
Bayesian Parameter Estimation and Identification of

Al(m)-Affine Term Structure Models∗

Leopold Sögner †
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Abstract

This article investigates problems arising with near unit root behavior for affine term structure models.

We show that with increasing serial correlation the Fisher information matrix approaches a singularity.

We apply Markov Chain Monte Carlo simulation techniques in connection with regularized priors, as

proposed in Schotman and van Dijk [1991], Jones [2003] and De Pooter et al. [2006] to simulate the

joint posterior distribution of the model parameters. Sufficiently informative priors are necessary to

obtain a well performing Bayesian sampler.
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†Leopold Sögner, Department of Economics and Finance, Institute for Advanced Studies, Stumpergasse 56, 1060 Vienna,

Austria, soegner@ihs.ac.at

1



1 Introduction

Term structure data usually exhibit a high degree of serial correlation. For these data, standard tests on

a unit root often do not reject the null hypothesis of a unit root for usual significance levels. On the other

side, from economic intuition and models used in mathematical finance, stationary time series for term

structure data should be observed. This article sticks to the assumption of stationary interest rates and

contributes to literature by highlighting pitfalls arising with parameter estimation for affine term structure

models. The first innovative aspect of this paper is an analysis of the information matrix. Second, we

observe that parameter estimation for a latent diffusion process becomes a difficult problem when the

serial correlation is high (near unit root behavior). We observe that if the process approaches a unit root,

the sampler produces a ”wall”, such that the posterior need not be integrable. That is to say we need not

arrive at a proper posterior distribution. To enable Bayesian parameter estimation, we construct priors to

account for this problem. We follow the works of Schotman and van Dijk [1991], Kleibergen and van Dijk

[1994], Kleibergen and van Dijk [1998], Jones [2003], De Pooter et al. [2006], and De Pooter et al. [2008]

to construct priors regularizing the posterior distribution of the parameters.

Affine term structure models describe yields by means of an affine function of an instantaneous affine

vector diffusion process. The focus of this article is on the risk-free term structure, where only interest

rate risk - and no other sources of risk like credit and liquidity risk - is investigated. The risk-free term

structure is the basic building block of any reduced form credit risk model. Although other sources of

risk can be described with more general models of the affine class, the mathematical structure of these

settings is equal or similar to the structure investigated in this article (see e.g. Duffie and Singleton

[1997], Collin-Dufresne and Goldstein [2001], Dai and Singleton [2002], Duffee [2002], Collin-Dufresne and

Goldstein [2002], Collin-Dufresne et al. [2008], Ang et al. [2004], Collin-Dufresne et al. [2009], Filipović

[2009], CDS pricing models, etc.). Therefore the results of the following analysis are also important for

more general settings.

We already observe one of the core problems with the instantaneous yields, which is a singularity in
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the Fisher information matrix when the yields are highly persistent. Further sections of this article will

demonstrate that this problem neither disappears when non-instantaneous yields are considered nor arises

from the use of Bayesian methods.

This paper combines results from different strands of econometrics literature: Near unit root behavior

in discrete time models, continuous time financial econometrics and Bayesian techniques of prior selection

to regularize the posterior distribution. For discrete time autoregressive models problems with near unit

root behavior are known for a long time in classical econometrics: e.g. the bias in the OLS estimate of

the persistence parameter (see Kendall [1954], Campbell et al. [1996][p. 273]), the Dickey Fuller example

(see e.g. Davidson and MacKinnon [1993][p. 702], Greene [1997][p. 848] or Hamilton [1994][p. 486]),

asymptotic distributions of the estimators (see e.g. Phillips [1998], Elliott and Stock [2001], Rothenberg

and J. H.Stock [1997], Jansson and M. J. Moreira [2006]) and weak identification (see e.g. Blais [2009],

Canova and Sala [2009], Dufour [1997], Dufour [2003], Ma and Nelson [2009]). For financial econometrics

the reader is referred to Aı̈t-Sahalia [2007], Piazzesi [2010] and Lewellen [2004]). Regarding information

matrix issues, Aı̈t-Sahalia and Jacod [2008] recently derived the behavior of the information matrix for

Lévy processes; however, the processes investigated in their paper do not include mean reversion in the

drift, as done in this article. Here, we shall observe that the speed of mean reversion will play a central

role regarding weak identification issues

Econometric issues arising with parameter estimation for affine term structure models have been

investigated in Ang and Piazzesi [2003], Chib and Ergashev [2009], Diebold et al. [2006], Duffee [2011],

Aı̈t-Sahalia and Kimmel [2009], Egorov et al. [2011], Hamilton and Wu [2010], Joslin et al. [2010], etc.

Multi-factor Cox-Ingersoll-Ross models have been investigated in Frühwirth-Schnatter and Geyer [1996]

and Sanford and Martin [2005]. Chib and Ergashev [2009] construct a Bayesian estimation procedure for

an Ang et al. [2004] model with proposal densities based on mode and curvature of conditional distributions

to improve the efficiency of the MCMC sampler. In our estimation procedure we also follow these ideas.

Jones [2003] finds out that rather strong priors are necessary to estimate the parameters of the diffusion

process. This paper also explains why this becomes necessary: When observing data with serial correlation
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close to a unit root, at least some of the mean reversion parameters have to account for near unit root

behavior. The closer to a unit root, the more we approach to a singularity in the information matrix.

Almost recently Blais [2009] investigated identification issues and the specification of the market micro

structure noise in a Bayesian setting. In some parts, it is closely related to the problems investigated in

this paper. While Blais [2009] discusses the problem of label switching and different labeling subspaces

in his paper, this paper sticks to one unique labeling subspace and contributes to literature by discussing

weak identification issues arising from near unit root behavior.

This paper is organized as follows: Section 2 introduces affine settings. Section 3 investigates the

likelihood of yields and the Fisher information matrix. In Section 4 we provide a Bayesian analysis

for instantaneous yields, while Section 5 investigates parameter estimation for non-instantaneous yields.

Section 6 applies our methodology to empirical data. Section 7 concludes.

2 Affine Term Structure Models

Assume a frictionless and arbitrage-free market in continuous time t and a filtered probability space,

equipped with the empirical probability measure P and an equivalent martingale measure (risk-neutral

measure) Q. Throughout this paper we restrict to affine models of Dai and Singleton [2000] structure

(i.e. the diffusion matrix can be diagonalized, for more details see Appendix A). I.e. we consider an affine

process (X(t)) following the stochastic differential equation:

dX(t) = κQ(θQ −X(t))dt+ Σ
√
S(t)dWQ(t) where

Sii(t) = ai + b>i X(t) and Sij = 0 for i, j = 1, . . . ,m. (1)

X(t) ∈ Rm and WQ(t) is a m-dimensional Brownian motion under the equivalent martingale measure

with independent components. κQ is a m × m matrix controlling the speed of mean reversion. Σ is a

positive definite m×m matrix. S(t) is a diagonal matrix including the components Sii(t) = ai + b>i X(t),

ai is a scalar and bi a vector of dimension m. We get the vector A := (a1, . . . , ai, . . . , am)> and the matrix
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B by horizontally stacking the vectors bi, i.e. B = (b1| . . . |bm). Using this notation Bji = bi(j), with

i, j = 1, . . . ,m.

Market Prices of Risk and Dynamics in P: We employ extended affine market prices of risk Λ(t) =

[Σ
√
S(t)]−1

(
µP (Xt)− µQ(Xt)

)
(see Cheridito et al. [2007]). The drift term µQ(Xt) = κQ(θQ −X(t)) in

(1) and the extended affine specification results in an affine drift term in the empirical measure P, such

that µP (Xt) = κP (θP −X(t)). Thus by construction, (X(t)) is an affine stochastic process with diagonal

diffusion term also under P, such that

dX(t) = κP (θP −X(t))dt+ Σ
√
S(t)dWP (t), (2)

where κP , θP and WP have a structure analogous to κQ, θQ and WQ with dWQ(t) = dWP (t)−Λ(t). By

estimating κ. and θ. under both measures, P and Q, the market price of risk parameters are estimated

implicitly. This allows to study how the market compensates investors for bearing interest rate risk [see

e.g. Driessen, 2005; Piazzesi, 2010].

Dai and Singleton [2000]-canonical representation and Al(m) Models: Recent quantitative finance

literature favors Al(m) models (see e.g. Tang and Xia [2007]). They are described as follows:

Definition 1 (Al(m)-Term Structure Model). Suppose that the risk-free term structure is driven by an

affine process (X(t)) (under Q) with diagonal diffusion matrix. X(t) is a vector of dimension m which

splits up into XB ∈ Rl+ and XD ∈ Rm−l. The risk-free instantaneous discount rate y(t, 0) = δ0 + δ>X(t),

where δ is a m dimensional vector and δ0 ∈ R. In an Al(m) setting m is the number of Brownian motions

and l is the number of different state variables that show up under the square root in (1); (see Dai and

Singleton [2000]).

Regarding (1) it is worth noting that different parameter constellations can result in the same term

structure, i.e. the model need not be identified. For example an unrestricted A1(3) model has nineteen

parameters (under Q), while Dai and Singleton [2000] have shown that only fourteen parameters of

this model can be identified. In addition the term under the square-root in S(t) has to be positive
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(admissibility). Therefore, the authors have provided canonical representations where the parameters are

identified (under Q) and the terms under the square root are positive. For more details see Dai and

Singleton [2000] and Appendix A.1

Stationarity of (X(t)) under both measures requires positive definite matrices κP and κQ. For the

square root components the modified Feller condition has to hold.2 For independent square root com-

ponents this reduces to κQiiθ
Q
i ≥ Σ2

ii/2. Since we have assumed equal structures in Q and P, all the

requirements on the parameters under Q carry over to the parameters under P. In this paper we assume:

Assumption 1. Consider a canonical representation of an Al(m) model, where the admissibility and the

Dai and Singleton [2000]-identification restrictions are fulfilled. The structures of the affine model in P

and in Q are the same. (X(t)) is stationary under Q and P.

Model Yields and Empirical Yields: Under the above assumptions, the time t yields y(t, T − t) for a

zero-coupon bond with maturity τ = T − t are given by

y(t, τ) = −1

τ

(
A(τ)−B(τ)>X(t)

)
, (3)

where A(τ) ∈ R and B(τ) ∈ Rm are functions of the parameters (under Q). Generally, A(τ) and B(τ)

can be found as solutions to ordinary differential equations of Riccati type [see Duffie and Kan, 1996]:

dA(τ)

dτ
= −θQ>κQ>B(τ) +

1

2

m∑
i=1

[Σ>B(τ)]2i ai − δ0 with A(0) = 0 and

dB(τ)

dτ
= −κQ>B(τ) +

1

2

m∑
i=1

[Σ>B(τ)]2i bi + δ with B(0) = 0m×1 . (4)

For extensions to jumps or more general transforms the reader is referred to Duffie et al. [2000], Chen and

Joslin [2009] and Keller-Ressel and Mayerhofer [2011]. It is worth noting that the limits limτ→0A(τ)/τ

1It is also worth noting that different restrictions can be used to identify the parameters. Different opportunities to
represent an affine term structure model follow from the transformations discussed in Dai and Singleton [2000][especially
from Appendix A, C and E] and Filipović [2009][Chapter 10].

2See Duffie and Kan [1996][Condition A], Piazzesi [2010][also there denoted as Condition A] or Glasserman and Kim [2009].
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and limτ→0B(τ)/τ are −δ0 and δ, providing us with the short rate y(t, 0) = δ0 + δ>X(t). The yields

defined by (3) will be called model yields.

Although we have assumed a model in continuous time, the empirical/observed yields can only be measured

on a discrete grid with step-width ∆. The corresponding model yields and instantaneous yields at t = n∆

and maturities τi, i = 1, . . . , k, are yn(τi). Consider the k-dimensional vector A, with elements given

by A(τi)/τi and the k × m matrix B, with rows derived by means of B(τi)
>/τi, i = 1, . . . , k. For

the maturities τ = (τ1, . . . , τi, . . . , τk)
> the k dimensional vector of model yields yn is given by yn =

A − BXn. We assume the following relationship between the model yields yn and the empirical yields

yepsn = (yepsn (τ1), . . . , yepsn (τk))
>:

Assumption 2 (Empirical Yields). The observed data yepsn and the model yields yn are related by

yepsn (τi) = yn(τi) +
√
σ2
eps(τi)ein , i = 1, . . . , k. (5)

ein are iid standard normal variables for i = 1, . . . , k. k ≥ m.

Finance literature often motivates this noise term by market micro-structure noise arising from bid-ask

bounces, discreteness of the pricing scale, trades on different markets, etc. (see Campbell et al. [1996]

and Chen et al. [2007]). From an econometric point of view (5) is necessary to cope with the different

dimensions of the latent process and the yields observed. A parsimonious model demands for k > m.

Since it is hardly possible that empirical interest rate data exactly follow the model assumed by (3) for

all t and maturities τi, the m factor setting cannot exactly match the corresponding yields yepsn .

Remark 1. By means of (5) we have added noise to each maturity which eliminates this stochastic

singularity problem. Alternatively, ein can be stochastic for i ∈ {i|τi ∈ τ \ τ fix} while ein = 0 if

i ∈ {i|τi ∈ τ fix}. τ fix ⊂ τ are the maturities observed without noise. We call this particular noise, while

Assumption 2 describes common noise. Appendix C will demonstrate that the transformation between

Xn and yn can be ill conditioned. Therefore we stick to common noise.

Parameterization: In this article we stick to the parameterization Ψ = {ν, θP , κQ, θQ, δ0,Σ
2,σ2

eps};
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where Σ2 = ΣΣ>. δ = 1m×1, the non-zero elements of A are normalized to one. With independent square

root components - as performed in the applied part - Bii = 1. ν := exp(−κP∆) is the matrix exponential

of the matrix −κP∆ (we can get κP from ν by means of the matrix logarithm (see Culver [1966], Horn and

Johnson [1985])).3 σ2
eps is a k × k diagonal matrix with entries σ2

eps(τi). Finally, X = (X0, X1, . . . , XN ),

X(1:N) = (X1, . . . , XN ), y = (y1, . . . ,yN ) while yeps = (yeps1 , . . . ,yepsN ).

In addition, we assume that the term structure model is of minimum dimension (an A0(m) setting

exactly corresponds to a linear state space model as investigated in Brockwell and Davis [2006][p. 497];

for controllability in general see e.g. Meyn and Tweedie [2009][Chapter 7]). This implies that we cannot

reconstruct the model yields with a latent process Xn of dimension smaller than m. In more details,

following Karatzas and Shreve [1991][p. 354] and applying an Euler type approximation to the diffusion

term provides a proxy of the solution of the affine stochastic differential equation (2):

Xn = νXn−1 + (Im − ν)θP + Σ

∫ n∆

(n−1)∆
exp

(
−(n∆− u)κP

)√
S(X(u))dW (u)

≈ νXn−1 + (Im − ν)θP + Σ
√
S(Xn−1)

√
∆εn . (6)

Im is the identity matrix of dimension m and εn is a vector of dimension m with iid N (0, 1) components.

Since S(Xn−1) generally depends on Xn−1 (e.g. some elements of B are non-zero), we only get a proxy by

equation (6); in the following Sn−1 abbreviates S(Xn−1). By means of (6) and Assumption 2 we get the

following state space representation of the yields observed:

yepsn = yn +
√
σ2
epsen = A−BXn +

√
σ2
epsen ,

Xn = νXn−1 + (Im − ν)θP + Σ
√
Sn−1

√
∆εn . (7)

en is of dimension k × 1. Appendix B shows that the model is of minimal dimension if Σ2, ν and B have

full rank m. Σ2 and ν satisfy this property by Assumptons 1 and 2 while for B we impose

3Since Σ and S(t) are diagonal matrices ΣS(t)Σ> has to be equal to ΣΣ>S(t); ΣΣ> =: Σ2 can be derived by taking
the squares of the individual components. If Sii = ai + b>i X and ai = Ai and bi = B>i are both non-zero, then ai can be
normalized to one but Bi has to estimated. Appendix D.1 derives the information matrix with B as a free parameter.
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Assumption 3. rank(B) = m.

As the following example demonstrates, Dai and Singleton [2000] identification need not result in a model

of minimal dimension.

Example 1. Consider an A0(2) model with two independent Ornstein-Uhlenbeck processes with the

same parameters; i.e. κ11 = κ22, κ21 = 0 by independence under P and Q, θP = θQ = 0 and Σ2
11 = Σ2

22.

X̃(t) = X1(t) + X2(t) is an Ornstein-Uhlenbeck process with parameters κ̃P = κP11 = κP11, θ̃P = 0 and

Σ̃2 = Σ2
11+Σ2

22. With κ̃Q = κQ11 we get B(X1, X2) = [B].,1X̃ ([B]..1 is the first column of B; since κ̃Q = κQ11

the columns are the same). In addition for the Vasicek model A is linear in volatility parameter such that

the sum of the components A1 and A2 for the initial two factor setting add up to Ã. This implies that

we can reduce this two-dimensional model to a one-dimensional one yielding the same term structure.

In the applied part where the parameters will be estimated by means of Bayesian methods we shall put

a prior on the rank of B. Since rank(B) = rank(B>) = rank(B>B) this can easily done by putting a

prior on det(B>B).

3 Likelihood Analysis and the Information Matrix

Based on the model assumptions, we first derive the density of the latent process f(X; ΨP ), where the

corresponding parameters in the empirical measure ΨP = {ν, θP ,Σ2}. For the yields yeps we already

know that the model yields y are an affine transformations of X as described by (3). A(τ) and B(τ) are

functions of the parameters under Q, which are ΨQ = {κQ, θQ,Σ2}.4 To derive the conditional distribution

f(y|X; Ψ), we have to consider the distribution due to market micro-structure noise. By (5) the relevant

parameters are in the matrix σ2
eps. Then the joint density of (y,X) will be given by

f(yeps,X; Ψ) = f(yeps|X; Ψ)f(X; Ψ) = f(yeps|X; ΨQ,σ2
eps)f(X; ΨP ) . (8)

4Note that ΨP ∩ΨQ = {Σ2} ∪ {θ, κ|θPi = θQi , κ
P
ij = κQij}.
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The joint log-likelihood `(Ψ; yeps,X) is log f(yeps,X; Ψ) evaluated at the data. Since an approximation

of f(X; ΨP ) will be used, we are going to derive a quasi likelihood.

In more details: By equation (6), Xn|Xn−1 is approximately multivariate normal with mean µXn :=

νXn−1 + (Im − ν)θP and covariance Σ2Sn−1∆. Using the fact the Σ2 is diagonal yields

log f(Xn|Xn−1; ΨP ) = −m
2
· log 2π − 1

2
log(

m∏
i=1

Σ2
iiSn−1,ii)−

1

2

m∑
i=1

(Xni − µXni)2

Σ2
iiSn−1,ii

. (9)

With the N + 1 observations X and the initial distribution π(X0; Ψ) we get the density of the latent

process (Xn) by means of

f(X(1:N)|X0,Ψ
P ) =

N∏
n=1

log f(Xn|Xn−1; ΨP )

f(X; ΨP ) =

(
N∏
n=1

log f(Xn|Xn−1; ΨP )

)
· π(X0; Ψ) = f(X(1:N)|X0,Ψ

P )π(X0; Ψ) . (10)

log f(X; ΨP ) evaluated at the data provides us with `(ΨP ; X). To get the density of the observed yields

yeps, equation (3) tells us that yn = A − BXn. Based on the model assumptions yepsn is normally

distributed with mean yn and a diagonal covariance matrix σ2
eps. I.e f(yepsn |Xn; ΨQ,σ2

eps) is a normal

density with mean vector yn and covariance matrix σ2
eps. Since ein is iid we get

f(yeps|X; ΨQ,σ2
eps) = ΠN

n=1f(yepsn |yn;σ2
eps) = ΠN

n=1f(yepsn |Xn; ΨQ,σ2
eps) . (11)

log f(yeps|X; ΨQ,σ2
eps) evaluated at the data yields `(ΨQ,σ2

eps; y
eps|X), such that the joint log-likelihood

is given by

`(Ψ; yeps,X) = `(ΨQ,σ2
eps; y

eps|X) + `(ΨP ; X) . (12)

Information Matrix and Weak Identification: To investigate weak identification, we study the Fisher

information matrix. A positive definite information matrix guarantees at least local identification of the
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model parameters (see Bowden [1973]). Parameter estimation becomes difficult if the parameters Ψ result

in an ill-conditioned information matrix. Following e.g. McLachlan and Krishnan [1997] the empirical

information matrix of the full data Ic(Ψ,X,y) = −∂2`(Ψ;X,y)
∂Ψ∂Ψ>

. The Fisher information of the complete data

Ic(θ) = E (Ic(θ; X,y)). Since the latent process X is not observed we have to consider the log-likelihood

`(Ψ; y) = log
∫
f(yeps|X; Ψ)f(X; Ψ)dX and the restricted data information matrix Ir(Ψ,y) = −∂2`(Ψ;y)

∂Ψ∂Ψ>

as well as the Fisher information Ir(θ) = E (Ir(θ,y)). From Orchard and Woodbury [1972] and Mislevy

and Sheehan [1989] it is known that Ic(Ψ) and Ir(Ψ) are related as follows: Ic(Ψ) = Ir(Ψ) + Im(Ψ),

where the matrix Im(Ψ) is positive semi-definite matrix, measuring the loss in information when the

latent X is not observed. Since the matrix difference Ic(Ψ)−Ir(Ψ) is positive semi-definite, the difference

Ir(Ψ)−1 − Ic(Ψ)−1 is positive semi-definite. That is to say, Ic(Ψ)−1 provides us with a lower bound of

the Rao-Cramer lower bound when only y is observed. If this term becomes singular, then Ir(Ψ)−1 has

to be singular as well. Since only parts of Ic(θ) can be derived analytically we proceed as follows: First

we obtain some analytical results, for the remaining parts we use numerical tools.

Ic(Ψ) will consist of three building blocks: The block regarding ΨP will be denoted Ic(ΨP ). For the

remaining parameters we get the blocks Ic(ΨQ) and Ic(σ2
eps). With Ic(ΨP ), we already observe the main

problem: This block of the information matrix approaches a singularity if the speed of mean reversion

implied by ν (or κP ) becomes low.

Due to its analytical traceability we start with the Vasicek [1977] model, where (X(t)) follows an

Ornstein-Uhlenbeck process, such that

Xn = νXn−1 + (1− ν)θP + Σ
√

∆εn . (13)

Although, θP = 0 by Assumptions 1-3 we treat θP as a free parameter in the following paragraph. The

goal is to analytically demonstrate the problems arising with the parameter θP if the serial correlation

becomes high. With κP > 0, the expected value E(X) = θP , the variance V(X) = Σ2

2κP
≈ Σ2∆

1−ν2 . Ic(ΨP ) is

diagonal with the elements
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E
(
−∂

2`(ΨP ; X)

∂ν2

)
=

1

∆

N

2κP
, E

(
− ∂2`(.)

∂(θP )2

)
=

1

Σ2∆
N(1− ν)2, E

(
− ∂2`(.)

∂(Σ2)2

)
=

N

2(Σ2)2
. (14)

When the process approaches a unit root, i.e. ν → 1, the second term in (14) goes to zero. This implies

that the data provides poor information on the parameter θP . Since the inverse of Ic(ΨP ) is the Rao-

Cramer lower bound for the estimator ΨP , the variance of the estimator of θP goes to infinity when we

approach a unit root.5

Appendix D.1 approximates the information matrix Ic(ΨP ) for an affine model with diagonal diffusion

matrix. Here we observe that the expectation of the second derivatives with respect to θP , given by

N · (Im − ν)>E(Σ2Sn−1∆)−1(Im − ν) , (15)

becomes singular if (Im − ν) is singular. This is the case if some eigenvalue of ν is equal to one. With

eigenvalues of ν close to one we arrive at a weakly identified problem. For the purely Gaussian case this

result has also been observed in Hamilton and Wu [2010]. A similar condition on the eigenvalues is also

used in Chib and Ergashev [2009].

Next we investigate the I(ΨQ) block: Some intuition can be obtained from the Gaussian settings:

Example 2. Assume that the term structure is described by the Vasicek model. Then E
(
−∂2`(ΨQ,.)

∂κ2
Q

)
,

goes to zero if Σ2 → 0. That is to say even in the simplest one factor setting there is a region of the

parameter space where the model becomes weakly identified.

Example 3. Consider a two factor model with independent Ornstein-Uhlenbeck processes (e.g

A0(2) model). Suppose that κQ → 0, then E
(
−∂2`(ΨQ,.)

∂κQ11∂κ
Q
22

)
= 1

64τ
4σ2

1Σ2
22, E

(
−∂2`(ΨQ,.)

∂κQ11∂κ
Q
11

)
=

1
64Σ2

11

(
8
κP11

+ τ4Σ2
11

)
, E

(
−∂2`(ΨQ,.)

∂κQ11∂Σ2
11

)
= − 1

48Σ2
11τ and E

(
−∂2`(ΨQ,.)

∂κQ11∂Σ2
22

)
= − 1

48Σ2
22τ . For the partial

derivatives with respect to κQ22 we get equivalent expressions. If Σ2
11 = Σ2

22, then we observe that the

5Applying the reparametrization γ̃ := θ(1− ν), the singularity in the information matrix does not disappear. In addition
in all the calculations we assume that the terms arising from π(X0; Ψ) can be neglected.
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rows/columns of Ic(Ψ) corresponding to κ11 and κ22 become almost colinear if κP11 and κP22 become large.

By these examples we observe that the matrix Ic(ΨQ) can get close to a singularity. In general

E

(
−
∂2`(ΨQ,σ2

eps; y
eps|X)

∂ΨQ(ΨQ)>

)
=

N∑
n=1

E

([
∂(A −BXn)

∂ΨQ

]
(σ2eps)

−1

[
∂(A−BXn)

∂ΨQ

]>)
. (16)

From (16) we expect weak identification issues if some terms in the gradient vector ∂(A−BXn)
∂ΨQ

get close

to zero or if some rows or columns are almost the same. Since, in general, A and B are not available in

closed form, we can only estimate Ic(ΨQ) by means of numerical tools.6

For the parameter δ0 ∈ ΨQ, we get E
(
−∂2`(ΨQ,σ2

eps;y
eps|X)

∂δ2
0

)
= N

∑k
i=1

1
σ2
eps(τi)

. The second partial

derivative with respect to δ0 neither depends on κQ nor on κP . I.e. in contrast to the mean parameters

under P no problems should be expected with the estimation of this parameter.

The last block of the information matrix Ic(σ2
eps) is obtained by taking the expectation of the second

partial derivatives with respect to σ2
eps(τi). While the off-diagonal elements are all zero, the diagonal

elements of Ic(σ2
eps) are

E
(
− ∂2

∂(σ2
eps(τi))

2
`(ΨQ,σ2

eps; y
eps|X)

)
=

N

2(σ2
eps(τi))

2
. (17)

Ic(Ψ) is derived by putting together the corresponding blocks we have obtained above, the other

elements of the matrix are zero. Note that the blocks for (ΨP ,ΨQ) and σ2
eps do not overlap. Σ2 is an

element of ΨP and ΨQ, depending on the market price of risk specifications further joint elements are

possible.7 Therefore the impact of these parameters on the information matrix is non-trivial.

In the following sections we perform parameter estimation for the following A1(3) model. N =

500 observations are considered for the k = 10 maturities τ = {1/12, 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20}.

6Since σ2
eps is a k×k diagonal matrix E

(
− ∂

2`(ΨQ,σ2
eps;yeps|Xn)

∂ΨQ(ΨQ)>

)
can be derived in closed form given the partial derivatives

of A and B. The elements of this part of the information matrix are functions of these partial derivatives, E (Xn) = θP and
E
(
XnX

>
n

)
(see also Appendix D.1).

7With completely affine market prices of risk θPi 6= θQi and κPii 6= κQii . Common elements of ΨP and ΨQ are Σ2 and off
diagonal elements of κ.. Otherwise ΨP and ΨQ overlap for some further θi and κii.
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Time is measured in years, the step width is ∆ = 7/365 accounting for weekly observations. The

parameters σ2
eps(τi) driving micro-structure noise are between 0.007 and 0.03.8 We set A1 = 0,

A2 = A3 = 1 and B11 = 1, all other elements of B are zero. κP = [0.7 0 0; 0 0.8 0; 0 0.1 0.9 ],

ν = [0.9867 0 0; 0 0.9848 0; 0 − 0.0019 0.9829 ] is the corresponding matrix exponential, κQ =

[0.5 0 0; 0 0.7 0; 0 0.1 1 ], θP = (1.5, 0, 0)>, θQ = (2, 0, 0)>, δ0 = 2 and Σ = [0.25 0 0; 0 0.40 0; 0 0 0.50 ]

resulting in Σ2 = ΣΣ> = [0.0625 0 0; 0 0.16 0; 0 0 0.25 ]. This results in nine parameters under Q. In

addition we have four additional parameters under P (θP1 and κPii , i = 1, . . . , 3) and the three micro-

structure noise parameters σ2
eps. κ

Q
23 = κP23 is assumed. Summing up, this results in 16 parameters. This

setting allows for a closed form solution of A(τ) and B(τ) and satisfies the stationarity, admissibility

and the Feller condition. With these parameters we derived Ic by means of the above calculations. We

observe: (i) A high standard deviation for the parameter θP as expected from the above calculations. A

modest degree of serial correlation sharply decreases the corresponding elements of I−1
c . (ii) When κQ

and ν remain fixed as above but Σ2 decreases then the diagonal elements of I−1
c corresponding to ν and

κQ increase; for small Σ2 these elements become large. (iii) Given high values of κQ the derivatives with

respect to κQ become small. This results in larger values for the elements corresponding to κQ in I−1
c .

Intuitively, with larger κQ the paths of B rapidly move from values close to −1 to values close to zero

where the partial derivatives with respect to κQ become small. (iv) As can be expected from (16) an

increase in σ2
eps also raises the terms in I−1

c corresponding to the parameters under Q.

4 Analysis of Instantaneous Yields

This paper applies the Bayesian approach to estimate the model parameters. As already discussed and

demonstrated in Chib and Ergashev [2009], the Bayesian approach can be motivated by the complex and

8In a prior version we work with the noise specification σ2
eps(τi) = exp(a0eps+a1epsτi+a2epsτ

2
i ) (e.g. motivated by Brandt

and He [2002]). The σ2
eps(τi) used in this version are obtained by means of exp(a0eps + a1epsτi + a2epsτ

2
i ) setting a0eps = −5

a1eps = 0.25 and a2eps = −0.04. When working with a0eps, a1eps and a2eps we observed that these parameters are difficult to
estimate. When sticking to the Bayesian approach σ2

eps(τi) can be sampled by means of the Gibbs sampler when assuming
a conjugate (truncated) inverse Gamma prior. In addition by estimating σ2

eps(τi) for each maturity separately, we directly
observe - with simulated data - for which maturities the variance of the noise terms is difficult to estimate and - for empirical
data - how different maturities are affected by noise.
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possibly multi-modal structure of the log-likelihood function in multivariate settings.

4.1 Instantaneous Yields in the Vasicek and the CIR Setting

Let us we start with Vasicek [1977] and the Cox et al. [1985] (CIR) model. For the latter the diffusion

term in (13) has to be replaced by Σ
√
Xn−1∆0.5εn. These models are non-linear in the parameters due

to the term θP (1− ν). A standard three step Gibbs sampler can be constructed (see Appendix F), where

natural conjugate priors are used for θP and Σ2 which is a normal prior for θP , θP ∼ N (aθ,0, Aθ,0), and

an inverse gamma prior for Σ2, Σ2 ∼ IG(n0, S0). Since ν should fulfill ν ∈ [0, 1], we use a uniform prior

for this parameter.9

We draw 50,000 MCMC samples, including 20,000 burn-in steps, from simulated Ornstein-Uhlenbeck

and CIR paths. We set θP = 3 and Σ2 = 1.22 and Σ2 = 0.72, for the Vasicek [1977] and the Cox et al.

[1985] model, respectively. ∆ = 7/365. ν we set to 0.76, 0.9 and 0.99. The parameters of the priors are

n0 = 1, S0 = 1, aθ,0 = 0 and Aθ,0 = 1000. Figure 1 presents representative MCMC output for these two

settings (Vasicek [1977] - left sub-figures, Cox et al. [1985] - right sub-figures), for different ν, starting with

ν = 0.76 in the first row to ν = 0.99 in the third row. For low ν samples are well behaved, with ν = 0.9

this is still the case but the standard deviation of the parameter θP starts to increase (take a look on the

scale of the horizontal axis). With high serial correlation the sampler produces a ”wall”. The standard

deviation for the Vasicek model is higher than the standard deviation for the CIR model. Nevertheless

the standard deviations are very high in both models. This corresponds to our analytical results with

the information matrix, where the standard deviation of the parameter θP increases drastically when we

approach a unit root.

For the model considered above the conditional densities of ν and θP are the conditional densities used

in the Gibbs sampling steps. Based on De Pooter et al. [2006] or De Pooter et al. [2008] Appendix E

derives the marginal distribution of θP , ν for the Vasicek model. Here we observe that the joint distribution

π(θP , ν|X) becomes improper with ν = 1. With ν close to one it becomes almost flat.

9Also in the Vasicek, we consider θP as a free parameter to demonstrate the impact of near unit root behavior on parameter
estimation.
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Figure 1: Vasicek and CIR Model: Samples of the joint posterior of θP and ν, 50,000 MCMC steps, 20,000 burn-in.
Vasicek model left sub-figures, CIR model right sub-figures. First row ν = 0.76 (moderate persistence), second row ν = 0.9;
third row ν = 0.99 (near unit root); θP = 3. Uniform prior on ν, conjugate normal prior with parameters aθ,0 = 0 and
Aθ,0 = 1000 on θP . Note that the range of the horizontal axis is different for different ν.
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4.2 Near Unit Root Behavior and Sufficiently Informative Priors

In a Bayesian setting we are able to compensate for the term (1 − ν)−1 in the priors. De Pooter et al.

[2006] propose either to put zero measure on ν larger than 1− ε (this approach has been applied in Jones

[2003]), construct a Kleibergen and van Dijk [1998] prior or to choose a Schotman and van Dijk [1991]

prior. In the third approach, Schotman and van Dijk [1991] use a conjugate normal prior for θP with a

variance term proportional to Σ2 1
(1−ν)2 . The higher the degree of persistence of the stochastic process the

lower the prior information on the parameter θP . We augment this idea to the m dimensional setting,

such that

πSD(θP |ν,Σ2) = N
(
aθ,0, Ãθ,0 · ((Im − ν)−1)Σ2((Im − ν)−1)>

)
. (18)

The Schotman and Van Dijk prior (18) will be used in all further parts of this paper; Ãθ,0 is set to 1000,

aθ,0 remains 0m×1. With (18) the integral of π(θP , ν|X) for the Vasicek model becomes finite. However,

we observe in simulation experiments that the wall does not disappear. Therefore, we have to construct

a sufficiently informative prior.

In Section 3 we observed that the information matrix becomes ill-conditioned, if some eigenvalues of

ν were close to one. Therefore, in addition to the prior (18), we use a prior punishing ν with eigenvalues

λν = (λν1, . . . , λνm)> close to one. We choose a function g : R → R putting equal probability weight to

any λνi ∈ [λ∗, λ
∗], with 0 ≤ λ∗ ≤ λ∗ ≤ 1. To the left and to the right of this interval we assign smaller prior

probabilities. The degree of punishment will be controlled by the hyper-parameters γ∗ and γ∗ fulfilling

γ∗ = γ∗ log(1−λ∗)
log(λ∗)

. Then with c = (1− λ∗)γ∗ we get

g(λνi) =
(
λγ∗∗ 1λνi<λ∗ + c1λ∗≤λνi≤λ∗ + (1− λνi)γ

∗
1λνi>λ∗

)
1λνi∈[0,1] and πSI(ν) ∝

m∏
i=1

g(λνi) . (19)

In the limit γ∗ → ∞, (19) corresponds to a shrinkage prior, where no prior mass is put on λνi > λ∗.

λγ∗∗ = 0 for the remaining part of this article.10

10(i) If ν is lower triangular λνi = νii. (ii) To sample ν, the Metropolis Hasting algorithm has to be used. Although
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Results for the Ornstein-Uhlenbeck and the CIR Setting: We generate M = 500 paths of (Xn). For each

m = 1, . . . , M we obtain the estimates Ψ̂P
m by using MCMC (50,000 MCMC steps and 20,000 burn in-steps).

The parameters are θP = 3, ν = 0.99 and Σ2 = 1.22 for the Vasicek and Σ2 = 0.72 for the CIR setting.

The estimates Ψ̂P
m are given by the sample means from the MCMC steps following the burn-in phase. From

these M estimates we calculated the the mean, the median, the standard deviation SD, the minimum, the

maximum, and the 2.5% and 97.5% quantiles. This is done for the Vasicek and the CIR model. Table 1

and 2 present the results from this Monte-Carlo study for the prior (19) and the shrinkage prior.11 γ∗ = 2

with (19), the different λ∗ are shown in Table 1 and 2. We observe that with (19) the variation of the

estimates still remains substantial. By increasing γ∗ we can obtain more reliable estimates. To avoid time

consuming fine tuning, we propose to stick to a shrinking prior with λ∗ = 0.995. This is sufficient for the

simulated data where the true ν is known. For the empirical data such a strong assumption seems to fit

as well (see also Jones [2003]) when λ∗ is ”sufficiently larger” than the true ν but ”sufficiently smaller

than 1”. The application of the shrinking prior is not completely free of cost. First, of course, the true

parameter has to be within the interval [0, λ∗). Additionally, if the parameter κP = − log(ν)/∆ is of our

main interest, we observe that although the impact of the prior on ν seems to be reasonably small, the

impact on κ̂P can be quite substantial.

In addition we also estimated ν, θP , σ2 by means of maximum likelihood. Without any restrictions in

the optimization routine we obtained results comparable to the results at the beginning of Section 4.1.

For most m we observe that the maximization routine provides us with very small or very large estimates

of the parameters (also values larger than ±1050 are observed), the highest variation is observed with the

already investigated in Hoogerheide et al. [2007], it is worth noting that sampling θP by means of the Metropolis Hastings
needs some tuning if ν is close to one. With Gibbs sampling the variance of the conditional posterior p(θP |X, ν,Σ2) becomes
automatically large with ν close to one, while in the MH scheme efficient sampling requires that this effect is included in
the proposal density. (iii) Alternatively we can also use an informative normal prior with aν,0 equal to the (highest) first

order autocorrelation ÂCF 1(yepsn (τi)), i = 1, . . . , k, and Aν,0 = Ãν,0∆/T . Ãν,0 is set to 5, 10 or 1000, where the Gibbs
sampler can also be applied. For a univariate affine term structure model, the first order autocorrelation of the yields fulfills
ACF1(yepsn (τi)) = νV(yn(τi))

V(y
eps
n (τi))

≤ ν. The less or equal to is caused by market micro-structure noise. For m ≥ 2 a prior of this

kind is a much stronger a-priori assumption on the eigenvalues of ν. This prior will not be applied further in this article.

(iv) On the other side max{ÂCF 1(yepsn (τi))} can be used as a lower bound for λ∗ with the shrinkage prior. Smaller cut-offs
should not be used due to the relationship obtained above.

11Note that Table 1 and 2 present means of the parameter estimates Ψ̂P
m . Further tables present parameter estimates from

one MCMC chain.
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parameter θP as with MCMC output.

4.3 Instantaneous Yields with an A1(3) Setting

We continue to work with the parameters used at the end of Section 3. As regards (3), this specification has

the advantage that closed form solutions for A(τ) and B(τ) are available.12 Therefore we avoid problems

that might arise with the numerical solution of ordinary differential equations and increase computing

speed. Satisfying the Feller condition for the square root component requires κP11θ
P
1 ≥ Σ2

11/2. For Σ2
ii we

stick to an inverse Gamma prior with parameters n0 and S0. This yields:

π(ΨP ) ∝ πSI(ν) · πSD(θ|Σ2, ν) · 1(κP11θ
P
1 ≥Σ2

11/2) · π(Σ2) . (20)

By the prior (19), either with γ∗ finite or with the shrinkage prior as a limit, we automatically fulfill the

restriction required for eigenvalues of ν smaller than one. Performing Bayesian parameter estimation with

this model confirms the results obtained with the Vasicek and the CIR model. With a shrinkage prior,

where λ∗ = 0.995, we have a prior which is easy to implement with relatively good sampling properties.

Therefore, we continue to work with a shrinkage prior on the eigenvalues of ν also in this A1(3) model.

5 Yields observed with Common Micro-Structure Noise

We proceed with the A1(3) setting already investigated in the Sections 3 and 4.3. To perform Bayesian

parameter estimation we augment the set of parameters (see Tanner and Wong [1987]) by the latent

process X. While the density of X1, . . . , XN is determined by the model assumptions (see (10)), we have

to specify the prior π(X0,Ψ). In addition, we have to specify the priors for κQ, θQ, σ2
eps and δ0. For the

diagonal components of κQ, X01 and θQ we use a gamma prior with parameters n0Q = 1 and S0Q = 1,

while for δ0, X0,2 and X0,3 - all living on R - we use a normal prior with mean parameter zero and

variance 1000. Since κP32 = κQ32 was assumed, the prior for this parameter is already specified. To derive

12Here the Mathematica package has been used.
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a stationary process under Q the Feller condition for the square root component requires κQ11θ
Q
1 ≥ Σ2

11/2.

To derive a B of rank m, we apply the prior π(det(B>B)) on the determinant of (B>B). Here we

assume that π(det(B>B)) ∝ |det(B>B)|d11|det(B>B)|<d0
; where d1 was set to 1 and d0 = 10−10. For the

data considered in this article we observe that the impact of this prior can be neglected.

For the micro structure noise parameters π(σ2
eps) =

∏
i=k π(σ2

eps(τi)) is assumed. π(σ2
eps(τi)) is trun-

cated inverse gamma IGT (n0eps, S0eps) with n0eps = 1 and S0eps = 1. The truncation is such that

π(σ2
eps(τi)) > 0 for 0 ≤ σ2

eps(τi) ≤ V(yeps(τi)). V(yeps(τi)) can be estimated from prior data, or if not avail-

able – by being less clean – from the actual data. This truncation was necessary to improve the properties

of the Bayesian sampler. In more details: For the updates of the latent process X we mix between random

walks proposals and proposals based on running the Kalman filter as introduced in Frühwirth-Schnatter

and Geyer [1996]. For the second opportunity to work σ2
eps should not be too large. If the sampler is

started with some X not sufficiently close to the true X, the sampler generates σ2
eps much larger than

the true σ2
eps. A lot of these samples are even larger than V(yeps(τi)), while σ2

eps(τi) < V(yeps(τi)) by the

model assumptions. Without a-priori restrictions on σ2
eps(τi) proposing from the Kalman filter turned out

to be inefficient. This is the reason why we impose a truncated inverse gamma prior on the variance of

the noise terms. For the sampling of Ψ see Appendix F.

The parameters are sampled by means of a MCMC sampler. We set λ∗ = 0.995 and work with a

shrinkage prior; working with prior (19), γ∗ = 2 and λ∗ = 0.99 does not improve the estimation results.

Table 3 presents typical MCMC output for simulated data. Starting the sampler at different initial values

results in very similar estimates. As already observed with instantaneous yields the estimates of ν are

close to their true parameter values, while the non-linear transformations κP show an upward bias. A

modest upward bias is also observed for most of the estimates of the volatility terms Σ2. For the estimates

of θQ quite a large variation is observed. Finally we have to point out that the parameters σ2
eps(τi) are

difficult to estimate for the smaller maturities, the upward bias can be substantial. We try to explain

why the noise for smaller maturities is so difficult as follows: When we consider (7) we observe that for

smaller maturities the absolute values of the elements of B(τi) are larger while |A(τi)| is small and vice
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versa. That is to say the larger τi the smaller the impact of B(τi)Xn; i.e. the variance of the model yields

decreases. For the small maturities very precise estimates of X are necessary to obtain precise estimates

of σ2
eps(τi). However, when starting the sampler with the true parameters and the true X it is not very

difficult to estimate the noise parameters for the different maturities.

6 Parameter Estimation with Empirical Data

This section applies the econometric tools developed in the former sections to empirical term structure

data. From the Federal Reserve (http://federalreserve.gov/releases/h15/data.htm) we downloaded yields

for the time span March 8, 2003 to June 26, 2009. A full panel of maturities from one month to thirty

years is available for these periods. Since the thirty year maturity time series exhibits a lot of missing

values this maturity has been excluded. This gives τ = {1/12, 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20}, k = 10 and

N = 413 observations per yield time series. These discrete time yields were also translated to continuous

compounding. Although this H-15 data set can only be seen as a proxy for the risk-free term structure,

we also use it since it is often used in recent literature (e.g. Chib and Ergashev [2009]). Standard tests on

a unit root only reject the zero of a unit root for the long maturity.

In addition we derived a risk-free term structure data from USD LIBOR (maturities of 1, 3, 6, 9

and 12 months from Bloomberg) and USD swap rates (middle rates, for maturities 2, 3, 4, 5, 6, 7, 8,

9, 10, 12, 15, 20, 25 and 30 years from Datastream). Similar to Filipović [2009][Chapter 2] we derived

continuously compounded spot rates by means of ”bootstrapping”. Here we worked with k = 11 maturities,

τ = {1/12, 1/4, 1/2, 1, 2, 5, 7, 10, 15, 20, 30}, and N = 500 observations. The time span considered was July

1, 2002 to June 2004.

Tables 4 and 5 present the parameter estimates for the empirical data. We want to point out that some

differences in the parameter estimates can be observed when comparing the estimates for the two data sets.

With both data sets the estimates of the parameters νii are all larger than 0.95, the standard deviations are

low as observed with simulated data. We also know that the impacts of small changes in ν have relatively
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large impacts in κP . In κ̂P , especially in κ̂P32 and κ̂P33 differences are observed. While κ̂Q11 and κ̂Q22 are

quite similar we have once again differences in the third term, a similar effect arises with the estimates

Σ̂2. The estimates δ̂0 and θ̂Q are different. We also have to point out that due to higher variance of the

H-15 yields (range between 0.24 for the highest maturity to 2.5 for the short term maturities) compared

to the European yield data (range 0.057 to 0.19, highest variance for medium maturities) the estimates

of some Σ2 should be higher; in our estimates this is the case with Σ̂2
33. In addition the estimates of the

micro-structure noise parameters σ̂2
eps(τi) are higher for the H-15 data set. Based on our estimates of

the noise terms σ̂2
eps(τi),

σ̂2
eps(τi)

V̂(yeps(τi))
estimates the proportion of the micro-structure noise in terms of the

variance of the yields observed. For the European yield data we observe that between 32% and 99% of the

variance is due to market-micro structure noise, while for the H-15 data the numbers vary between 12%

and 98%. This impact can be considered to be substantial. The very high percentages are observed with

the longest maturites where the impact of X on the yields becomes very small and the model yields are

mainly determined by A. This explains why almost all the variation with the large maturites is considered

to be micro-structure noise. In addition we have to remark that based on our expierence with similuated

data, especially the estimates for σ2
eps(τi) for the shorter maturities have to be interpreted with care. Last

but not least the inefficiency factors are high but also remain in the range reported in Chib and Ergashev

[2009].

Finance literature often compares the parameter estimates of κP to κQ and θP to θQ to infer risk

premia. Suppose that we stick to the following rule of thumb: parameters are said to be significantly

different if the intervals [κ̂Qii ± sd(κQii )] and [κ̂Pii ± sd(κPii )] do not overlap. Based on this rule only for κ̂P33 in

the H-15 data set a significant effect can be observed, for all other mean reversion parameters no significant

risk premium can be observed. In contrast to the mean reversion parameters θ̂Q is significantly larger

than θ̂P in both data sets. However, we once again have to point out that the standard deviations of the

samples of θP strongly depend on the prior used. Since we already know that the standard deviation of

the estimates of θP are strongly influenced by the choice of the prior, the results of the above comparison

should be handled with care.
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7 Conclusions

In this article we investigated the impacts arising from near unit root behavior on parameter estimation

with affine term structure models. We showed that the information matrix approaches a singularity when

serial correlation increases. To cope with this problem in a Bayesian framework, we constructed priors

regularizing the marginal distribution and allowing for stable parameter estimation. More precisely, we

applied a multivariate version of the Schotman and van Dijk [1991] prior to the level parameters. Since

this is not sufficient to get reliable parameter estimates, an informative prior punishing parameter values

where weak identification occurs is compared to a more simpler shrinkage prior. Due to its simplicity

and the fact that the more complicated prior does not really improve the estimation results this article

recommends to work with a shrinkage prior on the mean reversion parameters, which is in line with Jones

[2003]. By means for this prior, eigenvalues of this matrix close to one have zero prior probability mass.

That is to say sufficiently strong priors are necessary to get reliable parameter estimates.

This article provides also important insights for a finance audience. The first point is that the level

parameter of the risk-free term structure is difficult to estimate due to a high degree of serial correlation.

This has important implications: When using affine term structure models, this implies that this parameter

can only be estimated with a low precision. Second interpreting differences in the level parameters as risk

premia, should also be handled with care.

Last but not least we have to raise the question why affine term structure models have become so

popular although there are so many problems from an econometric point of view. Regarding this issue,

affine term structure models provide a mathematically elegant and consistent way to describe the whole

term structure by a parsimonious model. The principle of no-arbitrage is fulfilled for all yields. In addition

this class of models offers a natural way to include other sources of risk such as credit and liquidity risk,

and can therefore be used for bond, corporate default swap and option pricing issues [among a plenty of

literature see e.g. Lando, 1998; Duffie and Singleton, 1999; Driessen, 2005; Feldhütter and Lando, 2008;

Pan and Singleton, 2008]. Thus, we conclude that if we continue to stick to this class of models, we have
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to be careful as regards parameter estimation.
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A The Canonical Representation of an Al(m) Model

Given the notation of Section 2 an affine stochastic process is defined as follows:

Definition 2 (Affine Process). (Y (t)) follows an affine stochastic process dY (t) = β(Y (t))dt +

%(Y (t))dW (t) if the (positive definite) diffusion matrix %(Y (t))%(Y (t))> and the drift term β(Y (t)) are

affine functions in Y (t) (see Filipović [2009][Definition 10.1 and Theorem 10.1]).

Diagonal Diffusion Term: TA is called an affine transformation if TAY (t) = LY (t) + δ. L is a m×m

non-singular matrix and δ is a vector of dimensionm (see Dai and Singleton [2000][Appendix A]). Equipped

with TA we get:

Definition 3 (Affine Process with Diagonal Diffusion Term). An affine stochastic process is said to have

a diagonal diffusion term if there exists an affine transformation TAY , such that β̃(X(t)) is affine in X(t)

and [%(X(t))%(X(t))>]ii = ãi + b̃>i X(t) while [%(X(t))%(X(t))>]ij = 0, for i, j = 1, . . . ,m; ãi > 0 and b̃i is

a vector of dimension m. See Cheridito et al. [2008] and Dai and Singleton [2000].

By considering (1) and Dai and Singleton [2000], the process (X(t)) can be transformed by means of

TA such that Σ becomes diagonal. That is to say (1) is a (maybe transformed) representation of an affine

process with diagonal diffusion matrix.13

Dai and Singleton [2000]-canonical representation: Let us partition the matrices κQ and B as follows:

κQ =

 κBBl×l κBDl×(m−l)

κDB(m−l)×l κDD(m−l)×(m−l)

 ; B =

 Il×l BBDl×(m−l)

0(m−l)×l 0(m−l)×(m−l)

 . (21)

θ is partitioned into θB and θD, where the first term is of dimension l while the second is of dimension

m − l. The same slip-up has already been applied to X(t). The diffusion matrix is diagonal, such that

13Regarding the question, whether any affine process can be transformed to the structure given by (1), Cheridito et al.
[2008] have shown that this need not be the case. Cheridito et al. [2008][Theorem 2.1] provide a condition when such a
transformation of the affine model in Definition 2 to the structure given by (1) is possible; counterexamples when their
condition is not met are provided as well. For m ≤ 3 such a transformation exists. Even if higher dimensional processes
are used (e.g. Duffee [2011] with term structure data, when credit risk is added as in Feldhütter and Lando [2008] or
CDS spreads are priced Schneider et al. [2010]), models with diagonal/diagonalizable diffusion matrix are mainly applied in
financial models.
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Σ
√
S(X(t))(Σ

√
S(X(t)))> = Σ2

√
S(X(t)). Dai and Singleton [2000] have demonstrated that under the

following conditions the model is admissible and identified.

Definition 4 (Dai and Singleton [2000]-canonical representation of an Al(m) Model). Consider (1) with

diagonal diffusion matrix. Admissibility and identification require: (i.a) If l > 0 then κQ is of the structure

(21). First, κBD = 0l×m−l, where 0l×m−l is a l × m− l matrix of zeros. κij ≤ 0 for 1 ≤ j ≤ l and i 6= j

and
∑l

j=1 κijθj > 0 for i = 1, . . . , l (which specifies the κBB and κDB blocks). (i.b) If l = 0, then κQ is a

lower triangular matrix. (ii) θQi satisfies θQi ≥ 0 for i = 1, . . . , l. θQi = 0 for i = l + 1, . . . ,m. δ0 and θ.i,

i = 1, . . . , l are free. δ is a free parameter, with δi ≥ 0 for i > l + 1. (iii) Regarding B, Il×l is the identity

of dimension l. The elements of the submatrix BBD fulfill Bij ≥ 0 for 1 ≤ i ≤ l and l+ 1 ≤ j ≤ m. Bii = 1

for i = 1, . . . , l. This results in the matrix B as described in (21). αi = 0 for i = 1, . . . , l and αi = 1 for

i = l+1, . . . ,m. (iv) The elements of the main diagonal of Σ are equal to 1; Σij = 0 for all i, j = 1, . . . ,m,

i 6= j, by the assumption of a diagonal diffusion matrix.

B The Minimal Model

Let us consider the state space model (7):

yepsn = A−BXn +
√
σ2
epsen

Xn = νXn−1 + (Im − ν)θP + Σ
√
Sn−1

√
∆εn ,

with the non-singular k × k matrix σ2
eps; where 0 < σ2

eps(τi) <∞. In addition we assume that the k ×m

matrix B has rank m, which is the dimension of Xn.

Definition 5 (Minimal Dimension). A state space model is called controllable if for any two vectors xa

and xb ∈ Rm, there exists an integer v and noise terms εn such that Xv = xb if X0 = xa. A state

space model is called observable if and only if X0 is completely determined by yn, n ≥ 0, given en = 0.

The model is called minimal if it is controllable and observable. (see Brockwell and Davis [2006][Chapter

12.4]).
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Regrading controllability, we get X0 = xa, X1 = νxa+(Im−ν)θP +H1ε1, with H1 = Σ
√
Sn−1(xa)

√
∆,

X2 = ν2xa + (Im + ν)(Im − ν)θP + νH1ε1 + H2ε2, . . . , Xv = νvxa + (Im + ν)θP
∑v−1

i=0 ν
i +∑v−1

i=0 ν
iHi+1εi+1; where Hi(xi−1) = Σ

√
Si−1(xi−1)

√
∆. Then xb can be derived from xa if Cv =

(Hv, νHv−1, ν
2Hv−2, . . . , ν

v−1H1) has rank m, which is the dimension of Xn (see Brockwell and Davis

[2006][p. 490]). Hi is diagonal, positive definite and of full rank by the model assumptions. ν is of full-

rank by the stationarity assumption. Therefore all the terms in C have rank m, such that C has rank

m. That is to say the model in controllable. Observability follows directly from Brockwell and Davis

[2006][Theorem 12.4.4]: Consider the m× jk matrix Oj = (B>, ν>B>, . . . , ν>,j−1B>). If Om has rank m,

then the system is observable. In our case Om is of rank m since B has rank m by Assumption 3. This

can be summarized as follows:

Lemma 1. Suppose that Assumptions 1-3 hold, then the system (7) is of minimal dimension.

Example 1 already demonstrated that we can replace the processes X1n and X2n by X̃1n = X1n +X2n

and X̃2n = 0 and get the same term structure. In terms of this section we get:

Example 4 (Counterexample). Consider a two factor Vasicek model investigated in Example 1. Since

κQ11 = κQ22 we get B1(τi) = B2(τi) = 1
κQτi

(1 − exp(−κQτi)) for all τi. In this case B has rank 1. ν is

diagonal with elements νii = exp(−κPii∆). The elements of Om are given by

νjB> =

 νj11 0

0 νj22


 B11 B21 · · · Bk1

B12 B22 · · · Bk2

 =

 νj11B11 νj11B21 · · · νj11Bk1

νj22B12 νj22B22 · · · νj22Bk2


such that if ν>,jB> is a linear combination of the rows of B. This results in rank(Om) = 1.

What remains to discuss is when B has full rank: For the general systems of ODEs (4) we still assume

that B has full rank. For independent Gaussian terms different κQii are sufficient.
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C A Note on Particular Noise

Let us now assume that mmaturities are observed without noise, that is to say in contrast to Assumption 2,

ein = 0 for m maturities. For these m yields we arrive at the log-likelihood

`(Ψ; yfix,eps) = −N log |detBfix|+ `(ΨP ; X) , (22)

while for the remaining k−m yields observed with noise we get `(Ψ; yeps,nf ,X). Bfix stands for the sub-

matrix of B corresponding to the maturities observed without noise. yfix,eps ∈ Rm and yeps,nf ∈ Rk−m

are the yields observed without and with noise. In the one dimensional case, where |detBfix| =|Bfix|

no problems arise if κQ is sufficiently larger than zero. With m > 1 a further important problem arises.

Although, the matrix B has to be of full rank by the minimality requirement, the matrix Bfix can be

ill conditioned. The fraction of the largest over the smallest eigenvalue of Bfix can become quite large if

the rows of Bfix are close to colinearity. If this is the case |detBfix| becomes a dominating term in the

likelihood (22). Due to the high condition number, the impact of a small change in some component of

ΨQ can be tremendous. On the other had with common noise B is only used to transform Xn into model

yields. Since financial applications favor multi-factor term structure models, this analysis provides us

with the important insight that the assumption of particular noise should not be applied. This problem

goes back to a standard problem of numerical linear algebra.14 In other words, with particular noise

Xn = (Bfix)−1(yfix,epsn − Afix). Small changes in Bfix result in large changes in its inverse. Xn is

strongly affected by small changes in ΨQ. The following examples should shed some light on this problem:

Example 5. Consider a two factor Vasicek model with independent factors. Here, with B̃j(τi) = 1

κQjjτi
(1−

14In a former version of this paper we estimated a Vasicek model with no market price of risk. This setting can be
transformed to the structure of the instantaneous yield model. After applying the priors used in Section 4, we observed good
sampling behavior with particular micro-structure noise for the Vasicek model with zero market price of risk. When insisting
on particular noise with A1(3) models, the likelihood approximations of Aı̈t-Sahalia and Kimmel [2009] can be used.
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exp(−κQjjτ)), we get

Bfix =

 B̃1(τ1) B̃2(τ1)

B̃1(τ2) B̃2(τ2)

 .

The eigenvalues are 1
2(B̃1(τ1)+ B̃2(τ2))±

√
(B̃1(τ1) + B̃2(τ2))2/4−

[
B̃1(τ1)B̃2(τ2)− B̃1(τ2)B̃2(τ1)

]
. If the

determinant B̃1(τ1)B̃2(τ2) − B̃1(τ2)B̃2(τ1) = 0, the eigenvalues are B̃1(τ1)B̃2(τ2) and 0, such that the

condition number goes to infinity. A singular Bfix is derived with τ1 = τ2 or κQ11 = κQ22. Therefore also

for τ1 ≈ τ2 and κQ11 ≈ κ
Q
22 the condition numbers can remain large.

Example 6. Consider the A1(3) model investigated in Section 5. Assume τ fix = {2, 5, 10}, then the

eigenvalues of Bfix are 3.8607, −0.0958 and 0.0010, such that the fraction of largest over the smallest

eigenvalue in absolute terms is 3697.9. When using different τ fix the smallest fraction of eigenvalues still

remains above 1000.

D The Information Matrix

D.1 Information Matrix for the Instantaneous Process of an Al(m) Setting

Let us consider (6): For a stationary (Xn) the covariance matrix is Cov(Xn) = E(Xn− θ)2 = E(XnX
>
n )−

θP θP,>. This matrix is positive definite. By the Feller condition we get (XB
n ) > 0 (a.s.). This results in

S(Xn−1) > 0 by the assumptions of Section 2. For the following analysis it is sufficient to know that the

m×m matrix Cov(Xn) is positive definite.15 It can be derived in closed form - up to an evaluation of a

matrix exponential - from Cuchiero et al. [2010]. Alternatively, if S(Xn−1) is constant or approximated

by S(θP ), we get from Hamilton [1994][p. 265]: vec(Cov(Xn) = (I(mm) − C)−1vec(Σ2Sn−1(θP )∆) where

C = (ν
⊗
ν).

⊗
stands for the Kronecker product.

Let us consider the log-likelihood (10). ν ′ are the non-restricted parameters of the m × m matrix

ν. 0 ≤ m′ν ≤ m2 is the number of free parameters in ν. By means of matrix calculus (see e.g. Poirier

15Existence of 2k moments is treated in Filipović [2009][Chapter 10, Lemma 10.7], for general stationarity conditions the
reader is referred to Kim and Glasserman [2008].
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[1995][Appendix B]) we get:

∂2`(ΨP ; X)

∂vec(ν′)vec(ν′)>
= −

N∑
n=1

[
∂(Xn − νXn−1 − (Im − ν)θP )

∂vec(ν′)

]>
Σ̃−1n

[
∂(Xn − νXn−1 − (Im − ν)θP )

∂vec(ν′)

]
. (23)

The matrix ∂
∂vec(ν′)(Xn − νXn−1 − (Im − ν)θP ) is of dimension m×m′ν . The elements of this matrix are

given by Pν′ [(−X1n + θP1 ), (−X2n + θP2 ), . . . , (−Xmn + θPm)], where Pν′ projects on the m′ columns of the

m×m2 matrix [(−X1n + θP1 ), . . . , (−Xmn + θPm)].16

Using the diagonal structure of the diffusion matrix we get

∂2`(ΨP ; X)

∂νij∂νvw
= −

N∑
n=1

1(i=v)

(−Xjn + θPj )1νij 6=0(−Xwn + θPw)1νvw 6=0

Σ2
iiSii(Xn−1)∆

, (24)

for i, j, v, w = 1, . . . ,m. In (24) Xn enters into the numerator while Xn−1 enters in the denominator.

Consider this fraction as a function g(Xn, Xn−1) such that we can approximate the expectation of the

fractions (24) by the first order approximations (see Paolella [2007][Chapter 2.3]). This yields

E
(
−∂

2`(ΨP ; X)

∂νij∂νvw

)
≈ N · [Cov(Xn)]jw

Σ2
iiSii(θ

P )∆
1νij 6=01νvw 6=01(i=v) . (25)

In Sii(θ
P ) the parameter θP is plugged in for Xn−1. [Cov(Xn)]jw is the element (j, w) of the covariance

matrix. In the same way as described above we can derive all blocks of the proxy of the expected values

of the m′ν ×m′ν Hessian. Since Cov(Xn) is positive definite, E
(
−∂2`(ΨP ;X)

∂ν∂ν>

)
has to be positive definite.

If only a m′νi ×m
′
νi submatrix of the m ×m is considered, this submatrix has to be positive definite by

the principal minors criterion.

Based on (25) E
(
− ∂2`(ΨP ;X)
∂vec(ν′)vec(ν′)>

)
becomes close to a singularity if Σ2Sii,n−1(θP )∆ becomes large. Al-

ternatively the determinant of the covariance matrix can be small as well. From estimates reported in

literature neither the former nor the latter case can be expected.

Next we consider the parameter θP , with the non-restricted components θP
′
, its number is m′θ. By

16The symbol P. is used as a projection device either to project on the non-restricted elements of a vector or to project on
the elements of a matrix which are non-zero due to restrictions on the parameters.
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matrix calculus we get

∂2`(ΨP ; X)

∂θP ′(θP ′)>
= −

N∑
n=1

PθP ′
[
(Im − ν)>(Σ2Sn−1∆)−1(Im − ν)

]
. (26)

Assume that all elements are free parameters, then the expectation of (26) becomes

N · (Im − ν)>(Σ2)−1∆E(S−1
n−1)(Im − ν) . (27)

By the diagonal structure, (Σ2)−1 is given by its reciprocals. E(S−1
n−1) can be approximated by a (first

order) approximation of the expectation of 1/Sii,n−1 (e.g. 1/Sii,n−1 ≈ 1/Sii(θ
P ) ). Σ̄−1 is a proxy

of (Σ2)−1∆E(S−1
n−1). Here it is sufficient to know that E(S−1

n−1) > 0, which is implied by Sn−1 > 0

(a.s.). Assume that all parameters of θ are free. To get a regular matrix, the quadratic form (Im −

ν)>Σ̄−1(Im− ν) has to be positive definite which is the case if its determinant is larger than zero. By the

properties of determinants we get det
[
(Im − ν)>Σ̄−1(Im − ν)

]
= det [(Im − ν)] det

[
Σ̄−1

]
det [(Im − ν)].

Since det
[
Σ̄−1

]
> 0, (27) is positive definite if det [(Im − ν)] > 0. This condition is satisfied if the

eigenvalues of Im − ν are strictly positive, which is the case if the eigenvalues of ν are smaller than

one. These eigenvalues have been abbreviated by λν = (λν1, . . . , λνm)>. If some parameters of θP are

restricted, then we get the corresponding part of the information matrix by means of

E
(
−∂

2`(ΨP ; X)

∂θP ′(θP ′)>

)
= N · PθP ′

[
(Im − ν)>(Σ2)−1∆E(S−1

n−1)(Im − ν)
]
. (28)

If one eigenvalue of ν is equal to one, this does not automatically imply that (28) is singular. The matrix

is regular if the projection on the PθP ′ on the rows of (Im− ν) has rank m′θ. Since for an arbitrary matrix

A, rank(A) = rank(A>) = rank(AA>) = rank(A>A), the rank of PθP ′ ((Im − ν)(Im − ν)>) has to be

less or equal to m′θ. The projection is a submatrix of (Im − ν)(Σ2)−1∆E(S−1
n−1)(Im − ν)>. Full rank of

(Im − ν)(Σ2)−1∆E(S−1
n−1)(Im − ν)> implies a rank of m′θ for this submatrix.
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For the matrix Σ2 we get:

∂2`(ΨP ; X)

∂Σ2
ii

= −
N∑
n=1

1
2Σ2

ii −
ζ2
i

Sii,n−1∆

(Σ2
ii)

3
with ζi = Xin −

∑
j

νijXi,n−1 = Σ2
iiSii,n−1∆εi . (29)

All the ij terms are zero be the diagonal structure of Σ2. (29) can be transformed to

∂2`(ΨP ; X)

∂Σ2
ii

= −
N∑
n=1

1
2Σ2

ii −
Σ2
iiS∆εi

Sii,n−1∆

(Σ2
ii)

3
= −

N∑
n=1

1
2 − εi
(Σ2

ii)
2
. (30)

Since Xn−1 and εi are independent, taking expectations yields:

E
(
−∂

2`(ΨP ; X)

∂Σ2
ii

)
=

N

2(Σ2
ii)

2
. (31)

If also some diagonal elements would be fixed to some positive values a-priori then we could proceed as

with projections as applied to the other parameters. Last but not least, if some Bij are free parameters,

we get

∂2`(ΨP ; X)

∂Bij∂Bvw
= −

N∑
n=1

Xj,n−1Xw,n−1
−1

2Σ2
iiSii,n−1∆ + ζ2

i

Σ2∆S3
ii,n−1

= −
N∑
n=1

Xj,n−1Xw,n−1
−1

2Σ2
iiSii,n−1∆ + Σ2

iiSii,n−1∆ε2
in

(Σ2∆)S3
ii,n−1

. (32)

These terms can be non-zero for i = v only. The conditional expectation of these terms are

E
(
−∂

2`(ΨP ;Xn)

∂Bij∂Bvw
|Xn−1

)
= E

(
Xj,n−1Xw,n−1

1
2Σ2

iiSii,n−1∆

Σ2∆S3
ii,n−1

|Xn−1

)
=
Xj,n−1Xw,n−1

2S2
ii,n−1

. (33)

Similar to what we did with ν, where Xn−1 shows up in the numerator and the denominator, we can do

a first order approximation (see Paolella [2007][Chapter 2.3]), where each element [Cov(Xn) + θP θP >]jw

of the m′Bi×m′Bi block matrix for each i = 1, . . . ,m is divided by 2 E(S2
ii,n−1); B′ are the free elements of

B, m′B is the number of free elements - m′Bi is the number of free elements of the first column of B. Since
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the matrix Cov(Xn) is positive definite, each of these blocks is positive definite, such that E
(
−∂2`(ΨP ;X)

∂Bij∂Bvw

)
has to be positive definite. This matrix can become ill-condition matrix with large Sii,n−1 and an ill-

conditioned covariance matrix of Xn. Projecting on the non-restricted elements provides us with the

block regarding E
(
−∂2`(ΨP ;X)

∂B′∂B′ >

)
.

Insofar we have calculated the blocks of the information matrix I(ΨP ), which are located along the

main diagonal of this m′P × m′P matrix; m′P was the number non-restricted parameters under P which

is equivalent to the number of free elements in ΨP . In the general setting the expectations of the mixed

partial derivatives ∂2`(ΨP ;X)
∂νij∂Bvw

, ∂2`(ΨP ;X)
∂νij∂θi

, etc. need not be zero as in the Vasicek setting. However, to show

that I(ΨP ) is (strictly) positive definite, we can consider the principal minorsM.. of this matrix (m′′P×m′′P

submatrices with m′′P ≤ m′P ). For a positive definite matrix all principal minors along the main diagonal

of M1:m′′P
have to be positive (see Mas-Colell et al. [1995][Theorem M.D.2]). For the underlying setting

let us rearrange the matrix I(ΨP ) such that is start with the block for θP
′
. Here we have observed that

this block is singular if its rank is less than m′
θP

. If this block has not full rank at least one of the m′
θP

principal minors has to be zero. In this case the information matrix becomes singular. If some of these

principal minors are small, then the information matrix becomes ill-conditioned. This is the case of some

eigenvalues of ν are close to one. If necessary, we can proceed in the same way for the other parameters.

D.2 The Al(m) Affine Setting and Micro-Structure Noise

Generally, ΨQ affects A and B, which allows us - given Xn - to derive the model yields yn. We consider

`(ΨQ,σ2
eps; y

eps|X) as described by (12). The non-restricted elements of ΨQ are denoted by ΨQ
−. For those

parameters in ΨQ
− also entering in ΨP we get additional information from yeps. Here the corresponding

expectations of partial derivatives have to be put to be added to elements of I(ΨP ). Such elements are

the non-restricted elements of Σ2 and maybe elements of κQ and θQ which are equal in both measures.

For fixed X we get

E

(
−
∂2`(ΨQ,σ2

eps; y
eps|X)

∂vec(ΨQ
−)vec(ΨQ

−)>
|X

)
=

N∑
n=1

[
∂(A −BXn)

∂vec(ΨQ
−)

]>
(σ2

eps)
−1

[
∂(A −BXn)

∂vec(ΨQ
−)

]
. (34)
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(σ2
eps)
−1 consists of the reciprocals of the noise volatility terms described by (5).

[
∂(A−BXn)

∂vec(ΨQ−)

]>
is of

dimension k times the number of free elements m′Q. The existence of these partial derivatives already

follows from Gronwall [1919]. From (4) we know that ∂(BXn)

∂vec(ΨQ−)
only depends on κQ and Σ; for Gaussian

processes it depends on κQ only. Although A and B and its corresponding derivatives are not available

in closed form, we can derive the terms of this symmetric m′Q ×m′Q matrix E
(
−∂2`(ΨQ,σ2

eps;y
eps|X)

∂vec(ΨQ−)vec(ΨQ−)>
|X
)

by means of

E

[
k′∑
l=1

σ2
eps(τl)

−1∂(A(τl)−B(τl)Xn)

∂ΨQ
i−

∂(A(τl)−B(τl)Xn)

∂ΨQ
j−

]
, (35)

for all ΨQ
i−,Ψ

Q
j− ∈ ΨQ

− ×ΨQ
−. ∂A(τl)

∂ΨQi−
and ∂B(τl)

∂ΨQi−
have to be derived numerically. In addition (35) demands

for E(Xn) = θP and E(XnX
>
n ) = Cov(Xn) + θP θP,>, which are available in closed form.

E The Marginal Distribution of θP and ν in the Vasicek Model

By means of De Pooter et al. [2006] or De Pooter et al. [2008] we get the marginal distribution of the

parameters θP , ν for the Vasicek model. With X := (X1, . . . , XN ), X−1 := (X0, X1, . . . , XN−1), MA· :=

IN −A·(A>· A·)−1A>· , IN is the N -dimensional identity matrix, AθP = X−1−θP , Aν = (1−ν)X, c(ΨP ) :=

FN (1−ν
σν

)− FN (−νσν ), FN (.) is the probability distribution function of a standard normal random variable,

and σ2
ν = Σ2

(
(X − νX−1)>(X − νX−1)

)−1
the marginals are given by:

π(θP |X, ν,Σ2) ∝
(

(X − θP )>MA
θP

(X − θP )
)−N−1

2
(

(X−1 − θP )>(X−1 − θP )>
)− 1

2
c(ΨP ) (36)

π(ν|X) ∝
(

(X − νX−1)>MAν (X − νX−1)
)−N−1

2
N−

1
2 (1− ν)−11{ν∈[0,1]} . (37)

While the density (36) cannot be attributed to a density currently known in literature, we observe that

the marginal density (37) factorizes into a student-t kernel, the term (1− ν)−1 and the indicator function

1{ν∈[0,1]}. Thus, when ν → 1 then (1 − ν)−1 → ∞. Considering (36), ν → 1 results in σ2
ν → ∞ and

c(ΨP ) → 0. Therefore the joint distribution π(θP , ν|Σ2,X) becomes improper with ν = 1. With ν close

to one it becomes almost flat.
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F Bayesian Sampling of the Parameters

Let (Xn) follow an affine diffusion with diagonal diffusion matrix. We get the parameters by means of

Gibbs sampling and/or the Metropolis Hastings (MH) algorithm as follows:

Step 1: sample θP from p(θP |X, ν,Σ2)

Step 2: sample ν from p(ν|X, θP ,Σ2)

Step 3: sample Σ2 from p(Σ2|X, θP , ν)

Ad Step 1: With ν fixed, Yn,θ = Xn − νXn−1 ∈ Rm and Zθ,n = (Im − ν) ∈ Rm×m. We can write

Yn,θ = Zθ,nθ+
√

Σ̃εn; here Σ̃n = Σ2Sn−1∆. I.e. we get a regression model with heterogeneous innovations

(see e.g. Frühwirth-Schnatter [2006]). If some components of θP are restricted, the analysis can be

performed in an equivalent way. With conjugate priors, θP can be sampled from a normal distribution with

parameters aθ,p = Aθ,p ·
(

[
∑N

n=1(Z>n,θΣ̃
−1
n Yθ)] +A−1

θ,0aθ,0

)
and Aθ,p =

(
[
∑N

n=1(Z>n,θΣ̃
−1
n Zn,θ)] +A−1

θ,0

)−1
.

Aθ,0 is the prior variance and aθ,0 is the prior mean. Applying the prior πSD results in Aθ,0= Ãθ,0 ·

(Im − ν)−1Σ2(Im − ν)−1>. For a non-conjugate prior the MH algorithm has to be applied. This normal

conditional density can also be used as a proposal density q(θP ) in a MH step (see also Chib and Ergashev

[2009], where similar tailored proposal densities are used). For m > 1 we follow this approach, while for

the Vasicek and the CIR model the Gibbs sampler was applied.

Remark 2. Especially in the Vasicek setting sampling from p(θP |X, ν,Σ2) in Step 1 can be performed

by using the Gibbs sampler. Alternatively, the Metropolis-Hastings algorithm can be used. With the MH

algorithm it is important to note that sampling of θP requires a careful choice of the proposal densities

q(.). By using a normal random walk proposal θP,propi = θPi + cθPi
ε, ε ∼ N (0, 1) and cθPi

constant (and

”as usual not too large to get sufficiently high acceptance probabilities”), we hardly get large deviations

from θPi as done by Gibbs sampler when νPii is close to one. To tackle this problem we propose from a

normal random walk proposal with cθPi
∝ (1− νPii )−1. For the Vasicek model we compared the posterior

samples and observed minor differences when the MH algorithm is used instead of Gibbs sampler. Here
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the reader is also referred to Hoogerheide et al. [2007] and Hoogerheide and van Dijk [2008].

Ad Step 2: With θP fixed, we define Yn,ν = Xn − θP ∈ Rm and Zn,ν = Xn−1 − θP ∈ Rm×m′ν ; m′ν is

the number of non-zero parameters in ν. From the m ×m matrix ν, we get the vector β(ν) by deletion

of the elements equal to zero of vec(ν). β(ν) has dimension m′ν . Now we get Yn,ν = Zn,νβ(ν) +
√

Σ̃εn.

ν can be sampled from a normal distribution with parameters aν,p = Aν,p ·
(

[
∑N

n=1(Z>n,νΣ̃−1
n Yn,ν)]

)
and

Aν,p =
(

[
∑N

n=1(Z>n,νΣ̃−1
n Zn,ν)]

)−1
. Alternatively a conjugate normal prior with parameters aν,0 and

Aν,0 can by applied, such that aν,p and Aν,p become aν,p = Aν,p ·
(

[
∑N

n=1 Z
>
n,νΣ̃−1

n Yn,ν ] +A−1
ν,0aν,0

)
and

Aν,p =
(

[
∑N

n=1 Z
>
n,νΣ̃−1

n Zn,ν ] +A−1
ν,0

)−1
, respectively (see e.g. Cameron and Trivedi [2005]). A conjugate

truncated normal could also be applied by using aν,0 and Aν,0 as above and ν ∈ (0, 1). Here, ν is sampled

from a normal distribution with parameters aν,p and Aν,p. The sample is accepted if ν ∈ (0, 1). For m > 1

the eigenvalues of ν have to be in this interval. With the prior πSI(.), the MH algorithm has to be used

but the above conditional density can be used as a proposal density.

For the random walk proposals we use νP,propij = νPij + cκP ε; we set cκP = 0.1 and ε ∼ N (0, 1). While

for the Vasicek and the CIR model the Gibbs sampler has been applied (if possible due to the prior),

we sample ν for the multivariate setting by means of the MH algorithm with random walk proposals (in

contrast to Chib and Ergashev [2009]).

Ad Step 3: If Σ2 has diagonal structure, we sample Σ2
ii from an inverse gamma distribution with

parameters nip (degrees of freedom parameter) and Sip (scale parameter) based on the assumption of the

conjugate inverse Gamma prior. The parameters are given by nip = n0+N/2 and Sip = S0+ 1
2

∑N
n=1(Xn−

νXn−1 − θP (1− ν))/[Sii,n−1∆0.5])2. In the Vasicek in the CIR model we apply a Gibbs sampler with this

conjugate prior. For the yields observed where Σ2 enters into A and B, the Metropolis Hastings algorithm

has to be applied. Here we mix between proposals from these densities and random walk proposals.

For the parameter δ0 we applied the MH algorithm. We propose from a normal density which is

derived in a similar way as the conditional density in Step 1. Given X, the other parameters and the

fact the δ0 enters into A in a linear way allows us to write yepsn = δ0 + A− −BXn + en, where A− is A

without the δ0 component. In this case sampling δ0 corresponds to Bayesian sampling of a sample mean
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with heterogeneous innovations. For the updates of θQ and κQ, random walk updates have been applied.

For σ2
eps we applied the Gibbs sampler as in Step 3.
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Parameter Estimates with the Prior (19)

mean(Ψ̂P ) sd(Ψ̂P ) min(Ψ̂P ) max(Ψ̂P ) q(Ψ̂P , 0.025) median(Ψ̂P ) q(Ψ̂P , 0.975)

Parameter Estimates for the OU model with γ∗ = 2, λ∗ = 0.9999
ν 0.9882 0.0085 0.9498 1.0000 0.9700 0.9893 0.9997
θP 4.8286 127.3978 -1829.6188 1906.1439 -187.0803 3.1611 210.2170
σ2 1.4439 0.0917 1.1148 1.9084 1.2752 1.4401 1.6346
κP 0.6251 0.4531 0.0010 2.6948 0.0179 0.5625 1.5939

Parameter Estimates for the CIR model with γ∗ = 2, λ∗ = 0.9999
ν 0.9871 0.0080 0.9519 1.0000 0.9703 0.9878 0.9988
θP 28.0817 126.0652 -1436.7104 2320.7493 -52.5715 3.9422 324.4285
σ2 0.4919 0.0312 0.3800 0.6488 0.4344 0.4906 0.5568
κP 0.6843 0.4265 0.0018 2.5807 0.0609 0.6410 1.5747

Parameter Estimates for the OU model with γ∗ = 2, λ∗ = 0.995
ν 0.9882 0.0086 0.9495 1.0000 0.9698 0.9893 0.9995
θP 2.4114 127.9933 -1880.2639 1864.3128 -200.6264 3.0177 198.4717
σ2 1.4480 0.0920 1.1178 1.9111 1.2788 1.4441 1.6393
κP 0.6261 0.4557 0.0005 2.7117 0.0241 0.5627 1.6016

Parameter Estimates for the CIR model with γ∗ = 2, λ∗ = 0.995
ν 0.9864 0.0082 0.9507 0.9999 0.9695 0.9872 0.9985
θP 26.0766 121.2544 -1419.3769 2263.3184 -51.2701 3.5733 309.4119
σ2 0.4862 0.0309 0.3750 0.6414 0.4295 0.4849 0.5504
κP 0.7184 0.4334 0.0039 2.6426 0.0785 0.6741 1.6223

Parameter Estimates for the OU model with γ∗ = 2, λ∗ = 0.99
ν 0.9871 0.0080 0.9519 1.0000 0.9703 0.9878 0.9988
θP 28.0817 126.0652 -1436.7104 2320.7493 -52.5715 3.9422 324.4285
σ2 1.4919 0.0312 1.3800 1.6488 1.4344 1.4906 1.5568
κP 0.6843 0.4265 0.0018 2.5807 0.0609 0.6410 1.5747

Parameter Estimates for the CIR model with γ∗ = 2, λ∗ = 0.99
ν 0.9872 0.0081 0.9520 1.0000 0.9704 0.9880 0.9988
θP 26.6796 125.1440 -1472.8413 2303.1051 -54.7794 3.6674 320.7548
σ2 0.4905 0.0312 0.3787 0.6479 0.4332 0.4892 0.5553
κP 0.6768 0.4273 0.0009 2.5724 0.0606 0.6318 1.5704

Table 1: Parameter estimates for the Vasicek [1977] and the Cox et al. [1985] model. Data simulated with θP = 3, ν = 0.99
and Σ2 = 1.22 for the Vasicek and Σ2 = 0.72 for the CIR setting. Statistics obtained from M = 500 simulation runs. Prior
(19) applied to ν.
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Parameter Estimates with Shrinkage Prior

mean(Ψ̂P ) sd(Ψ̂P ) min(Ψ̂P ) max(Ψ̂P ) q(Ψ̂P , 0.025) median(Ψ̂P ) q(Ψ̂P , 0.975)

Parameter Estimates for the OU model, shrinkage prior, λ∗ = 0.9999
ν 0.9862 0.0086 0.9478 0.9999 0.9682 0.9869 0.9992
θP 2.9612 13.7410 -186.1015 190.1522 -20.6280 3.0207 25.8990
σ2 1.4337 0.0911 1.1063 1.8921 1.2662 1.4299 1.6229
κP 0.7291 0.4590 0.0053 2.8061 0.0443 0.6888 1.6915

Parameter Estimates for the CIR model, shrinkage prior, λ∗ = 0.9999
ν 0.9864 0.0087 0.9475 0.9999 0.9682 0.9871 0.9992
θP 6.2284 14.7442 -156.2127 242.4959 -6.7318 3.3476 42.6995
σ2 0.4883 0.0310 0.3770 0.6442 0.4313 0.4870 0.5528
κP 0.7208 0.4618 0.0052 2.8210 0.0417 0.6784 1.6921

Parameter Estimates for the OU model, shrinkage prior, λ∗ = 0.999
ν 0.9848 0.0081 0.9480 0.9990 0.9677 0.9854 0.9978
θP 3.0093 1.8791 -16.8882 22.9827 -0.7151 3.0004 6.7872
σ2 1.4493 0.0920 1.1176 1.9145 1.2800 1.4454 1.6406
κP 0.8044 0.4318 0.0523 2.7981 0.1163 0.7706 1.7162

Parameter Estimates for the CIR model, shrinkage prior, λ∗ = 0.999
ν 0.9846 0.0082 0.9476 0.9990 0.9676 0.9852 0.9977
θP 3.0209 1.8547 -16.8976 22.6495 -0.7079 3.0304 6.6702
σ2 1.4327 0.0910 1.1055 1.8904 1.2654 1.4289 1.6218
κP 0.8112 0.4340 0.0530 2.8200 0.1179 0.7789 1.7244

Parameter Estimates for the OU model, shrinkage prior, λ∗ = 0.995
ν 0.9827 0.0071 0.9482 0.9950 0.9673 0.9834 0.9938
θP 3.0622 0.6808 -1.4025 7.5643 1.6617 3.0615 4.4677
σ2 1.4405 0.0914 1.1117 1.9014 1.2724 1.4366 1.6306
κP 0.9117 0.3797 0.2615 2.7828 0.3223 0.8727 1.7378

Parameter Estimates for the CIR model, shrinkage prior, λ∗ = 0.995
ν 0.9827 0.0072 0.9473 0.9950 0.9670 0.9834 0.9938
θP 3.0710 0.6693 -1.0711 8.1534 1.8808 3.0103 4.6143
σ2 0.4912 0.0312 0.3791 0.6494 0.4339 0.4899 0.5561
κP 0.9160 0.3839 0.2615 2.8306 0.3224 0.8762 1.7524

Table 2: Parameter estimates for the Vasicek [1977] and the Cox et al. [1985] model. Data simulated with θP = 3, ν = 0.99
and Σ2 = 1.22 for the Vasicek and Σ2 = 0.72 for the CIR setting. Statistics obtained from M = 500 simulation runs. Shrinkage
prior applied to ν.
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Parameter Estimates for A1(3) Setting
true mean sd min max q(0.025) median q(0.975) IEF

ν11 0.9867 0.9823 0.0065 0.9605 0.9950 0.9684 0.9826 0.9931 82.5969
ν22 0.9848 0.9938 0.0011 0.9883 0.9950 0.9911 0.9941 0.9950 12.3765
ν32 -0.0019 0.0038 0.0017 -0.0013 0.0081 0.0001 0.0038 0.0072 130.0790
ν33 0.9829 0.9464 0.0134 0.9157 0.9768 0.9215 0.9477 0.9704 155.4359
κP11 0.7000 1.1913 0.4846 0.2618 2.8435 0.3689 1.1567 2.2269
κP22 0.8000 0.4763 0.3682 0.2614 2.9426 0.2639 0.3383 1.6589
κP32 0.1000 -0.0966 0.1098 -0.4479 0.3572 -0.3016 -0.0987 0.1128
κP33 0.9000 2.4559 0.7983 0.2618 4.9630 0.8550 2.4795 4.0057

κQ11 0.5000 0.4610 0.0671 0.3123 0.6089 0.3459 0.4480 0.5892 198.1873

κQ22 0.7000 0.7634 0.0498 0.6282 0.8684 0.6620 0.7720 0.8424 197.0050

κQ33 1.0000 1.0923 0.0772 0.9277 1.2707 0.9497 1.1089 1.2380 198.9622
θP1 1.5000 1.6014 0.1151 0.6656 2.8691 1.3789 1.5871 1.8949 4.9220

θQ1 2.0000 3.1638 0.3816 1.8168 3.8732 2.1398 3.2499 3.6659 193.3803
δ0 1.0000 0.7357 0.3195 0.2270 1.9946 0.4071 0.6012 1.5206 195.7308
Σ2

11 0.0625 0.0938 0.0199 0.0491 0.1841 0.0606 0.0937 0.1385 181.5149
Σ2

22 0.1600 0.2365 0.0504 0.1384 0.4424 0.1715 0.2202 0.3568 181.2781
Σ2

33 0.2500 0.2480 0.0311 0.1542 0.3818 0.1936 0.2458 0.3142 147.8921
Σ11 0.2500 0.3045 0.0323 0.2216 0.4291 0.2461 0.3061 0.3721
Σ22 0.4000 0.4837 0.0500 0.3721 0.6652 0.4142 0.4692 0.5973
Σ33 0.5000 0.4970 0.0311 0.3927 0.6179 0.4400 0.4958 0.5605
σ2
eps(1/12) 0.0069 0.0477 0.0576 0.0112 0.1947 0.0133 0.0185 0.1947 63.9079

σ2
eps(1/4) 0.0072 0.0429 0.0525 0.0100 0.1773 0.0122 0.0167 0.1773 59.3977

σ2
eps(1/2) 0.0076 0.0368 0.0435 0.0094 0.1472 0.0112 0.0149 0.1472 61.1095

σ2
eps(1) 0.0086 0.0305 0.0315 0.0103 0.1101 0.0118 0.0151 0.1101 60.5161

σ2
eps(2) 0.0107 0.0248 0.0157 0.0123 0.0641 0.0144 0.0176 0.0641 57.8162

σ2
eps(3) 0.0130 0.0235 0.0090 0.0142 0.0451 0.0165 0.0197 0.0451 56.6530

σ2
eps(5) 0.0183 0.0257 0.0035 0.0173 0.0321 0.0209 0.0246 0.0321 58.5145

σ2
eps(7) 0.0238 0.0277 0.0011 0.0216 0.0284 0.0247 0.0284 0.0284 14.4051

σ2
eps(10) 0.0302 0.0293 0.0009 0.0230 0.0298 0.0266 0.0298 0.0298 9.4167

σ2
eps(20) 0.0183 0.0190 3.6E-5 0.0167 0.0190 0.0190 0.0190 0.0190 1.1070

Table 3: A1(3) Model, Simulated Data: MCMC estimates of parameters Ψ; shrinkage prior with λ∗ = 0.995. N = 500
observations, k = 10 maturities τ = {1/12, 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20}. The columns provide the true parameter values and
the descriptive statistics sample mean, standard deviation (sd), minimum, maximum, 0.025% quantile, median, the 0.975
quantile and the Chib [2001] inefficiency factor. 50,000 MCMC steps, 20,000 burn in.
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Parameter Estimates for A1(3) Setting - Empirical US Data
mean sd min max q(0.025) median q(0.975) IEF

ν11 0.9859 0.0035 0.9811 0.9950 0.9813 0.9852 0.9936 13.9133
ν22 0.9902 0.0038 0.9811 0.9950 0.9819 0.9912 0.9948 51.2329
ν32 0.0912 0.0536 0.0108 0.2419 0.0225 0.0805 0.2046 198.4277
ν33 0.9871 0.0041 0.9811 0.9950 0.9813 0.9866 0.9945 17.7597
κP11 0.7392 0.1861 0.2616 0.9950 0.3335 0.7757 0.9841
κP22 0.5141 0.2007 0.2614 0.9949 0.2693 0.4610 0.9530
κP32 -4.8105 2.8287 -12.8454 -0.5684 -10.7918 -4.2542 -1.1907
κP33 0.6794 0.2165 0.2614 0.9950 0.2881 0.7019 0.9858

κQ11 0.1472 0.0569 0.0639 0.3957 0.0721 0.1459 0.2547 199.0140

κQ22 0.7934 0.0900 0.5310 0.9750 0.5691 0.8111 0.9329 198.3452

κQ33 2.4098 0.3720 1.0959 2.7352 1.2617 2.5574 2.7004 199.9012
θP1 1.9354 0.1465 0.7277 3.5848 1.6842 1.9011 2.3229 3.0251

θQ1 15.9040 3.7424 6.2730 24.6725 8.2071 16.5237 22.1365 199.5094
δ0 0.0372 0.0869 -0.3222 0.3270 -0.1303 0.0194 0.1874 179.5633
Σ2

11 0.0905 0.0163 0.0405 0.1445 0.0511 0.0934 0.1162 171.0889
Σ2

22 0.3433 0.1846 0.1003 0.9085 0.1227 0.2893 0.7091 195.3897
Σ2

33 1.3265 0.5252 0.2089 2.4453 0.2563 1.4723 2.0368 193.2727
Σ11 0.2994 0.0286 0.2012 0.3801 0.2260 0.3057 0.3409
Σ22 0.5648 0.1557 0.3167 0.9532 0.3503 0.5379 0.8421
Σ33 1.1199 0.2690 0.4570 1.5638 0.5062 1.2134 1.4272
σ2
eps(1/12) 0.7684 0.8143 0.0492 2.4694 0.0604 0.4370 2.4694 197.3384

σ2
eps(1/4) 0.4959 0.6196 0.0195 2.4992 0.0244 0.2781 2.1706 198.0231

σ2
eps(1/2) 0.4020 0.5901 0.0110 2.4926 0.0154 0.1814 2.1160 198.1032

σ2
eps(1) 0.2631 0.4706 0.0103 2.1548 0.0139 0.0628 1.7133 198.1821

σ2
eps(2) 0.2021 0.3321 0.0109 1.6277 0.0151 0.0797 1.2502 197.9106

σ2
eps(3) 0.2117 0.2493 0.0295 1.2600 0.0413 0.1392 1.0056 197.2610

σ2
eps(5) 0.2290 0.1258 0.0789 0.7748 0.1169 0.2021 0.6371 193.3388

σ2
eps(7) 0.2423 0.0702 0.1193 0.5379 0.1607 0.2304 0.4570 176.3249

σ2
eps(10) 0.2184 0.0417 0.1188 0.3545 0.1596 0.2123 0.3280 117.7855

σ2
eps(20) 0.2448 0.0104 0.1769 0.2493 0.2114 0.2493 0.2493 23.8948

Table 4: A1(3) Model, H-15 Data: MCMC estimates of parameters Ψ and the Chib [2001] inefficiency factor IEF: The
columns provide descriptive statistics calculated from the posterior. The estimates are based on 50,000 MCMC steps, 20,000
burn in. Shrinkage prior with λ∗ = 0.995. N = 413 observations, k = 10 maturities τ = {1/12, 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20}.
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Parameter Estimates for A1(3) Setting - Empirical European Data
mean sd min max q(0.025) median q(0.975) IEF

ν11 0.9887 0.0040 0.9722 0.9950 0.9804 0.9889 0.9947 53.2176
ν22 0.9918 0.0024 0.9824 0.9950 0.9863 0.9923 0.9949 20.4088
ν32 0.0182 0.0035 0.0057 0.0265 0.0114 0.0183 0.0242 112.3791
ν33 0.9591 0.0119 0.9272 0.9882 0.9352 0.9596 0.9808 161.3796
κP11 0.9862 0.5449 0.2614 3.3264 0.3001 0.8544 2.3163
κP22 0.5468 0.2558 0.2614 1.9257 0.2708 0.4759 1.2771
κP32 -0.3721 0.4825 -1.4198 0.7810 -1.1056 -0.4682 0.6002
κP33 2.5286 0.9804 0.2703 6.4312 0.8207 2.4644 4.3904

κQ11 0.2455 0.0923 0.1083 0.5857 0.1281 0.2222 0.5218 199.5059

κQ22 0.7603 0.1622 0.4984 1.0261 0.5203 0.7460 1.0004 199.7201

κQ33 1.1244 0.0424 1.0428 1.2512 1.0534 1.1161 1.2175 196.2825
θP1 2.0134 0.0841 0.8178 2.8744 1.7721 2.0244 2.1274 32.9397

θQ1 9.1917 0.9575 7.6658 12.7288 7.8739 9.0578 11.9971 198.0933
δ0 -0.8778 0.1989 -1.8218 -0.2427 -1.4092 -8E-01 -0.6436 187.7038
Σ2

11 0.0395 0.0151 0.0195 0.0944 0.0234 0.0341 0.0774 194.0363
Σ2

22 0.1030 0.0485 0.0454 0.2807 0.0536 0.0859 0.2239 195.4531
Σ2

33 0.1189 0.0306 0.0696 0.2529 0.0830 0.1099 0.1997 188.3213
Σ11 0.1957 0.0351 0.1397 0.3073 0.1528 0.1847 0.2782
Σ22 0.3133 0.0700 0.2131 0.5298 0.2315 0.2930 0.4732
Σ33 0.3422 0.0420 0.2637 0.5029 0.2880 0.3314 0.4469
σ2
eps(1/12) 0.0310 0.0166 0.0117 0.0647 0.0151 0.0238 0.0647 87.4174

σ2
eps(1/4) 0.0293 0.0170 0.0068 0.0581 0.0109 0.0215 0.0581 100.2041

σ2
eps(1/2) 0.0186 0.0181 0.0049 0.0570 0.0061 0.0095 0.0570 86.5584

σ2
eps(1) 0.0645 0.0189 0.0197 0.0851 0.0296 0.0662 0.0851 119.2183

σ2
eps(2) 0.1366 0.0293 0.0665 0.1636 0.0801 0.1469 0.1636 145.6772

σ2
eps(5) 0.1700 0.0180 0.1159 0.1899 0.1352 0.1704 0.1899 105.7929

σ2
eps(7) 0.1577 0.0135 0.1096 0.1713 0.1299 0.1596 0.1713 84.7395

σ2
eps(10) 0.1370 0.0096 0.0977 0.1459 0.1160 0.1394 0.1459 57.3023

σ2
eps(15) 0.1085 0.0051 0.0740 0.1113 0.0938 0.1113 0.1113 35.1514

σ2
eps(20) 0.0917 0.0037 0.0665 0.0933 0.0801 0.0933 0.0933 46.1553

σ2
eps(30) 0.0811 0.0018 0.0631 0.0816 0.0747 0.0816 0.0816 12.3991

Table 5: A1(3) Model, Yields from LIBOR and Swap Rates: MCMC estimates of parameters Ψ and the Chib
[2001] inefficiency factor IEF: The columns provide descriptive statistics calculated from the posterior. The estimates are
based on 50,000 MCMC steps, 20,000 burn in. Shrinkage prior with λ∗ = 0.995. N = 500 observations, k = 11 maturities
τ = {1/12, 1/4, 1/2, 1, 2, 5, 7, 10, 15, 20, 30}.
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