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Abstract

We develop Bayesian inference for an unconditional quantile regression
model. Our approach provides better estimates in the upper tail of the wage
distribution as well as valid confidence intervals for the Oaxaca-Blinder decom-
position. We analyse the recent changes in the U.S. wage structure using data
from the CPS Outgoing Rotation Group from 1992 to 2009. We find that the
largest part of the recent changes is explained mainly by differences in returns
to education while the decline in the unionisation rate has a small impact, and
that earnings inequality is rising more at the top end of the wage distribution.
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1 Introduction

Introduced by Koenker and Bassett (1978), quantile regression models aim at mod-
eling the effect of the explanatory variables on the conditional distribution of the
outcome variable. They have been increasingly used in empirical labour market
studies, to describe parsimoniously the entire wage conditional distribution (see e.g.
Buchinsky 1994, Chamberlain 1994, Machado and Mata 2001). Several competing
methods of estimation in both classical and Bayesian frameworks have been recently
developped (see for instance Yu and Moyeed 2001, Kozumi and Kobayashi 2011 for
the Bayesian side). Since any quantile can be used in any part of the outcome distri-
bution, the quantile regression models are more flexible and more robust to outliers
than the classical mean regression models.

While the conditional quantile regression models can be useful, they are very
restrictive. First a change in the distribution of covariates may change the inter-
pretation of the coefficient estimates. This point is illustrated for instance in Powell
(2011). To overcome this restriction, Firpo et al. (2009) have proposed a new re-
gression method which evaluates the impact of changes in the distribution of the ex-
planatory variables on the quantiles of the unconditional distribution of the outcome
variable. Second, the property that, in the popular Oaxaca-Blinder decomposition
method of a simple linear regression, differences in unconditional means is equal
to differences between conditional means, is no longer valid for conditional quan-
tile regressions. As explained in e.g. Firpo et al. (2011), with conditional quantile
regressions, the difference in unconditional quantiles is not equal to difference in con-
ditional quantiles. This question has received several answers in the literature, see
e.g. Juhn et al. (1993), DiNardo et al. (1996), or Machado and Mata (2005), but none
of these methods can be used to decompose general distributional measures in the
same way that the means can be decomposed using the conventional Oaxaca-Blinder
method. However, the method of Melly (2005) and the RIF-regression method of
Firpo et al. (2009) can perform a detailed decomposition very much in the spirit of
the traditional Oaxaca decomposition for the mean (Firpo et al. 2011).

In this paper, we develop a reliable Bayesian inference method for the RIF-
regression model of Firpo et al. (2009) in which we estimate parametrically the log
wage distribution by a mixture of normal densities. The mixture of normal densities
is pursued so as to produce a better fit in the tails of the wage distribution. Our
first empirical results show that the presence of a heavy right-hand tail in the wage
distribution makes unreliable the usual density kernel estimate used in the RIF-OLS
method of Firpo et al. (2009) as it leads to an overestimation of the RIF-regression
coefficients for the corresponding quantile. Our parametric approach provides better
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estimates of the RIF-regression coefficients in the upper tail.
Standard errors obtained by classical RIF-OLS are slightly smaller than our

Bayesian standard errors due to the fact our Bayesian approach takes a better ac-
count of parameter uncertainty of the density estimation and is pursued so as to
propose valid confidence intervals for the Oaxaca-Blinder decomposition.

We illustrate our approach, analysing the recent trends in U.S. wage structure
and earnings inequality. The recent rise in earnings dispersion in U.S. is more of a
shock as it started quite a long time ago. The literature dealing with the causes of
this wage dispersion has literally exploded over the past decades. Several competing
explanations have been offered. Bound and Johnson (1992) attribute the changes
to the skill-biased technological progress which increases the rate of growth of the
relative demand for highly educated and “more-skilled” workers (see also Mincer
1993, Katz and Autor 1999). Murphy and Welch (1992) stress the impact of the
globalisation which increases the rate of unskilled immigration workers and led to
a decrease in the growth of the relative supply of skills (see also Katz and Murphy
1992). DiNardo et al. (1996) focus on changes in labour market institutions, in wage
setting norms including the decline in unionisation, on the erosion of the real and
relative value of the minimum wage.

Atkinson (2008) is inclined to be careful about these now traditional explanations
and suggests to take seriously the new models of earnings formation. In his book,
he reviews other alternative explanations such as Rosen (1981)’s model of superstars
and hierarchical models. He provides a complete descriptive analysis for the changing
distribution of earnings in different OECD countries. He argues that “while the
race between technology and education is appealing, a constantly rising demand for
educated workers does not lead to a constantly rising wage premium but to a stable
wage differential, the size of which depends on the speed of a country’s response
to shortages of qualified workers”. Our paper does not refute these explanations
but aims simply at measuring the alternative role of some factors such as union,
education, experience and gender for explaining the recent changes in the U.S. wage
structure and in earnings inequality.

Most previous studies on changes in the structure of wages in the U.S. have used
wage data from the March Current Population Survey (CPS) (see e.g. Buchinsky
1994 and others). We use instead the hourly wage data from the Outgoing Rotation
Group (ORG) supplements of the CPS as Lemieux (2006) and Firpo et al. (2007).
The ORG CPS files provide a better data set for measuring changes in hourly wage
distribution than the March CPS as they give a better representation of the disper-
sion of wages for each and every hour worked in the labour market, regardless of who
is supplying this hour (Bernstein and Mishel 1997). Since January 1992, the CPS
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has changed the coding scheme of its education attainment question from completed
years to degree acquired. Kominski and Siegel (1993) show that the new educa-
tional attainment item provides more relevant and useful data for current and future
analysis. Over our period of analysis (1992-2009), unconditional quantile regressions
show that earnings inequality is more rising in the top end of the wage distribution
while an Oaxaca-Blinder decomposition shows that for a large part (around 77% on
average), changes in the U.S. wage structure is explained by the wage structure ef-
fect (differences in yields of initial characteristics). If the decline in unionisation has
an impact on the recent changes in wage structure, this effect is mainly operating
for low wages. For higher wages the increase in returns to education and gender
discrimination are the dominant factors.

The paper is organised as follows. In section 2, we review the conditional quan-
tile regression models when using a likelihood function that is based on the asym-
metric Laplace distribution (Yu and Moyeed 2001), and we show the limitations of
MCMC methods and Oaxaca-Blinder decomposition procedure used for conditional
quantile regression. In section 3, we present a reliable Bayesian inference for the
RIF-regression of Firpo et al. 2009 in which we estimate the log wage distribution by
a mixture of three normal densities. In section 4, we provide an Oaxaca-Blinder de-
composition procedure using our RIF-regression method, and we show how to obtain
reliable standard errors for each component of the decomposition using the draws
of the RIF-regression coefficients together with a procedure of Rao-Blackwellisation.
Section 5 illustrates the approach by using the CPS-ORG sample from 1992 through
2009. Section 6 concludes.

2 Conditional quantile regression models

Consider the linear regression model

yi = x′
iβτ + ǫi, (1)

where (yi, xi), i = 1, 2, · · · , n are independent observations, yi being the response
variable and x

′

i = (1, xi1, · · · , xik) being the (k + 1) known covariates. In the next
paragraph, τ will mean the τ th quantile. β

′

τ = (β0τ , · · · , βkτ ) represents the (k + 1)
unknown regression parameters, and ǫi, i = 1, · · · , n are the error terms which are
supposed independent and identically distributed. The unbiased estimation of β in
a usual regression model requires that E(ǫi|xi) = 0, whatever the distribution of ǫi.

A quantile regression model considers the same linear regression as (1), but this
time, the zero expectation assumption for ǫ is replaced by the assumption that the
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τ th quantile of ǫ is equal to zero. If f(.) is the density of ǫ, this means that

∫ 0

−∞

fτ (ǫi)dǫi = τ. (2)

The quantile regression estimator for βτ , β̂τ first proposed in Koenker and Bassett
(1978) does not consider a specific distribution for ǫ (so that f(.) is left unspecified).
It is simply given as the solution of the following minimisation problem

min
β

1

N

n∑

i=1

ρτ (yi − x
′

iβτ ), (3)

where ρτ (.) is the check function or loss function defined as

ρτ (u) = u × (τ − 1I(u < 0)), (4)

where 1I(.) is the indicator function. As this loss function is not differentiable (as a
quadratic loss function would be), one has to use linear programming techniques to
solve this problem.

2.1 Using the asymmetric Laplace distribution

Yu and Moyeed (2001) have proposed to specify the distribution of ǫ using the
Asymmetric Laplace Distribution (ALD):

f(ǫi|τ) =
τ(1 − τ)

σ
exp

{

−1

σ
ρτ (ǫi)

}

. (5)

This density automatically fulfill the quantile restriction condition (2). For a sym-
metric Laplace process, the maximum likelihood estimator of the mean parameter
is equal to the sample median. This property is generalised here for all quantiles so
that the maximum likelihood estimator based on the complete likelihood

L(yi|βτ , στ , τ) = σ−n
τ τn(1 − τ)n exp

{

− 1

στ

∑

i

ρτ (yi − x
′

iβτ )

}

(6)

provides exactly the same value as that provided by the estimator proposed of
Koenker and Bassett (1978) for βτ . With however the same difficulties as the loss
function ρτ (u) (4) is not differentiable at zero. A Bayesian approach does not lead
to the same difficulties; the likelihood function (times the prior) has to be integrated
and differentiability plays no role in integration.
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2.2 Bayesian Inference for conditional quantile regression

To make inferences on the parameter of interest βτ and στ , given τ and the observa-
tions on (X, Y ), one has to specify a prior density for β. The posterior distribution
of βτ , π(β|y) is proportional to

π(β, σ|y) ∝ L(y|β)π(β, σ),

where L(y|β) is the likelihood function given in (6) and π(β, σ) is the prior distribu-
tion of β and σ. Yu and Moyeed (2001) show that for any type of prior, including an
improper prior, the posterior moments exist. They choose an improper prior and no
conjugate prior is available when the model is presented in this form. The posterior
density has to be integrated out by a MCMC method. Yu and Moyeed (2001) make
use of the simple random walk Metropolis with a Gaussian proposal. The method is
available as package bayesQR in R. As noted in Kozumi and Kobayashi (2011), the
random walk Metropolis maybe difficult to tune, because a different tuning param-
eter has to be chosen for every value of τ so as to get an acceptation rate of around
25%.

Kozumi and Kobayashi (2011) propose a location-scale mixture representation
of the asymmetric Laplace distribution that allows to find analytical expressions for
the conditional posterior densities of the model. With these tools, they can propose
first a conditional natural conjugate prior and second a Gibbs sampler. The merit of
the Gibbs sampler is to avoid the specification of a candidate density and of a tuning
parameter. The normal-inverted-gamma prior combines nicely with the conditional
likelihood in the Gibbs sampler. We can note however that it seems difficult to
elicit an informative prior, because we should specify different hyper-parameters for
each quantile. The Gibbs sampler has an important drawback compared to a direct
Metropolis approach which is its extreme slowness due to the fact that one has to
draw random numbers in an inverted generalised Gaussian for each observation and
this is a slow operation which has to be done for each observation separately.

2.3 Oaxaca-Blinder decomposition and quantiles

The popular Oaxaca-Blinder decomposition (Oaxaca 1973; Blinder 1973) makes use
of the property that, in a linear regression, the difference in unconditional means is
equal to the difference between conditional means. If yi = Xiβ + ei, then E(yi) =
E(Xi)β. Applying this simple result to a Mincer wage equation where y is the log
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wage, we can explain the mean wage gap between for instance males and females as

E[ymi − yfi] = E[Xmiβm + emi] − E[Xfiβf + efi]

= E[Xmi]βm − E[Xfi]βf

= [E(Xmi) − E(Xfi)]βm + E(Xfi)[βm − βf ].

This decomposition is estimated by replacing the expected value of the covariates by
their sample mean and the β by their regression estimates. In a classical framework,
this will be the OLS estimator, in a Bayesian framework the posterior expectation is
used as a first approximation. This equation means that mean wage differences are
explained first by the difference in average characteristics multiplied by the male
coefficient (composition effect) and secondly by the difference in yield of female
average characteristics expressed by β̂m − β̂f (structure effect).

This results is not directly transposable to quantile regression as in a quantile
regression E(ei) 6= 0. We would like to explain the difference between two uncon-
ditional quantiles as a function of the conditional quantiles. As recalled in Firpo
et al. (2011), the difference in unconditional quantiles is not equal to the difference
of conditional quantiles. This question has received several answers in the literature
(see e.g. Juhn et al. 1993, DiNardo et al. 1996, Machado and Mata 2005 or Melly
2005), but none of these methods can be used to decompose general distributional
measures in the same way as means can be decomposed when using the conventional
Oaxaca-Blinder method.

Juhn et al. (1993) have proposed a “plug-in” procedure of Oaxaca decomposition
which allows for the distribution of the error term to depend on the covariates.
But in the presence of heteroscedasticity, this method produces misleading results.
DiNardo et al. (1996) have proposed a reweighing procedure using a kernel density
estimation. However, if there are too many variables, it becomes impossible to
estimate counterfactual distributions non-parametrically. Machado and Mata (2005)
have proposed a simulation method to compute the wage structure sub-components
of the detailed decomposition using a Monte Carlo approach. These components
are computed by sequentially switching the coefficients of the quantile regressions
for each covariate from their estimated valued. But, this method does not provide a
consistent effect since the effect of the reweighed covariate of interest gets confounded
by other covariates correlated with that same covariate.

Firpo et al. (2011) show that the method based on the estimation of RIF-
regressions proposed in Firpo et al. (2009) is more consistent for estimating the
detailed components of both the wage structure and the composition effects. This is
the method that we shall discuss in the next section and use as a basis for a Bayesian
implementation.
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3 Unconditional quantile regression

The Influence Function (IF ), first introduced by Hampel (1974), describes the in-
fluence of an infinitesimal change in the distribution of a sample on a real-valued
functional distribution or statistics ν(F ), where F is a cumulative distribution func-
tion. The IF of the functional ν is defined as

IF (y, ν, F ) = limǫ→0

ν(Fǫ,∆y
) − ν(F )

ǫ
=

∂ν(Fǫ,∆y
)

∂ǫ
|ǫ=0 (7)

where Fǫ,∆y
= (1 − ǫ)F + ǫ∆y is a mixture model with a perturbation distribution

∆y which puts a mass 1 at any point y. The expectation of IF is equal to 0.
Firpo et al. (2009) make use of (7) by considering the distributional statistics ν(.)

as being the quantile function (ν(F ) = qτ ) in order to find how a marginal quantile of
y can be modified by a small change in the distribution of the covariates. They make
use of the Recentered Influence Function (RIF ), defined as the original statistics
plus the IF so that the expectation of the RIF is equal to the original statistics.

Considering the τ th quantile qτ defined implicitly as τ =
∫ qτ

−∞
dF (y), Firpo et al.

(2009) show that the IF for the quantile of the distribution of y is given by

IF (y, qτ(y), F ) =
τ − 1I(y ≤ qτ )

f(qτ )
,

where f(qτ ) is the value of the density function of y evaluated at qτ . The correspond-
ing RIF is simply defined by

RIF (y, qτ , F ) = qτ +
τ − 1I(y ≤ qτ )

f(qτ )
, (8)

with the immediate property that

E (RIF (y, qτ)) =

∫

RIF (y, qτ)f(y)dy = qτ .

The illuminating idea of Firpo et al. (2009) is to regress the RIF on covariates, so
the change in the marginal quantile qτ is going to be explained by a change in the
distribution of the covariates by means of a simple linear regression:

E[RIF (y, qτ |X)] = Xβ. (9)

They propose different estimation methods: a standard OLS regression (RIF-OLS),
a logit regression (RIF-Logit) and a nonparametric logit regression. The estimates
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of the coefficients of the unconditional quantile regressions, β̂τ obtained by a simple
Ordinary Least Square (OLS) regression (RIF-OLS) are as follows:

β̂τ = (X ′X)
−1

X ′R̂IF (y; qτ). (10)

The practical problem to solve is that the RIF depends on the marginal density of
y. Firpo et al. (2009) propose using a non-parametric estimator for the density and
the sample quantile for qτ so that an estimate of the RIF for each observation is
given by

R̂IF (yi; qτ ) = q̂τ +
τ − 1I(y ≤ q̂τ )

f̂(q̂τ )
.

Standard deviations of the coefficients are given by the standard errors of the regres-
sion.

However, the RIF-regression models of Firpo et al. (2009) present some limita-
tions.

- First, if the wage distribution is characterised by a heavy right-hand tail, the
kernel density estimation may under-smooth the tail density estimates, leading
to unreliable inference for the upper quantile regression coefficients. To over-
come this problem, we propose a semi-parametric approach to estimate the
distribution of log-wages using a mixture of normal densities.

- Second the classic RIF-OLS estimation does not take into account the uncer-
tainty introduced by the use of a point estimate for f(qτ ). A Bayesian approach
should help to remove this difficulty.

3.1 Bayesian inference for the RIF-regression model

We model the distribution of the observed log-wages by a mixture of K normal
densities f(y|θ) indexed by θ = (θk)k=1,...,K, where θk = (µk, σ

2
k, pk), and (µk, σ

2
k)

are the component specific mean and variance. If each component is sampled with
probability pk, then the density function f(y|θ) is written as:

f(y|θ) =
K∑

k=1

pkf(y|θk), (11)

where

f(y|θk) =
1

σk

√
2π

exp−(y − µk)
2

2σ2
k

.
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Bayesian inference for mixture of normal densities relies on a rewriting of the like-
lihood function using a data augmentation representation which leads to a Gibbs
sampler. Details of the approach can be found in e.g. Robert and Casella (1999) or
Frühwirth-Schnatter (2006).

The RIF for a quantile regression can then be reformulated as follows

RIF (yi; qτ ) = y(θ, τ) = q̂τ +
τ − 1I(y ≤ q̂τ )

f(q̂τ |θ)
,

where q̂τ remains the natural estimator of the τ th quantile while θ is an unknown
parameter. The quantile regression model becomes

y(θ, τ) = Xβ(θ, τ) + ǫ. (12)

where ǫ is now normal with zero mean and variance σ2. This is a conditional linear
regression, conditional on the value of θ. In fact, this problem can be treated sequen-
tially. We first estimate the marginal density of y by means of the given mixture of
normal densities in (11). Given this estimation, we run the linear regression (12).
More precisely, we first derive the posterior density of θ by a Gibbs sampler, store
the posterior draws of θ and then treat model (12) given the former Gibbs output.
Marginal moments of β are obtained by averaging over the draws of θ.

The conditional posterior density of β in (12) is Student with

ϕ(β|θ, τ, y, X) = ft(β|β∗(θ), s∗(θ), M∗, n), (13)

where, if we suppose a non-informative prior for β and σ2

M∗ = X ′X,

β∗(θ) = M−1
∗ X ′y(θ, τ),

s∗(θ) = y(θ, τ)′(IN − X(X ′X)−1X ′)y(θ, τ). (14)

Marginal moments are obtained by integrating out θ. This integration can be ap-
proximated easily when we have posterior draws of θ, noted θj :

E(β|y, τ) =

∫

β∗(θ, τ)ϕ(θ|y)dθ ≃ 1

m

m∑

j=1

β∗(θj), (15)

Var(β|y, τ) =
M−1

∗

n − 2

∫

s∗(θ, τ)ϕ(θ|y)dθ ≃ 1

m(n − 2)
M−1

∗

m∑

j=1

s∗(θj). (16)
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Let us give a brief sketch of the procedure for estimating θ. The Bayesian ap-
proach for estimating mixture relies on a data augmentation representation. For
each observation yi of (y1, . . . , yn) from (11), we associate a missing variable zi that
indicates its component of origin. The conditional likelihood function of the sample
is

L(µk, σ
2
k|y, z) ∝ σ−nk

k exp− 1

2σ2
k

(
s2

k(z) + nk(µk − ȳk(z))2
)
, (17)

where the sufficient statistics are

ȳk(z) =
1

nk

∑

i∈Zk

log yi, s2
k(z) =

1

nk

∑

i∈Zk

(log yi − ȳ)2, nk =
∑

1I(zi = j).

We can specify conjugate prior densities for all the parameters with a conditional
normal prior for µk, an inverted gamma2 prior for σ2

k and a Dirichlet prior on pk.
Combining these prior densities with the conditional likelihood function in (17),
we obtain a conditional Student posterior density for µk, and an inverse gamma
conditional posterior density for σ2

ϕ(µk|x, z) ∝ ft(µk|µ∗k, s∗k, n∗k, ν∗k) (18)

ϕ(σ2
k|x, z) ∝ fiγ(σ

2
k|ν∗k, s∗k), (19)

where
ν∗k = ν0 + nk, s∗k = s0 + s2

k(z) +
n0nk

n0 + nk

(µ0 − x̄k(z))2,

µ∗k =
noµ0 + nkȳk

n∗k
, n∗k = n0 + nk,

and where µ0, n0, s0 and ν0 are the hyperparameters of the prior densities for the
mixture. We propose the following MCMC algorithm which combines inference for
θ and βτ in a sequential process.

1. Set p(0), µ(0), σ2(0)
, the number of draws m and select τ .

2. Compute the τ th quantile q(τ) of the log wages and M = (X ′X)−1

3. Begin loop on j = 1, . . . , m

(a) Begin loop on k = 1, . . . , K

i. Generate z
(j)
i from

P

(

z
(j)
i = j|p(j−1)

k , µ
(j−1)
k , σ

2(j−1)
k , yi

)

∝ p
(j−1)
k f

(

yi|µ(j−1)
k , σ

2(j−1)
k

)

for each observation i
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ii. Compute n
(j)
k =

∑n

i=1 I
z
(j)
i =j

, s
(j)
k =

∑n

i=1 I
z
(j)
i =j

yi

iii. Generate p
(j)
k from D

(

γ1 + n
(j)
1 , . . . , γk + n

(j)
k

)

,

iv. Generate µ
(j)
k from ϕ(µ

(j)
k |z(j), y)

v. Generate σ
2(j)
k from ϕ(σ

2(j)
k |y, z(j))

(b) End loop on k

(c) Compute y(τ)(j) = q̂(τ) + τ−1(y≤q̂(τ))
∑

k p
(j)
k

f(q̂(τ)|µ
(j)
k

,σ
2(j)
k

)

(d) Store β
(j)
∗ = M Xy(τ)(j)

(e) Store s
(j)
∗ = y(τ)(j)′y(τ)(j) − Xy(τ)(j)′M Xy(τ)(j)

4. End loop on j

5. Compute the mean of β∗

6. Compute the mean of s∗ × M
n−2

As a by-product of this algorithm, we obtain draws from an approximation to the
posterior density of θ, ϕ(θ) that will be useful for the derivation of Oacaca-Blinder
decomposition.

3.2 Oaxaca-Blinder decomposition and RIF-OLS

The Oaxaca-Blinder method is very useful for decomposing differences in mean wages
between two periods into a wage structure effect and a composition effect. For the un-
conditional quantile regression, the Oaxaca-Blinder decomposition procedure based
on the RIF-regression model provides a detailed decomposition of the differences in
mean wages between two periods (Firpo et al. 2011). If we label by A and B the two
different groups, the RIF-regressions for each group g, (g = A, B) are given by

yg(θ, τ) = Xgβg(θ, τ) + ǫg, g = A, B. (20)

The differences in mean quantile wages between the two groups are then given by

E(yB(θ, τ)|XB) − E(yA(θ, τ)|XA)
︸ ︷︷ ︸

∆O(θ,τ)

= X̄B(βB(θ, τ) − βA(θ, τ))
︸ ︷︷ ︸

∆β(θ,τ)

+ (X̄B − X̄A)βA(θ, τ)
︸ ︷︷ ︸

∆X(θ,τ)

. (21)
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as E(ǫg|X) = 0 in the RIF regression. The first right hand component, ∆β(θ, τ)
is interpreted as the difference in yields of given individual characteristics corre-
sponding to the second period (the wage structure effect). The second right hand
term, ∆X(θ, τ) is the component associated with differences in the characteristics
themselves (the composition effect) as they have evolved between the two periods.

The three quantities in (21) are conditional on θ which has now to be integrated
out. Formally,

∫

∆O(θ, τ)ϕ(θ)dθ = X̄B

∫

[βB(θ, τ) − βA(θ, τ)]ϕ(θ)dθ

+ (X̄B − X̄A)

∫

βA(θ, τ)ϕ(θ)dθ. (22)

We want to compute the posterior marginal expectation and posterior marginal
variance of the two components of the Oaxaca-Blinder decomposition. With (22),
we still do not have an estimator. We can produce an estimator if we replace βg(θ, τ)
by β∗

g (θ, τ) in (22), which means replacing the parameter by its posterior conditional
expectation. Following this way, the marginal expectation of the composition and
wage structure effects can be evaluated in a straightforward way:

E[∆β(τ)] = X̄B

(

1

m

m∑

j=1

(βB
∗j − βA

∗j)

)

(23)

E[∆X(τ)] = (X̄B − X̄A)

(

1

m

m∑

j=1

βA
∗j

)

, (24)

where
(
βA
∗j ; β

B
∗j

)
=
(
βA
∗ (τ, θ(j)); βB

∗ (τ, θ(j))
)

are the draws of the RIF-regression coef-

ficients obtained from the Gibbs output θ =
(
θ(j)
)m

j=1
. The expectation of the total

effect is just the sum of the two components expectations.

Remark:

We could also proceed in another way. Conditionally on a draw of θ, say θj ,
we can compute the hyperparameters in (14) and then using (13), we can get
m posterior draws of βg. As consequently m draws for ∆O(τ), ∆β(τ) and
∆X(τ). Once we have these m draws, we can compute the mean and variance
of the Oaxaca decomposition. See Radchenko and Yun (2003) for a similar
implementation in the framework of the usual linear regression. Note that
the first method should produce more precise results as it corresponds to a
Rao-Blackwellisation.
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3.3 Standard errors for the Oaxaca-Blinder decomposition

Most empirical studies which use the Oaxaca-Blinder decomposition procedure do
not indicate how standard errors are obtained. As E(y(θ, τ)|X) = X̄ ′β∗(θ, τ), a well
defined approximate variance estimator for the conditional mean of the RIF is given
by:

V(E[y(θ, τ)|X]) = V[X̄ ′β∗(θ, τ)]

= X̄ ′V[β∗(θ, τ)]X̄,

as X̄ is supposed to be constant (see Jann 2008 for a classical approach and an
alternative derivation when X̄ is supposed to be random). As this is a conditional
expectation, we have to integrate out θ to obtain the marginal variance of β as given
in (16).

Following the lines given in Oaxaca and Ransom (1998), the conditional variances
of ∆β(θ, τ) and ∆X(θ, τ) are easily obtained and when θ is integrated out, we get
the following estimates which are transformations of (16):

V(X̄B(βB
∗ − βA

∗ )) = X̄ ′
BV(βB

∗ − βA
∗ )X̄B

= X̄ ′
B

(
V(βB

∗ ) + V(βA
∗ )
)
X̄B (25)

V((X̄B − X̄A)βA
∗ ) = (X̄B − X̄A)′V(βA

∗ )(X̄B − X̄A), (26)

provided βB
∗ and βA

∗ are independent. Standard deviations reported in Tables of
section 4.4 are obtained using this method.

4 Application: Trends in U.S. wage structure and

earnings inequality 1992-2009

Over the past two decades, the U.S. experienced a sharp rise in wage inequality
accompanied by large increase in wage differentials by skill groups. A large and
growing empirical literature attempts at explaining the changes in the U.S. wage
structure by using a variety of data sets. As stressed by Firpo et al. (2007), these
various explanations can all be summarised in terms of the respective contributions of
various sets of factors such as education, experience, unions and gender. This paper
illustrates the approach developed above by measuring the contributions of some
factors and explaining the recent changes in the U.S. wage structure and earnings
inequality.
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4.1 The data

This paper uses the Current Population Surveys (CPS),1 Outgoing Rotation Groups
(ORG).2 We take the monthly earnings files for January 1992 through May 2009.
We decide to focus our attention on three years (1992, 2001, 2009) to cover the main
features of the recent period and their evolution. We use the weekly wage divided
by the number of hours worked in order to get an homogeneous definition of hourly
wages.3 We deflate these wages by the annual average CPI which is respectively
140.2, 177.1 and 214.5 for these three years. Since January 1992, the CPS has
changed the coding scheme of its education attainment question from completed
years to degree actually acquired. The new coding scheme details 16 categories for
education4 which include the highest level of school completed or the highest degree
received. Our education variable will indicate the official number of years needed to
reach the acquired education level. It will represent the efficient number of years of
schooling.

Most of the studies concerning wage dispersions in the U.S. cover the period 1973-
1989 in order to provide a comparison basis between the different papers. We found
marked differences between our sample period 1992-2009 and the previous period
1973-1989. For instance, Melly (2005) indicates that mean and median real wages
declined between 1973 and 1989. For the new period, between 1992 and 2009, we
have a constant rise of real wage together with a sharp increase in inequality at the
end of the period. See Table 1 for detailed figures. This evolution is also depicted in
the estimated wage densities. In Figure 1, we display a non-parametric estimate of
the wage density. We notice that the distribution of real wages is characterised by a
heavy right tail in 2009.

1The CPS is the monthly household survey conducted by the Bureau of Labor Statistics to
measure labor force participation and employment. 50-60,000 households per month are queried.
This is not really a panel survey since households are not followed if they move. They include the
March CPS file and the Outgoing Rotation Group (ORG) files.

2The ORG files correspond to the set of every household that enters the CPS interviewed each
month for 4 consecutive months, and then ignored for 8 months.

3The ORG files are often used because they include a direct observation of the hourly wage,
which thus has not to be computed as the ratio between the weekly wage and the number of worked
hours. However, many individuals did not answer to that question, so we prefer to compute a ratio
in order to keep the maximum number of observations. And anyway, apart from a few aberrant
values, our ratio series gave similar figures as the one given by the hourly series.

4The 16 categories include: no diploma; high school graduate; some college but no degree; asso-
ciate degree in college (occupational or vocational program); associate degree in college (academic
program); bachelor’s degree, master’s degree, professional school degree; and doctorate degree
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Table 1: Hourly real wage dispersion
for the U.S. recent period

1992 2001 2009
q0.10 6.90 7.45 8.00
q0.25 9.36 10.30 10.00
Mean 18.00 20.05 24.49
Median 14.52 15.53 15.62
q0.75 22.02 23.98 26.49
q0.90 31.37 36.01 46.12
Gini 0.352 0.369 0.455
N 62107 63409 47837

Figure 1: Real wage density estimates

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100

1992
2001
2009

16



4.2 The model

The formulation we adopt is a standard Mincer equation:

ln(yi) = β0τ + β1τEduci + β2τExpi + β3τExp2
i + β4τUnioni + β5τFemi + ǫiτ , (27)

where (yi, i = 1, · · · , n) is the hourly real wage for workers. We have introduced
education (number of years), experience and its square, the union status and gender.
Potential experience is calculated as the age minus the assigned years of education
minus 6, rounded down to the nearest integer value, min(age−education−6, age−18).
Education is the official number of years needed to reach the acquired education level.

As a point of comparison, we have first estimated this equation using the pro-
cedure of Firpo et al. (2009) and we reported the results in Table 2. As already
explained, this estimator requires the use of a non-parametric estimation of the data
density. With Figure 1, we see that it is quite difficult to obtain a smooth estimate
for the right tail with a unique window size. Figure 2 indicates that a non-parametric
density estimate of the log wages is also problematic. This lack of smoothness may
disturb the classical RIF-OLS. The adjusted mixture of three normal densities (see
also Figure 2) provides of course a much smoother picture. We now turn to Bayesian
inference results, using a non informative prior for β and σ. Posterior means and
standard deviations are reproduced in Table 3, using 10000 draws for each year and
the same quantiles τ = 0.10, 0.50 and 0.90.

The comparison of Tables 2 and 3 motivates the following comments. First, the
posterior means are very comparable to the classical estimates in the body of the log
wage distribution (10th and 50th quantiles). However, there is a difference between
the coefficient estimates of the covariates in the right tail (90th quantile) for the years
2001, 2009 (but not for 1992) that we can explain by the difference in smoothness be-
tween the two different methods for estimating the log wage densities. The presence
of a fat right tail in the distribution of 2009 might be the main explanation. In fact,
the kernel density estimation may undersmooth the tail of the distribution when it
is characterised by a heavy tail. This imply that the classical RIF-regression coeffi-
cients are overestimated in the upper tails (90th quantile) of the wage distribution in
2009. This might have an impact on the results of the Oaxaca-Blinder decomposition
using classical RIF-regression method of Firpo et al. (2009) (see differences in Tables
4 and 6).

Second, the posterior standard deviation are most of the time larger than their
classical counterpart. In the Bayesian approach, we take into account the uncertainty
contained in the first step estimation of the log-wage density. This might have
consequences on the significance of wage inequality decomposition. Nevertheless, all
the coefficients are well estimated with rather small standard errors.
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Table 2: Classical unconditional Quantile regression coefficients
with kernel density estimation on log wages

10th percentile 50th percentile 90th percentile
Cst

1992 1.591 (0.0124) 2.058 (0.0143) 2.927 (0.0175)
2001 1.540 (0.0158) 1.990 (0.0138) 2.890 (0.0201)
2009 1.723 (0.0130) 1.883 (0.0173) 2.774 (0.0335)
Educ

1992 0.021 (0.0010) 0.047 (0.0012) 0.047 (0.0014)
2001 0.031 (0.0013) 0.060 (0.0011) 0.065 (0.0017)
2009 0.021 (0.0011) 0.065 (0.0014) 0.101 (0.0028)
Exp

1992 0.008 (0.0005) 0.010 (0.0006) 0.007 (0.0007)
2001 0.010 (0.0007) 0.010 (0.0006) 0.006 (0.0009)
2009 0.011 (0.0006) 0.016 (0.0007) 0.010 (0.0014)
Exp2 ∗ 100
1992 -0.009 (0.0007) -0.010 (0.0009) -0.005 (0.0011)
2001 -0.011 (0.0010) -0.009 (0.0008) -0.003 (0.0012)
2009 -0.013 (0.0008) -0.020 (0.0011) -0.012 (0.0022)
Union

1992 0.171 (0.0071) 0.409 (0.0081) 0.025 (0.0100)
2001 0.212 (0.0098) 0.310 (0.0085) 0.016 (0.0125)
2009 0.140 (0.0083) 0.394 (0.0110) 0.041 (0.0213)
Female

1992 -0.024 (0.0055) -0.127 (0.0063) -0.117 (0.0077)
2001 -0.065 (0.0070) -0.136 (0.0061) -0.151 (0.0089)
2009 -0.060 (0.0057) -0.160 (0.0076) -0.245 (0.0146)
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Figure 2: Fitting a mixture of three normal densities on real log-wages

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5

1992

Kernel
Mixture

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5

2001

Kernel
Mixture

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6

2009

Kernel
Mixture

19



Table 3: Bayesian unconditional Quantile regression coefficients
with a mixture of normal densities on log wages

10th percentile 50th percentile 90th percentile
Cst

1992 1.592 (0.0124) 2.074 (0.0139) 2.917 (0.0178)
2001 1.511 (0.0167) 1.952 (0.0145) 2.911 (0.0196)
2009 1.659 (0.0154) 1.803 (0.0189) 2.900 (0.0295)
Educ

1992 0.021 (0.0010) 0.046 (0.0011) 0.048 (0.0014)
2001 0.033 (0.0014) 0.063 (0.0012) 0.063 (0.0016)
2009 0.024 (0.0013) 0.071 (0.0016) 0.089 (0.0025)
Exp

1992 0.008 (0.00053) 0.010 (0.00060) 0.007 (0.00077)
2001 0.011 (0.00073) 0.011 (0.00063) 0.006 (0.00085)
2009 0.013 (0.00067) 0.018 (0.00082) 0.009 (0.00129)
Exp2 ∗ 100
1992 -0.0090 (0.00077) -0.0097 (0.00087) -0.0052 (0.00111)
2001 -0.0118 (0.00104) -0.0095 (0.00090) -0.0026 (0.00122)
2009 -0.0159 (0.00100) -0.0220 (0.00123) -0.0106 (0.00191)
Union

1992 0.170 (0.0070) 0.399 (0.0079) 0.026 (0.0102)
2001 0.225 (0.0104) 0.326 (0.0089) 0.016 (0.0121)
2009 0.165 (0.0098) 0.431 (0.0120) 0.036 (0.0188)
Female

1992 -0.024 (0.0055) -0.124 (0.0061) -0.119 (0.0079)
2001 -0.069 (0.0074) -0.143 (0.0064) -0.146 (0.0086)
2009 -0.071 (0.0067) -0.175 (0.0083) -0.216 (0.0129)
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4.3 Economic interpretation

Let us now detail the economic interpretation of Table 3. Between 1992 and 2009,
the return to education has increased in all parts of the distribution. But the yield
rose sharply for the median wages (4.6% to 7%)5 and for higher wages (4.8% to 9%).
This provides an explanation for the rise in wage inequality (at constant education
composition). The return to experience is much lower than that of education, even if
it has risen over the period for all the categories. It is much higher for the first decile
and for the median than for the last decile. This should reduce wage inequalities.
The evolution of the yield of being member of a union is paradoxical. In 1992, this
was very profitable for median wages to be a union member with a wage differential
of 49%. The yield of being unionised decreased while climbing up the wage ladder.
It becomes negligible (3% on average) for high wages. When we now look at the end
of the period, the yield of being unionised has decreased for low wages, a fact already
noticed in the literature, but has increased slightly for median and high wages. The
last covariate concerns gender. Being a woman has always meant having a lower
wage. This is especially true here for median and high wages, but not so for low
wages. This gender discrimination has risen over the period for all the categories,
but this only in terms of intercept earnings. As a final comment, the constant term
for the lowest quantile is traditionally interpreting as measuring the effect of the
minimum wage. The minimum wage was raised slightly before 1992 and 2009, but
not around 2001. The constant term for 2001 is lower than for 1992, showing the
readjustment of the labour market. The rise of the constant term in 2009 reflect
nicely the next rise of the minimum wage.

4.4 Oaxaca-Blinder decomposition

The results of the Oaxaca-Blinder decomposition are given in Table 4 for the Bayesian
approach and in Table 6 for the classical estimates as a point of comparison. These
estimates are very comparable for the composition effect because β1992 is roughly the
same with classical and Bayesian RIF. The most important change is concentrated
on the wage structure effect because β2009 is much different with the two estimation
methods, but these difference are concentrated in the tails (10th and 90th percentiles).
From now on, we shall report only the Bayesian results.

Total effects are all significant. We note that there was a large increase of 16%
for the first percentile, that the increase is very moderate for median wages (7%) and

5As underlined in Bazen (2011, Table 1.1, p. 21), in a log linear regression, coefficients can
be interpreted as percentages only for small values. For higher values, one has to use the formula
exp(βi) − 1.
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Table 4: Oaxaca Blinder decomposition using Bayesian RIF-regression with
a mixture of normal densities on log wages, CPS ORG 1992 − 2009

10th percentile 50th percentile 90th percentile
Total effect 0.1485 (0.0043) 0.0697 (0.0051) 0.3856 (0.0075)
Wage structure

Total 0.136 (0.0391) 0.049 (0.0465) 0.347 (0.0683)
Cst 0.067 (0.0198) -0.271 (0.0235) -0.017 (0.0345)
Educ 0.036 (0.0164) 0.258 (0.0195) 0.4149 (0.0287)
Exp 0.139 (0.0251) 0.227 (0.0298) 0.0621 (0.0438)
Exp2 -0.081 (0.0148) -0.143 (0.0176) -0.0632 (0.0259)
Union -0.0006(0.00165) 0.0044 (0.00197) 0.0014(0.00292)
Female -0.024 (0.0045) -0.026 (0.0054) -0.050 (0.0079)
Composition

Total 0.0121 (0.00103) 0.0206 (0.00115) 0.0380 (0.00148)
Educ 0.0140 (0.00068) 0.0307 (0.00076) 0.0322 (0.00098)
Exp 0.0094 (0.00062) 0.0116 (0.00070) 0.0082 (0.00089)
Exp2 -0.0036 (0.00031) -0.0038 (0.00034) -0.0020 (0.00048)
Union -0.0080 (0.00033) -0.0188 (0.00037) -0.0012 (0.00048)
Female 0.00017 (0.000038) 0.00085 (0.000042) 0.00082 (0.000054)

Italics correspond to coefficients for which 0 is contained in an HPD interval.

comparatively huge for the last percentile (47%) over a period of 18 years.
Composition effects represent around 30% of the total effect for the median group,

but only around 10% for the lowest and highest groups. Composition effects cannot
explain the large increases at both end of the earning distribution. Nevertheless,
we can notice that education represents the major part of the composition effect
especially for the highest quantile. The other composition effects plays a weaker
role, while being still significant. The decline in the unionisation rate is significant
for all quantiles but cannot be regarded as a main explanation for wage inequality,
contrary to what was a convincing explanation in a previous period (see DiNardo
et al. 1996) because the rates of decline are rather small.

Most of the explanation about the evolution of wages inequality relies on structure
effects. We must first notice that the total wage structure effect is not significant for
the median quantile, so we shall concentrate on results concerning the two extreme of
the distribution. The constant term is only significant for the lowest decile, depicting
the influence of the minimum wage, completed by a strong influence of experience,
a weaker influence of education. Unionisation rate is not significant. The large wage
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increase in the highest quantile is due to a much higher reward of education (40%),
compensated by an a slight increase in female discrimination (5%). The other factors
are either not significant or have a very small coefficient.

Let us now consider the Oaxaca decomposition computed over the more recent
period 2001-2009 of 9 years in order to see if there was an acceleration in the trends
of wage inequality. The results are reported in Table 5.

Table 5: Oaxaca Blinder decomposition using Bayesian RIF-regression with
a mixture of normal densities on log wages, CPS ORG 2001 − 2009

10th percentile 50th percentile 90th percentile
Mean total 0.0718 (0.00499) 0.0065 (0.00521) 0.247 (0.00774)
Wage structure

Total 0.0630 (0.0450) -0.0095 (0.0472) 0.2286 (0.0702)
Cst 0.1487 (0.0227) -0.1484 (0.0238) -0.0111 (0.0354)
Edu -0.0872 (0.0189) 0.0801 (0.0198) 0.2666 (0.0295)
Exp 0.0587 (0.0208) 0.2068 (0.0289) 0.0999 (0.0449)
Exp2 -0.0483 (0.0170) -0.1458 (0.0179) -0.0931 (0.0266)
Union -0.0081 (0.00195) 0.0143 (0.00205) 0.0028 (0.00306)
Female -0.00091 (0.00525) -0.0166 (0.00548) -0.0365 (0.00813)
Composition

Total 0.0088 (0.00046) 0.0161 (0.00040) 0.0189 (0.00054)
Educ 0.0093 (0.00039) 0.0177 (0.00033) 0.0175 (0.00045)
Exp 0.0031 (0.00021) 0.0031 (0.00018) 0.0016 (0.00024)
Exp2 -0.00073 (0.000065) -0.00059 (0.000056) -0.00016 (0.000076)
Union -0.00294 (0.00013) -0.00425 (0.00012) -0.00021 (0.00016)
Female 0.000059 (0.000006) 0.00012 (0.000005) 0.00012 (0.000007)

Italics correspond to coefficients for which 0 is contained in an HPD interval.

For the lowest quantile, the total increase is in line with the total period and sig-
nificant. The wage structure effect is again not significant. For median wages, there
is no significant total change. On the contrary for the highest quantile, the increase
is strongly significant and denote a large acceleration in wage increase corresponding
to a large increase in the yield of higher education compensated partly by an increase
in gender discrimination.
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Table 6: Oaxaca Blinder decomposition using Classical RIF-regression with
kernel density estimation on log wages, CPS ORG 1992 − 2009

10th percentile 50th percentile 90th percentile
Total effect 0.1484 (0.00394) 0.0695 (0.00491) 0.3857 (0.00825)
Wage structure

Total 0.136 (0.0356) 0.048 (0.0444) 0.348 (0.0749)
Cst 0.132 (0.0180) -0.175 (0.0224) -0.153 (0.0378)
Educ -0.002 (0.0149) 0.186 (0.0186) 0.545 (0.0315)
Exp 0.081 (0.0228) 0.175 (0.0285) 0.102 (0.0480)
Exp2 -0.052 (0.0134) -0.119 (0.0168) -0.081 (0.0285)
Union -0.004 (0.0015) -0.002 (0.0019) 0.002 (0.0032)
Female -0.019 (0.0041) -0.017 (0.0051) -0.067 (0.0087)
Composition

Total 0.0121 (0.0010) 0.0211 (0.00118) 0.0372 (0.00145)
Educ 0.0141 (0.00068) 0.0315 (0.00078) 0.0316 (0.00096)
Exp 0.0094 (0.00062) 0.0120 (0.00072) 0.0081 (0.00088)
Exp2 -0.0036 (0.00031) -0.0040 (0.00035) -0.0020 (0.00043)
Union -0.0080 (0.00033) -0.0193 (0.00038) -0.0012 (0.00047)
Female 0.00017 (0.000037) 0.00088 (0.000043) 0.00080 (0.000053)

5 Conclusion and summary

In this paper, we have proposed a reliable Bayesian inference for the RIF-regression
of Firpo et al. (2009) in which we have first estimated the log wage distribution
using a mixture of normal densities and then provided marginal posterior densities
for the quantile regression parameters. As a by-product, we were able to provide an
Oaxaca-Blinder decomposition together with its standard deviations.

Our first empirical results show that in the presence of a heavy right-hand tail
in the wage distribution, the kernel estimation leads to unwanted variability in the
RIF-OLS method of Firpo et al. (2009) for the highest quantiles. Our parametric
approach, using a mixture of normal densities on log wages provides a smoother fit
for this upper tail and provides better estimates for the highest quantile regression
coefficients. Bayesian standard errors are more realistic as they take into account
the uncertainty of the first stage density estimation.

We have illustrated our method on a Mincer equation for the U.S. covering the
period 1992-2009 in order to analyse the most recent changes in the wage structure
and the earnings inequality. Most of the evolution of the period are concentrated
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on the extreme quantiles. The median wages do not experience very significant
changes. The lowest wages have increased due to the yield of experience while the
highest wages have experienced an enormous acceleration in the yield of education.
The composition effects are rather low.

Writing the RIF as a linear conditional expectation provides a simple solution
both for the quantile regression and the Oaxaca decomposition. However, it is only
a local approximation. Bayesian exploration of this question should be continued
using a non-linear framework, at the cost of making an Oaxaca-like decomposition
more difficult.
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