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Abstract 

The paper considers Bayesian approach to productivity analysis of the EU. Bayesian 

Stochastic Frontier models and structural decomposition of output growth are used to obtain 

the components of output growth. This allows us to explore the impact of capital 

accumulation, labor growth, technical progress and technical efficiency change on economic 

development of the EU. Since estimates of the growth components are conditioned upon 

model parameterization and the underlying assumptions, a number of possible specifications 

are proposed. Then, the optimal model is chosen based on the highest marginal data density 

criterion. 

 

Keywords: stochastic frontier models, Bayesian inference, productivity analysis. 
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Bayesian Stochastic Frontier Analysis of Economic Growth in the EU 

 

Production frontier analysis was first proposed by Koopmans (1951) and Debreu 

(1951) who formed the theoretical basis later used by Farrell (1957) in his pioneering work on 

efficiency analysis of the US agriculture industry. In the context of frontier analysis one can 

also compare the entire economies as producing a mutually comparable product (e.g., GDP) 

using a set of production factors (e.g., physical capital and labor) under a common 

technology; see, e.g., Fried et al. (2008) for a lengthy list of examples. In such pre-defined 

model economic growth, i.e., increase in GDP from one period to another, can be caused by i) 

accumulation of production factors (IC), ii) increase in technical efficiency (EC) or iii) 

technical progress (TC). This concept was first utilized in the context of frontier analysis by 

Färe et al. (1994), who used Data Envelopment Analysis (DEA) to analyze economic growth 

of selected countries. Later, Koop et al. (1999) proposed a Bayesian approach to derive 

components of output growth. More recently, researchers’ attention has also turned to 

investigating the impact of capital accumulation on economic growth among the EU member 

states (see, e.g., Salinas-Jiménez et al., 2006). Thus, one may want to decompose the IC 

component in order to analyze impact of each production factor separately. Furthermore, 

many researchers seem to prefer DEA as a tool for such macro-scale analysis. This is because, 

as proponents of DEA argue, being a nonparametric approach DEA does not require imposing 

any structure on the production frontier. Bayesian estimation, however, has several 

advantages over DEA. First, it allows us to obtain exact small sample results, which is of 

particular importance in small macroeconomic datasets. Second, parametric approach is less 

affected by outlying observations and any nuisance in the data (Fried et al., 2008). Third, 

though the problem of proper model parameterization remains, one can choose the best model 

based on a specific, pre-defined criterion.  

The aim of this work is to use Bayesian stochastic frontier models in order to trace 

changes in economic growth patterns among the EU countries
1
 in 2000-2010. The output 

decomposition methodology is based on Koop et al. (1999) and has been extended by 

additional decomposition of IC component to trace changes of capital and labor contribution 

to economic growth in the EU. Moreover, since I consider the total of 14 plausible model 

specifications I set what I think is an intuitive Bayesian criterion for choosing the optimal 

                                                            
1 I use aggregated data for EU12 countries.  
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model – the highest marginal data density.  

The data used in the analysis come from AMECO database, supervised by DG ECFIN 

of the European Commission. These are GDP in mld PPS in 2000 constant prices, net capital 

stock in mld PPS in 2000 constant prices and total number of hours worked annually in a 

given country (in thousands). The paper is structured as follows.
2
 Section 2 outlines the 

Bayesian stochastic frontier models used in this research. Section 3 provides details on 

structural decomposition methodology while section 4 briefly describes the method used for 

choosing the optimal model. Section 5 provides results analysis and section 5 concludes.  

Bayesian stochastic frontier models 

Let Yit, Kit and Lit be the levels of production, capital and labor respectively in i-th 

country (i = 1, …, N)  in t-th period (t = 1, …, T), and the lowercase letters yit, kit and lit 

indicate their natural logs. The general model takes the following form 

 ititititit uvlkhy  );,(          (1) 

where h(.) is the log form of a production function, vit is the independently normally 

distributed variable with zero mean and an unknown precision σ
-2

,
 
and uit defines inefficiency 

term in a way that technical efficiency is rit=exp(-uit) where 0<rit≤1, and rit=1 is maximum 

efficiency. The parametric specifications are 

 Cobb-Douglas production function (labeled CD hereafter)  

 itititit lklkh 210);,(  
       

 (2) 

 Cobb-Douglas production function with time trend (CDt hereafter) 

 tlklkh itititit 3210);,(          (3) 

 Cobb-Douglas production function with linear trend in each parameter of the function 

(CD-LT hereafter) 

 ittittttitit lklkh 210);,(     

where  aata t    (a=0,1,2). This equation can be rearranged as 

 )();,( 210210 itititititit lktlklkh         (4) 

 Translogarithmic (translog hereafter) production function (labeled TR) 

 itititititititit lklklklkh 5

2

4

2

3210);,(       (5) 

 Translog production function with time trend (TRt hereafter) 

                                                            
2 Structure of this paper is based on the author’s previous work “Dekompozycja strukturalna wzrostu 

gospodarczego z wykorzystaniem bayesowskich modeli granicznych na przykładzie krajów EU15” written in 

Polish.  
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 Translog production function with linear trend in each parameter (TR-LT) 
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where aata t    (a=0,…,5). The equation can be rearranged as 

 
)(

);,(

5

2

4

2

3210

5

2

4

2

3210

itititititit

itititititititit

lklklkt

lklklklkh












     (7) 

 Translog production function with quadratic trend in each parameter (TR-QT): 

 itittittittittittttitit lklklklkh 5

2

4

2

3210);,(      

where aaata tt   2  (a=0,…,5). Like in TR-LT this can be rearranged as follows 
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Equations (2-8) can be summarized as  ititit xlkh ');,(  where vector xit is the 

element of X that contains the list of arguments appropriate to the given production function 

in (2-8). This work also considers two most commonly used specifications for prior 

distribution of the inefficiency term, i.e., exponential and half-normal (Greene, 2008). As a 

result this gives us two model “classes” – normal-exponential (labeled NExp hereafter) and 

normal-half-normal (NHN hereafter) – with seven possible parameterizations of the 

production function per model class. Hence, the total number of models considered amounts 

to 14. The full Bayesian NExp-class model is
3
  

 

),1|())ln(,1|()5.0,5.0|(

),|(),),,(|(

1

0

1

00

2

1

1 1

2





 









itGGG

N

N

i

T

t

ititititN
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Cbfulkhyf
    (9) 

where ),|(. ZwfN  is a normal density function with w mean and Z covariance matrix,

),|(. zwfG  is a gamma density function with w/z mean and w/z
2
 variance. I set n0=a0=10

-6 

which leads to a quite flat distribution for σ
-2

 with mean 1 and variance 2·10
6
. The r0 

parameter, prior median efficiency, is set as 0.75, giving equal prior chances that technical 

efficiency of a given country is either greater or smaller than 75%. Other values were also 

                                                            
3 The model structure is similar to Koop et al. (1999), the difference being prior on β. 
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considered (0.65 and 0.875). This, however, had virtually no impact on the results.
4
 To allow 

for cross-model comparability b and C
-1

 parameters have been calibrated so that the prior on β 

shares the following properties in all models: i) average elasticities of capital and labor have 

0.5 prior means with 0.2 prior standard deviation
5
, ii) neutral technical change has prior mean 

of 0.02 and 0.01 prior standard deviation. Economic regularity conditions (non-negative 

factor elasticities) are imposed through inequalities appropriate to the given parametric 

specification. The model is too complex to analytically acquire marginal posterior 

distributions of its parameters. We can, however, draw from their conditional posterior 

distributions, which are 
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where 121

* )'(   XXCC   and J is the number of elements in . Based on the formulas 

above and with a moderate numerical effort one can approximate characteristics of the 

marginal distributions using Gibbs sampler. The full Bayesian NHN-class model used in the 

study is 
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where n0=a0=10
-6

 and r0=0.75 and the prior on ω
-2

 is as proposed in van den Broeck 

et al. (1994). Like in the case of NExp, this model is also very complex and thus the 

characteristics of marginal distributions must be approximated numerically, e.g., using Gibbs 

sampler and the known conditionals. For  and σ
2
 the conditionals do not change in relation to 

NExp model. Conditionals for the remaining parameters are 

                                                            
4 It only (slightly) influenced the average level of efficiency in the sample, mostly when dealing with Cobb-

Douglas models. Efficiency scores in translog models were more robust in this regard. Also, efficiency scores in 

NExp models were slightly more influenced by the prior than NHN models. Again, this was quite evident in 

Cobb-Douglas production specifications, but not so much in case of translog specifications. 
5 Prior standard deviations for elasticities (at their means) are slightly higher in models with translog production 

function. This, however, is bound to happen if the covariance matrix is to be invertible.  
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Based on the above, 14 models where estimated using Gibbs sampler coded in 

MATLAB. Five hundred thousand draws where taken, discarding initial 100 000 (burn-in 

process). Convergence of the chain during each simulation to its limiting stationary 

distribution was monitored using both sequential plots and cusum paths (Yu & Mykland, 

1998). Sequential plots were primarily used to asses if the burn-in stage is long enough, while 

cusum plots were used to analyze the sampler’s mixing speed. All simulations stabilized way 

before the end of their burn-in periods and the sampler’s mixing speed was either very good
6
, 

or at least satisfactory in the case of two most complex normal-half-normal models – TR-LT 

and TR-QT (see appendix A). Hence both, the number of burn-in cycles and the number of 

accepted draws could have been smaller if we were to base our analysis on standard statistics 

such as posterior means and posterior standard deviations. In this case, however, long runs 

were necessary to acquire precise estimates of the marginal data densities for all models, 

especially those where sampler’s mixing speed was lower.  

Structural decomposition of output growth 

The difference in the log of GDP between two corresponding periods t and t+1 can be 

written as (Koop et al., 1999)  

 )()()'(5.0)()'(5.0 11,111,   i,titittittttitti uuxxxxy     (13) 

where the first term reflects output change due to technical progress (or regress), the second is 

due to change in production factors, and the third reflects changes to technical efficiency. This 

allows us to derive three main components of output growth  

  ))()'(5.0exp 1,11, ittittti xxIC           (14) 

  )()'(5.0exp 11,1, ttittiti xxTC           (15) 

 )exp( 11,   i,titti uuEC          (16) 

and the joint impact of TC and EC as 

  1,1,1,   tititi TCECPC          (17) 

which is a standard Malmquist productivity index (Caves et al., 1982). Equations (13-17) 

summarize decomposition methodology introduced by G. Koop, J. Osiewalski and M.F.J. 

                                                            
6 That means highly oscillatory cusum paths with low excursion and hardly any difference in comparison to their 

benchmark paths.  
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Steel (1999) in the context of Bayesian stochastic frontier models. In this work, however, I 

want to investigate the contribution of each factor to economic growth separately. Thus, for a 

two-factor production function equation (14) is broken down into  
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where f1 and f2 are the production factors (e.g., capital and labor). To sum up, the change in 

GDP level between period t and t+1 ( 1, tiOC ) can be summarized as 

 1,1,1,1,1,   tititititi ECTCIClICkOC       (19) 

where components on the right side of (19) reflect the impact of capital change, labor change, 

technical progress and efficiency change on economic growth respectively. To make the 

interpretation more intuitive (and comparable to Koop et al. 1999), indicators from (14-19) 

are given as percentage changes to the previous year. Thus, a simple transformation 

Δ%=100%(δ-1) is used, where δ is the initial level of an indicator from (14-19).  

It should be noted that the model choice has a profound impact on the structure and the 

detail of the output growth decomposition. That is why when choosing the optimal model a 

research should also consider the following. CD model does not allow for technical progress 

(frontier shifts) and since factors’ elasticities are constant among all observations, changes in 

the IC component can be caused only by changes in factors’ input levels. CDt model does 

allow for a technical change which, however, is constant not only through time but across 

countries as well. CD-LT model allows the technology to change, but only over time and in a 

linear fashion. TR model allows us to consider technical change more flexibly through 

factors’ elasticities, which can vary over time and across countries. It is not possible, 

however, to distil the effect of technical change from the impact of input change component. 

TRt model solves this problem only partially because we face the same issue as in CDt model 

– unrealistic assumption regarding technical change. Full-scale decomposition can be 

obtained with TR-LT model. Introducing linear trend into each parameter of the production 

function allows the technical change to impact each country differently over time (though in a 

linear fashion). TR-QT model further loosens the restrictions on how technical change can 

impact a country’s growth. In doing so, it allows us to investigate changes in technical 

progress contribution to a given country’s economic growth over time.  

Choosing the optimal model 

One of key aspects of Bayesian analysis is to compute marginal data density given as 

 kkkkkk dMypMpMyp   ),|()|()|(        (20) 
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where  donates a set of parameters of k-th model M={M1,…,Mk,…} and y is the data vector. 

Since this paper uses Gibbs sampler for model estimation (which is an MCMC class 

algorithm) we can use the following harmonic average to approximate the marginal data 

density of each model (Newton & Raftery, 1994):  

 


 
R

r

kk
r

k Mp
R

Myp
1

1)(1 )|(
1

)|(        (21) 

where 
(r)

k are MCMC draws given k-th model, and R is the number of accepted draws.  

[Table 1 here] 

Table 1 presents the main estimation results for all 14 models. The second column 

shows results for marginal data density for each model (as tenth logarithms). Having this we 

can easily construct the Bayes factor and conclude that i) normal-half-normal models are 

more preferred to normal-exponential models and that ii) Cobb-Douglas production function 

is the least favored parametric specification given the data. The normal-half-normal model 

with quadratic trend in parameters has indisputably the highest marginal data density of all 

models considered. Thus, the next section discusses results based on this parametric 

specification.  

Results analysis 

On average the UE member states performed poorly over the last decade, especially 

the EU15 region. Only a handful of EU15 economies increased their productivity. The main 

driver of economic growth was the increase in inputs, and mainly capital accumulation. The 

EU12 region was also under-performing in terms of productivity change. However, in this 

case the impact of capital accumulation on GDP growth was very strong and amounted to an 

average of 3.81% (0.26%)
7
 annually. Moreover, EU12 had the highest returns to scale ratio – 

1.03 (0.02). This explains why the EU12 zone more than doubled the growth rate of the “old 

Union” and provides evidence in favor of an ongoing convergence process in the EU. The 

convergence seems to have two sources, high capital accumulation and (also high) increasing 

returns to scale of the EU12 region.  

As far as development of the EU15 member states is concerned, capital accumulation 

has had the highest impact on Ireland 3.13% (0.21%) and Luxembourg 3.46% (0.39%). The 

productivity component has been a crucial element of economic growth in Sweden 0.67% 

(0.13%) and Finland 0.64% (0.13%). Further decomposition of the productivity component 

reveals that in both cases it was the increase in technical efficiency that contributed to 

                                                            
7 All point estimates are posteriori means, posteriori standard deviations are given in brackets. 
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economic growth in those countries. Technical change component was the highest in 

Germany 0.46% (0.53%) and France 0.26% (0.58%). However, high posterior standard 

deviations (in relation to their means) indicate that one should be careful with drawing any 

conclusions.  

[Table 2 here] 

Around 2008-09 all EU economies have suffered from a drastic technical efficiency 

plunge, not doubt due to the world-wide financial crisis. Irish economy was among the first to 

be affected. The country’s technical efficiency went down by 4.6% (1.16%) in 2007-08 and 

by 5.52% (1.26%) in 2008-09, which was the third highest one-time efficiency drop in the 

analyzed period. The two highest drops occurred (in 2008-09) in Finland 6.93% (1.16%) and 

Luxembourg 6.49% (1.36%). Interestingly, efficiency growth was still the main driver of 

economic growth in Finland. All EU15 countries apart from Greece have started to recover by 

the end of 2010. EU12 economies also suffered a drastic one-time drop in technical efficiency 

by 5.66% (1.86%) but recovered the following year.  

[Figure 1 here] 

As far as the structure of economic growth is concerned, the worst results come from 

Greek and Portuguese economies. Greece has turned out to be (on average) the least efficient 

economy in the sample and was still losing on efficiency at the end of the analyzed period, 

while most economies were already recovering. Portugal placed itself as the second least 

efficient economy with an average decline in productivity by 0.88% (0.18%) annually. 

Estimation results indicate that if it hadn’t been for the strong effect of capital accumulation 

on Portuguese GDP, the country would have been in recession long before the crisis.  

[Table 3 here] 

The two countries, however, do not share the same dynamics as far as technical 

progress and technical efficiency change are concerned. Though at the beginning of the 

analyzed period the Greek economy was doing better than Portuguese, the crisis has had a 

much bigger impact on it.  

[Figure 2 here] 

Concluding remarks 

Regardless of the model considered, capital accumulation has been the main driver of 

economic growth in the EU over the past decade. Its impact on economic growth was several 

times higher than that of technical efficiency change – the second most important component. 

Labor change component has turned out to be less significant than capital accumulation and 

even efficiency change. Technical progress has had a marginal impact on economic growth in 
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the EU over the past decade.  

Efficiency change (EC) and technical change (TC) components (high posterior 

standard deviations in respect to their means) were difficult to precisely estimate. One reason 

for this is that efficiencies are latent variables in the models and even though their levels can 

be estimated fairly precisely, first difference estimates are bound to be highly dispersed. 

Second, the models were estimated using data covering the world-wide financial (and thus 

economic) meltdown. This must have had an influence on the precision of the technical 

change estimates. The 2008-09 downturn has largely wrecked any economic progress 

achieved up to 2007, so it is hard to expect technical progress to be an important factor of 

economic growth in that period.  

[Figure 3 here] 

To sum up, it should be noted that the use of Bayesian stochastic frontier models 

allowed us to choose optimal model not only based on theoretical guidelines briefly 

mentioned at the end of section 3 but primarily based on the information in the data. In 

particular the study indicates that Cobb-Douglas parameterization is too restrictive to be used 

in such studies and that, at least for this dataset, normal-half-normal models are more 

preferred to normal-exponential model.  
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Table 1  

Main estimation results  

 

log10 

p(y|M) 

Capital elast. Labor elast. RTS σ ω
2
 

NHN E(.) D(.) E(.) D(.) E(.) D(.) E(.) D(.) E(.) D(.) 

TR-QT 102.32 ~0.7558 ~0.2065 ~0.9622 0.0056 0.0056 0.0477 0.0054 

TR-LT 89.35 ~0.7668 ~0.1932 ~0.9600 0.0172 0.0166 0.0487 0.0070 

TRt 83.72 ~0.7652 ~0.1887 ~0.9539 0.0274 0.0177 0.0452 0.0069 

TR 88.42 ~0.7674 ~0.1864 ~0.9538 0.0278 0.0173 0.0451 0.0069 

CD-LT 70.66 ~0.7748 ~0.1563 ~0.9311 0.0598 0.0085 0.0453 0.0064 

CDt 71.18 0.7783 0.0338 0.1475 0.0326 0.9258 0.0056 0.0581 0.0084 0.0454 0.0064 

CD 74.54 0.7709 0.0334 0.1541 0.0324 0.9250 0.0056 0.0586 0.0082 0.0453 0.0064 

NEx 
 

𝜆 

TR-QT 66.72 ~0.8013 ~0.1403 ~0.9417 0.0675 0.0092 0.0918 0.0140 

TR-LT 63.52 ~0.8032 ~0.1373 ~0.9405 0.0680 0.0095 0.0935 0.0145 

TRt 66.48 ~0.8017 ~0.1374 ~0.9390 0.0666 0.0086 0.0937 0.0135 

TR 64.22 ~0.7981 ~0.1407 ~0.9388 0.0659 0.0085 0.0945 0.0134 

CD-LT 55.92 ~0.7847 ~0.1482 ~0.9329 0.0764 0.0103 0.1050 0.0152 

CDt 55.88 0.7852 0.0274 0.1408 0.0262 0.9261 0.0057 0.0744 0.0100 0.1063 0.0149 

CD 57.31 0.7791 0.0268 0.1466 0.0257 0.9256 0.0057 0.0740 0.0097 0.1070 0.0147 

Source: author’s calculations. 

Note. E(.) is the posteriori mean; D(.) is the posteriori standard deviation; ~ indicates an average level. 

 

Table 2 

Decomposition results 
Country av.IC av.IC_k av.IC_l av. PC av. EC av. TC av. OC ΔGDP 

Austria 
1.410 1.397 0.013 0.135 0.507 -0.369 1.547 1.54 

0.079 0.082 0.002 0.137 0.347 0.335 0.113 
 

Belgium 
1.506 1.307 0.196 -0.129 0.243 -0.371 1.375 1.37 

0.040 0.076 0.037 0.111 0.333 0.332 0.106 
 

Denmark 
1.109 1.102 0.007 -0.466 0.117 -0.581 0.637 0.64 

0.076 0.077 0.001 0.129 0.300 0.307 0.105 
 

Finland 
1.212 1.170 0.042 0.641 1.202 -0.554 1.861 1.85 

0.071 0.080 0.009 0.132 0.298 0.291 0.112 
 

France 
1.718 1.679 0.038 -0.572 -0.831 0.264 1.136 1.13 

0.140 0.148 0.009 0.175 0.634 0.580 0.112 
 

Germany 
0.866 0.903 -0.037 0.065 -0.390 0.459 0.931 0.93 

0.091 0.082 0.009 0.143 0.569 0.534 0.112 
 

Greece 
1.806 1.678 0.127 0.319 0.785 -0.461 2.132 2.11 

0.075 0.098 0.023 0.135 0.265 0.253 0.114 
 

Ireland 
3.163 3.129 0.033 -0.750 -0.242 -0.509 2.389 2.36 

0.203 0.211 0.007 0.224 0.303 0.294 0.114 
 

Italy 
1.296 1.228 0.067 -0.890 -1.104 0.217 0.394 0.39 

0.079 0.093 0.014 0.134 0.323 0.302 0.112 
 

Luxembourg 
3.825 3.460 0.353 -1.038 -0.949 -0.087 2.747 2.69 

0.245 0.397 0.153 0.256 0.426 0.549 0.116 
 

Holland 
1.361 1.305 0.055 0.007 0.266 -0.257 1.368 1.36 

0.070 0.080 0.010 0.128 0.329 0.315 0.109 
 

Portugal 
1.559 1.609 -0.049 -0.878 -0.042 -0.832 0.667 0.66 

0.143 0.132 0.011 0.178 0.664 0.679 0.112 
 

Spain 
3.298 3.043 0.247 -1.189 -1.196 0.008 2.069 2.05 

0.159 0.207 0.049 0.187 0.272 0.235 0.114 
 

Sweden 
1.366 1.281 0.084 0.674 1.049 -0.371 2.049 2.03 

0.059 0.074 0.016 0.126 0.326 0.312 0.114 
 

UK 
1.750 1.725 0.025 -0.082 -0.256 0.175 1.666 1.63 

0.116 0.120 0.005 0.147 0.236 0.251 0.101 
 

EU12 
3.769 3.811 -0.041 -0.126 0.163 -0.277 3.637 3.57 

0.265 0.257 0.008 0.279 1.117 1.140 0.115  

EU15 ~1.596 ~1.544 ~0.051 ~ -0.337 ~ -0.444 ~0.110 ~1.251 ~1.24 

Source: author’s calculations. 

Note. “av” indicates posteriori mean of an average change; posteriori standard deviations are in italic; ~ is the 

average level weighted by EU15 countries’ average GDP levels   
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Table 3  

Main economic indicators 
 average  

capital elasticity 

average  

labor elasticity 

average 

RTS 

average  

technical efficiency 

 E(.) D(.) E(.) D(.) E(.) D(.) E(.) D(.) 

Austria  0.7500 0.0405 0.1963 0.0394 0.9463 0.0054 0.765 0.015 

Belgium  0.7499 0.0403 0.1957 0.0393 0.9456 0.0051 0.946 0.018 

Denmark  0.7313 0.0458 0.1900 0.0425 0.9213 0.0060 0.962 0.014 

Finland  0.7313 0.0451 0.1888 0.0423 0.9201 0.0055 0.908 0.014 

France  0.7907 0.0594 0.2248 0.0528 1.0155 0.0139 0.857 0.026 

Germany  0.7878 0.0615 0.2311 0.0556 1.0188 0.0144 0.825 0.023 

Greece  0.7496 0.0399 0.2029 0.0393 0.9525 0.0036 0.659 0.009 

Ireland  0.7287 0.0436 0.1878 0.0417 0.9165 0.0048 0.869 0.013 

Italy  0.7878 0.0518 0.2277 0.0496 1.0154 0.0108 0.839 0.014 

Luxembourg  0.6881 0.0666 0.1541 0.0612 0.8421 0.0137 0.948 0.019 

Holland 0.7620 0.0425 0.2053 0.0408 0.9673 0.0067 0.916 0.017 

Portugal  0.7372 0.0499 0.2056 0.0444 0.9428 0.0115 0.737 0.023 

Spain  0.7778 0.0469 0.2235 0.0458 1.0013 0.0087 0.797 0.011 

Sweden  0.7507 0.0403 0.1970 0.0393 0.9476 0.0051 0.823 0.015 

UK  0.7852 0.0487 0.2300 0.0485 1.0153 0.0098 0.979 0.010 

EU12 0.7743 0.0433 0.2440 0.0489 1.0283 0.0159 0.794 0.043 

EU15 ~0.7780 – ~0.2215 – ~1.0016 – ~0.861 – 

Source: author’s calculations. 

Note. E(.) is the posteriori mean; D(.) is the posteriori standard deviation; ~ is the average level weighted by 

EU15 countries’ average GDP levels in the analyzed period. 

 

 

 
Figure 1. Efficiency changes in the EU member states between 2000 and 2010 
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Figure 2. Changes in productivity components; 2000-2010 

 

 

 

 
Figure 3. Technical efficiency levels in the EU, EU12 and EU15 in 2000-2010; results for EU 

and EU15 are calculated as countries average weighted by their average GDP levels in the 

analyzed period 
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Appendix A: cusum path plots 

 

 

 
Figure A1. Normal-half-normal CD model 

 

 
Figure A2. Normal-half-normal CDt model 

 

 
Figure A3. Normal-half-normal CD-LT model 

 

 
Figure A4. Normal-half-normal TR model 
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Figure A5. Normal-half-normal TRt model 

 

 
Figure A6. Normal-half-normal TR-LT model 

 

 
Figure A7. Normal-half-normal TR-QT model 

 

 
Figure A8. Normal-exponential CD model 
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Figure A9. Normal-exponential CDt model 

 

 
Figure A10. Normal-exponential CD-LT model 

 

 
Figure A11. Normal-exponential TR model 

 

 
Figure A12. Normal-exponential TRt model 

 



BSF ANALYSIS OF ECONOMIC GROWTH IN THE EU  19 

 
Figure A13. Normal-exponential TR-LT model 

 

 
Figure A14. Normal-exponential TR-QT model 

 


