207.01 9.73 1 
TVN -1427.94 2 -1431.52 -3.58 4 -1426.77 1.17 1 -1428.32 -0.39 3 

Note: ‘log’ and ‘R’ stand for decimal logarithm and model rank, respectively; BFk,l denotes 
Bayes factor defined as BFk,l = p(y | Mk) / p(y | Ml). 
 
Table 5: Posterior means (and standard deviations) of the risk premium parameter in the SV-
M models 

Company E(γ | y) 
(D(γ | y)) Company E(γ | y) 

(D(γ | y)) 

AGORA -0.024 
(0.061) PBG 0.064 

(0.062) 

ASSECOPOL 0.047 
(0.061) PKN ORLEN -0.111 

(0.081) 

CIECH 0.043 
(0.055) PKO BP -0.096 

(0.079) 

GTC 0.015 
(0.064) TPSA -0.090 

(0.077) 

KOFOLA 0.131 
(0.071) TVN -0.007 

(0.082) 

KOGENERA 0.068 
(0.047)  

 
Table 6: Posterior means (and standard deviations) of the risk premium parameters and 
transition probabilities in the SV-MS(2)-M models 

Company p11 p22 γ1 γ2 Company p11 p22 γ1 γ2 

AGORA 0.435 
(0.237) 

0.685 
(0.266) 

0.521 
(0.472) 

-0.252 
(0.194) PBG 0.507 

(0.161) 
0.811 

(0.176) 
1.061 

(0.450) 
-0.344 
(0.205) 

ASSECOPOL 0.490 
(0.273) 

0.679 
(0.227) 

0.587 
(0.448) 

-0.278 
(0.298) PKN ORLEN 0.486 

(0.286) 
0.541 

(0.278) 
0.139 

(0.297) 
-0.318 
(0.240) 

CIECH 0.522 
(0.256) 

0.795 
(0.117) 

1.144 
(0.612) 

-0.528 
(0.263) PKO BP 0.309 

(0.274) 
0.651 

(0.249) 
0.495 

(0.476) 
-0.323 
(0.176) 

GTC 0.378 
(0.311) 

0.656 
(0.286) 

0.701 
(0.620) 

-0.264 
(0.322) TPSA 0.300 

(0.213) 
0.682 

(0.229) 
0.549 

(0.395) 
-0.349 
(0.179) 

KOFOLA 0.622 
(0.242) 

0.606 
(0.234) 

0.562 
(0.364) 

-0.299 
(0.311) TVN 0.437 

(0.282) 
0.597 

(0.279) 
0.343 

(0.383) 
-0.206 
(0.236) 

KOGENERA 0.561 
(0.292) 

0.532 
(0.276) 

0.375 
(0.376) 

-0.258 
(0.374)  
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Table 7: Posterior means (and standard deviations) of the risk premium parameters and 
transition probabilities in the SV-MS(3)-M models 

Company AGORA ASSECOPOL CIECH 
 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 

tSγ  1.628 
(0.332) 

-0.304 
(0.155) 

-2.532 
(0.691) 

1.056 
(0.486) 

-0.046 
(0.292) 

-1.071 
(0.912) 

1.644 
(0.559) 

0.103 
(0.513) 

-0.817 
(0.504) 

P 

St–1 = 1 0.296 
(0.068) 

0.619 
(0.118) 

0.085 
(0.111) 

0.323 
(0.212) 

0.454 
(0.262) 

0.223 
(0.250) 

0.326 
(0.182) 

0.256 
(0.201) 

0.418 
(0.252) 

St–1 = 2 0.115 
(0.069) 

0.807 
(0.145) 

0.077 
(0.111) 

0.251 
(0.167) 

0.489 
(0.271) 

0.260 
(0.227) 

0.310 
(0.193) 

0.390 
(0.241) 

0.300 
(0.207) 

St–1 = 3 0.382 
(0.154) 

0.390 
(0.153) 

0.228 
(0.110) 

0.290 
(0.214) 

0.256 
(0.204) 

0.453 
(0.212) 

0.124 
(0.103) 

0.242 
(0.214) 

0.634 
(0.229) 

Company GTC KOFOLA KOGENERA 
 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 

tSγ  1.144 
(0.536) 

-0.053 
(0.219) 

-0.491 
(0.398) 

0.825 
(0.386) 

0.066 
(0.331) 

-0.571 
(0.379) 

0.663 
(0.437) 

0.030 
(0.237) 

-0.432 
(0.339) 

P 

St–1 = 1 0.188 
(0.164) 

0.426 
(0.270) 

0.386 
(0.274) 

0.479 
(0.240) 

0.338 
(0.218) 

0.183 
(0.182) 

0.371 
(0.226) 

0.375 
(0.235) 

0.254 
(0.215) 

St–1 = 2 0.214 
(0.181) 

0.436 
(0.268) 

0.350 
(0.247) 

0.280 
(0.201) 

0.367 
(0.236) 

0.353 
(0.230) 

0.291 
(0.222) 

0.369 
(0.249) 

0.340 
(0.234) 

St–1 = 3 0.176 
(0.176) 

0.411 
(0.255) 

0.414 
(0.255) 

0.302 
(0.195) 

0.263 
(0.209) 

0.435 
(0.234) 

0.312 
(0.216) 

0.328 
(0.229) 

0.361 
(0.226) 

Company PBG PKN ORLEN PKO BP 
 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 

tSγ  1.378 
(0.345) 

-0.187 
(0.374) 

-0.799 
(0.456) 

0.482 
(0.264) 

-0.156 
(0.233) 

-0.574 
(0.204) 

0.960 
(0.273) 

-0.251 
(0.188) 

-0.699 
(0.224) 

P 

St–1 = 1 0.424 
(0.119) 

0.418 
(0.163) 

0.158 
(0.161) 

0.269 
(0.154) 

0.296 
(0.257) 

0.435 
(0.273) 

0.163 
(0.114) 

0.670 
(0.204) 

0.167 
(0.189) 

St–1 = 2 0.137 
(0.120) 

0.254 
(0.223) 

0.608 
(0.251) 

0.377 
(0.259) 

0.300 
(0.210) 

0.323 
(0.255) 

0.123 
(0.121) 

0.354 
(0.197) 

0.523 
(0.212) 

St–1 = 3 0.209 
(0.126) 

0.438 
(0.243) 

0.352 
(0.276) 

0.248 
(0.229) 

0.389 
(0.240) 

0.363 
(0.189) 

0.393 
(0.172) 

0.231 
(0.180) 

0.377 
(0.192) 

Company TPSA TVN 

 

 St = 1 St = 2 St = 3 St = 1 St = 2 St = 3 

tSγ  0.733 
(0.344) 

-0.154 
(0.277) 

-0.542 
(0.249) 

0.588 
(0.389) 

-0.055 
(0.215) 

-0.398 
(0.284) 

P 

St–1 = 1 0.221 
(0.144) 

0.391 
(0.239) 

0.387 
(0.243) 

0.284 
(0.196) 

0.370 
(0.247) 

0.346 
(0.251) 

St–1 = 2 0.220 
(0.184) 

0.370 
(0.241) 

0.410 
(0.253) 

0.278 
(0.218) 

0.363 
(0.243) 

0.359 
(0.244) 

St–1 = 3 0.264 
(0.193) 

0.342 
(0.230) 

0.394 
(0.231) 

0.280 
(0.220) 

0.354 
(0.241) 

0.366 
(0.228) 
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Table 8: Posterior means (and standard deviations) of the common parameters  
Model 

Parameter SV SV-M SV-MS(2)-M SV-MS(3)-M 

α0 
-0.028 
(0.038) 

0.013 
(0.113) 

0.074 
(0.148) 

0.215 
(0.146) 

α1 
0.059 

(0.022) 
0.059 

(0.022) 
0.046 

(0.030) 
0.025 

(0.034) 

µ 0.166 
(0.035) 

0.165 
(0.035) 

0.150 
(0.036) 

0.051 
(0.031) 

ϕ 0.882 
(0.025) 

0.883 
(0.025) 

0.886 
(0.026) 

0.945 
(0.025) 

σ2 0.169 
(0.041) 

0.166 
(0.041) 

0.161 
(0.042) 

0.059 
(0.037) 

 
Table 9: Posterior means (and standard deviations) of the unconditional log-volatility 
expected value and variance  

Model 
Moment SV SV-M SV-MS(2)-M SV-MS(3)-M 

E(lnht | θ) 1.409 
(0.080) 

1.409 
(0.080) 

1.312 
(0.122) 

0.881 
(0.154) 

Var(lnht | θ) 0.757 
(0.095) 

0.755 
(0.095) 

0.745 
(0.097) 

0.530 
(0.103) 

 
Table 10: Posterior correlations between the observation equation parameters within the SV-
MS(2)-M model for Agora 

Parameter α0 α1 γ1 γ2 
α0 1 -0.354 0.441 -0.360 
α1  1 -0.448 0.216 
γ1   1 -0.112 
γ2    1 

 
Table 11: Posterior correlations between the observation equation parameters within the SV-
MS(3)-M model for Agora 

Parameter α0 α1 γ1 γ2 γ3 
α0 1 -0.047 -0.209 -0.804 -0.327 
α1  1 -0.221 -0.018 -0.097 
γ1   1 0.191 -0.266 
γ2    1 0.563 
γ3     1 
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Figures 
Figure 1: Conditional skewness coefficients as a function of σ2 for some two-state SV-MS-M processes 
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Figure 2: Analysed series of daily logarithmic rates of return 
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Figure 3: Bivariate marginal posterior densities of the SV-MS(2)-M model’s parameters for Ciech  
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Figure 4: Bivariate marginal posterior densities of the SV-MS(3)-M model’s parameters for Ciech (left panel: α0, α1, γ1, γ2, γ3, µ, ϕ and σ2 
coordinates; right panel: transition probabilities) 
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Figure 5: Bivariate marginal posterior densities of the SV-MS(3)-M model’s parameters for Agora (left panel: α0, α1, γ1, γ2, γ3, µ, ϕ and σ2 
coordinates; right panel: transition probabilities) 
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Figure 6: Marginal posteriors (bars) and priors (solid line) of in-mean parameters within the 
SV-MS(3)-M model for Agora 
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Figure 7: Marginal posteriors (bars) and priors (solid line) of transition probabilities within 
the SV-MS(3)-M model for Agora 
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Figure 8: Marginal posteriors (bars) and priors (solid line) of expected durations within the 
SV-MS(3)-M model for Agora 
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Figure 9: Marginal posteriors (bars) and priors (solid line) of past-conditional skewness 
coefficients within the SV-MS(3)-M model for Agora 
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Figure 10: Scatter plots of probabilities Pr{St = i | y, M3} (i = 1, 2, 3) against the log-returns 
on Agora’s share prices 
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Figure 11: Posterior averages of lnht (bottom) along with log-returns on Agora’s share prices 
(top) 
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