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Abstract

Due to their well-known indeterminacies, factor models require identifying assumptions to
guarantee unique parameter estimates. For Bayesian estimation, these identifying assumptions
are usually implemented by imposing constraints on certain model parameters. This strategy,
however, may result in posterior distributions with shapes that depend on the ordering of cross-
sections in the data set. We propose an alternative approach, which relies on a sampler without
the usual identifying constraints. Identification is reached ex-post based on a Procrustes trans-
formation. Resulting posterior estimates are ordering invariant and show favorable properties

with respect to convergence and statistical as well as numerical accuracy.
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1 Introduction

Bayesian Factor analysis is a well-established tool in econometrics with a host of applications in
economics and finance (e.g. Geweke and Zhou, 1996; Otrok and Whiteman, 1998; Kose et al., 2003;
Bernanke et al., 2005). Latent factors influence observable data through factor loadings, where iden-
tifying assumptions are required to obtain unique estimates for the factors and loadings. Geweke and
Zhou (1996) suggested an identification scheme that has been used in many applications, sometimes
in the slightly modified form of Aguilar and West (2000). It is also common to use overidentifying
restrictions, where certain factor loadings are set to zero, implying the assumption that the corre-
sponding cross-sectional units are not affected by the corresponding factors (e.g. by Kose et al.,
2003). Especially for a large number of cross-sections, this has led to the development of sparse
factor models (West, 2003). In a different approach, Frithwirth-Schnatter and Lopes (2009) develop

a sampler that selects the cross-sections used for identification during the sampling process.

For the exactly identified factor model, the ordering of the cross-sections should have no effect
on the inference results. Lopes and West (2004), however, find that model selection criteria used
to choose the number of factors are influenced by the way the cross-sections are ordered. Carvalho
(2006) and Carvalho et al. (2008) find that parameter estimates differ, depending on the ordering
of the data defining which are the first K observations serving as the founders of the model. They
develop a hierarchical approach to find the most appropriate subset of cross-sections to be used for

identification.

We will address the causes of these difficulties, analyzing the effect of the set of identifying con-
straints suggested by Geweke and Zhou (1996). These constraints are implemented by using truncated
prior distributions. Hence, the restrictions guarantee a unique maximum of the likelihood underlying
the posterior distribution. They do not, however, guarantee the non-existence of local modes. This
has already been observed by Rubin and Thayer (1982, 1983) in the context of maximum likelihood
estimation of explanatory and confirmatory factor models. The choice of constraints influences the
shape of the likelihood and thus the posterior distribution, effecting the behavior of the Gibbs sam-
pler. Consequently, ex-ante identification influences the inference on the parameters of the factor

model and functions of these with respect to directed parameters, like factor loadings.

Instead of enforcing constraints on the parameter space ex-ante, leading to the aforementioned
undesirable properties, we propose to identify the parameters ex-post based on orthogonal trans-
formations of the unconstrained Gibbs sampler output. Ex-post identification approaches are well

known in the econometric literature in the context of finite mixture models. Similar to factor models,



finite mixture models are typically not identified. Labels of the mixture components can be changed
around. Thus, given symmetric priors, the posterior distribution has multiple modes. Identification
can be achieved by imposing an ordering of the labels with respect to at least one of the parameters
that are subject to label switching. However, if this identifying assumption is introduced by prior
distributions, the choice of the constraint may have a significant impact on posterior estimates. Thus,
while the identifying assumption does not change the maximum posterior value, it has consequences
for the shape of the posterior. In addition, it is often observed in finite mixture models with ex
ante identifying assumptions that posterior distributions show local modes. The occurrence of such
local modes has severe consequences for the mixing behavior of the Gibbs sampler. In general, con-
vergence cannot be guaranteed. To cure this problem, Frithwirth-Schnatter (2001, 2006) propose to
skip identifying assumptions and instead enforce relabeling within the sampler. In the context of
finite mixtures, identification is achieved by applying relabeling algorithms, see Celeux (1998) and

Stephens (2000).

A factor model without directional identification can be interpreted as a continuous mixture. The
mixing takes place via orthogonal transformations, hence we call the sampler orthogonally mizing and
the corresponding output orthogonally mized. We will use this output and adapt the remedy that is
proposed for finite mixture models, i.e. introducing an ex-post identification strategy by likewise ap-
plying orthogonal transformations. Our approach uses the orthogonal Procrustes transformation by
Schénemann (1966) to recover meaningful directed parameter estimates. The orthogonal Procrustes
transformation can deal with label and sign switching, both of which result in a finite number of mix-
ture components, but also with rotations, which result in an infinite number of mixture components.
We hence extend the post-screening literature with respect to the considered model classes, develop-
ing an approach for factor models, and with respect to the type of mixing, developing an approach
that goes beyond finite mixtures. Our approach does not require any constraints for the loadings
matrix and is thus purely exploratory, with no need of theoretical reasoning before estimating the
model. Inference results obtained under different orderings of the data are therefore equivalent under

an orthogonal transformation.

To illustrate the properties of ex-post identification, we provide a simulation study within the
framework of a static factor model comparing ex-post identification inference results with those
from the constrained sampling approach by Geweke and Zhou (1996), which provides identification
through a positive lower triangular loadings matrix. We check both samplers for their convergence
properties, as well as statistical and numerical accuracy. Convergence is generally obtained faster for

the ex-post identification scheme. Statistical accuracy is similar to that of the ex-ante identification



scheme for parameters invariant under orthogonal transformations and if the ex-ante scheme does
not produce pathological posterior distributions. Such pathological cases do not occur under ex-post
identification. The numerical accuracy of estimates is much higher for the ex-post identification
scheme.

Eventually, we analyze a data set of ten equity indices, addressing the ordering problem. While
the ordering of the data series has an effect on the parameter estimates for the ex-ante identification
scheme, the parameter estimates from the ex-post identification scheme do not depend on the ordering
of the series.

The paper proceeds as follows. Section 2 reviews the identification problem for factor models and
its relation to orthogonal transformations and demonstrates why the typically used identification
schemes do not succeed in preventing such orthogonal transformations. Section 3 introduces the
concept of ex-post identification. Section 4 provides a simulation study that shows the improvements
for the ex-post identification scheme. Section 5 provides an empirical application, and section 6

concludes.

2 Model setup and directional identification

Assume a factor model of the following form
Y =FA +U, (1)

where Y = (y1,...,yr)" is an T x N matrix of observable demeaned data, F = (f1,..., fr)" denotes

a T x K matrix of K latent factors and A = (Aq,..., A\n)’ represents the N x K matrix of loadings.

U= (uy,...,ur) is a T x N matrix of errors, where wu; L N(0,%,). The corresponding likelihood
is given as
T
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Introducing priors for A and ¥, as
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or, if ¥, = diag(c?,...,02),
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and assuming that f; is a priori normally distributed with mean zero and covariance I, i.e.

T
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t=1
allows to derive the marginalized likelihood as

T
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t=1
As the likelihood as well as the priors are invariant under orthogonal transformations, the pos-
terior distribution under investigation requires identifying assumptions to allow for a meaningful
Bayesian analysis. Orthogonal transformations include rotations, reflections and permutations of the

K-dimensional factors f; and loadings A; and are represented by matrices D having the property
DD' =D'D = I. (8)

Without further identifying assumptions, iterative sampling from the full conditional distributions
derived from the above setup, see Appendix A for details, would result in parameter trajectories
subject to element-wise orthogonal transformations, thus allowing for no meaningful inference with

respect to the directed parameters and variables, i.e. the factors and factor loadings.

To ensure identification, Geweke and Zhou (1996) propose to constrain the parameter space of

the loadings to a positive lower triangular (PLT') matrix, i.e.

!/
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Ao 22 A23 2N . with M\;>0,i=1,..., K. (9)
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Imposing this PLT constraint on the loadings matrix guarantees that no point in the parameter

space that satisfies the constraint can undergo an orthogonal transformation other than the identity



and still satisfy the constraint. The zero restrictions rule out rotation and label switching, and
the positivity constraints rule out sign switching. Since the PLT constraint is conditional on the
ordering of the data, there are N!/(N — K)! different possibilities at hand to achieve identification.
We denote an identification approach relying on a data ordering Oy as PLT|O; identification scheme.
Considering that for each loadings matrix A there exists a unique orthogonal matrix Dj such that
ADy satisfies constraints of the PLT form, see e.g. Muirhead (1982), the following transformation
allows for mapping of the parameter space under one PLT identification scheme PLT|O; into that

under a different one PLT|Ox, i.c.
PLT’Ol — _PLT|02 = {DAol : AO1DA01 S PLT‘OQ} for all A01 S PLT’Ol (10)

The transformation in equation (10) involves an infinite number of orthogonal matrices Dy.! To ob-
tain the same posterior distribution up to an orientation, however, the transformation should be done
by a single orthogonal matrix for all points. Further, the position of the constraints of PLT|Oy to-
wards the posterior distribution obtained under PLT'|O; determines which set of orthogonal matrices

transforms how much probability mass.?

As pointed out by Lopes and West (2004) and Carvalho et al. (2008), inference results depend
on the data ordering and thus on the selected PLT scheme. Consider reordering a sample initially
following ordering O in such a way that it satisfies ordering O afterwards. Using the aforementioned
transformation, it is now possible to map each point obtained from the Gibbs sampler under PLT|O;

into a point that could have been obtained under PLT|Ox, i.e.
RO S SOFNOR
{AOQ }321 a {AOI DAOl }521 ' (11)

Note, however, that this mapping rule has a mixing effect. The resulting mixtures in such cases display
features like multimodality and non-ellipticity complicating inference as noted e.g. by Ardia and
Hoogerheide (2010). Thus identification via introduction of PLT constraints may have undesirable
consequences for the shape of the posterior distribution, which causes numerical problems for the

Gibbs sampler and complicates the interpretation and inference derived from the Gibbs output.

Appendix B discusses a numerical example for the behavior of the unconstrained Gibbs sampler

LAll points satisfying both sets of constraints are transformed by the identity matrix, whereas all points with
identical row vectors for the founders under the second set of constraints are transformed by the same orthogonal
matrix.

2Moreover, for a comprehensive analysis of the effect of such transformations on the probability space, each of the
possible N!/(N — K)! orderings should be considered.



and the Gibbs sampler under PLT constraints. We simulate a data set for a model with K = 2 factors
and N = 10 cross-sections, of which the first five are arranged in three different orderings, while the
remaining five stay identical. The data are analyzed by means of the unconstrained Gibbs sampler
and the PLT constrained Gibbs sampler. The first row of figure 1 shows the unconstrained output
as Gibbs sequences and bivariate contour plots for cross section eight under the three orderings, the
second row shows the according PLT constrained output. In both cases, 20,000 draws have been
discarded as burn-in, another 20,000 have been kept. The unconstrained Gibbs sampler output is
unfit for inference under all three orderings. The PLT constrained sampler, on the other hand, looks
suitable for inference under the third ordering, but displays non-ellipticity under the second, and

non-ellipticity and multimodality under the first ordering.

3 An ex-post identification scheme

In the following we propose an ex-post identification scheme for Bayesian analysis of factor models.
Ex-post identification approaches are well known to the Bayesian literature, especially in the context
of finite mixture models (Frithwirth-Schnatter, 2001, 2006). In this context they are used when label
switching (Redner and Walker, 1984) occurs in the output of an unconstrained sampler. Richardson
and Green (1997) advise to use different identifiability constraints when postprocessing the MCMC
output. For finite mixtures Stephens (2000) and Frithwirth-Schnatter (2001) propose the use of
relabeling algorithms that screen the output of the unconstrained sampler and sort the labels to
minimize some divergence measures, e.g. Kullback-Leibler distances. The main idea behind the
relabeling approach in finite mixtures is that the output of the unconstrained sampler in fact stems
from a mixture distribution. The mixing is discrete and occurs via permutations of the labels. The

relabeling algorithm reverses the transformation and thus the mixing.

The unconstrained Gibbs sampler for the factor model generates an orthogonally mized sample,
i.e. under the absence of parameter constraints, the obtained draws lack orientation and thus do
not allow for meaningful inference via the calculation of arithmetic means. We suggest to apply an
analogy to the finite mixture literature discussed above in order to solve the directional identification
problem. However, since orthogonal mixing does not only involve relabeling but also reflections
and rotations, existing relabeling algorithms do not apply here. Instead we propose the use of the
orthogonal Procrustes (OP) transformation as devised by Schénemann (1966) to recover unique
posterior estimates from the orthogonally mixed sample. The ex-post identification is achieved via

post-screening the unconstrained Gibbs sampling output. To achieve identification, the following



criterion is considered

N
Q = > _(N(D) = XY (D) = X7) = tr [(A(D) = A*)(A(D) = A (12)

i=1
where A* = (X},...,\y)’ denotes a chosen fixed point and A(D) = (A\(D),...,An(D))" denotes a
draw from the unconstrained distribution conditional on an unknown orthogonal transformation D.

The relabeling is then concerned with determining a set of orthogonal matrices and a fixed point, i.e.

R
{{DWYL A"} = argmin )t [([&(T)(D(T)) — AAT (DM — A*Y] . (13)

r=1
The minimization is achieved iteratively via a two-step optimization, based on an initial choice of A*.
Note that the result is identified up to an orthogonal transformation, since the right side of equation
(13) yields the same result if {D(T)}TB:1 and A* are all orthogonally transformed by the same matrix.
Hence the initial choice of A* effects the orientation of the eventual A*. Apart from this effect on the
orientation of the result, we find robustness of the algorithm with respect to the initial choice of A*,
as long as it stems from the orthogonally mixing posterior distribution. For convenience, we choose

the last draw from the unconstrained sampler.

Step 1 Operationalizing A" (D(T)) as A D) yields the following minimization problem for D),

i.e.
D) = argmin tr [(]\(T)D(’”) — A*)(AM D) — Axy subject to D™D = 1. (14)

The solution of this orthogonal Procrustes (OP) problem is provided by Schénemann (1966).
It involves the following calculations
1.1 Define S, = A"A*.
1.2 Do the eigenvalue decomposition S,.S, = VLTMTV{’,,.
1.3 Do the eigenvalue decomposition S,.S; = Vo, M,Vj .
1.4 Find the unique reflection matrix R, for which ((R,V2,)'S;Vi,),; > O0foralli=1,... K.
1.5 Obtain the orthogonal transformation matrix D) = (RTVQJ‘)‘/]_/’T.

1.6 Transform the observed matrix and obtain A = A() D),

For further details on the derivation of this solution, see Appendix C. Note that if the dispersion



between the cross sections is rather large, the solutions may be improved via consideration of

weights. Thus Step 1.1 above is altered into
1.1a Define S, = AW A*,

where the weights matrix has to be diagonal. We initialize the weights as the inverses of the

estimated lengths of the loadings vectors, i.e.

R —1
wi; = R <Z \/xmgﬂ) . i=1,...,N. (15)
r=1

Consecutively, we use as weights a function of the number of factors and the determinants of the
estimated covariance matrices, which are a measure invariant to orthogonal transformations,

i.e.
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w;; = det ( ¢ AN - A;‘)’) . i=1,...,N. (16)
r=1

This procedure will be called Weighted Orthogonal Procrustes (WOP) transformation in the

following.

Step 2 Choose A* as

R
1 J(r .
A=Y AD0, =1, N (17)

Step 1 thus minimizes the (weighted) distance between the transformed observations and the current
A*. Hence the best choice for A* would be the mean of the oriented sample we aim to restore.
Of course, this mean is unobservable. Still, the mean of an approximation to the oriented sample,
obtained in step 1, is a better choice for A* than the initial arbitrary draw. Therefore we update A*
to this value. With a better approximation to the mean, conversely, we are able to obtain a better
approximation to the oriented sample. For arbitrary initial choices of A* taken from the orthogonally
mixing sample, five iterations usually suffice to achieve convergence to a fixed point A*, which is also
the posterior mean of A. The sequence of factor matrices is accordingly transformed. To obtain
a well-interpretable result, the user is free to apply an orthogonal transformation to the resulting

ex-post identified posterior afterwards.

Note that for this procedure to work, the {A(T)]X(T)/}f:l must have converged to a stationary



distribution and the sampler must be well-mixing for {A(T)A(T)/}ﬁzl to ensure that the moments can
be recovered properly. It does not matter, however, how the orthogonal transformation matrices
are distributed, as long as they are all orthogonal. Mixing can be sped up by occasionally adding
random orthogonal transformation steps. Appendix D gives a simulation experiment for the removal
of orthogonal mixing via the WO P approach. We apply the WOP on the output of the unconstrained
sampler shown in the first row of figure 1 and obtain the output shown in the third row. Note that the
orientation of the posterior distributions under WOP is arbitrary and hence a common orientation
has been identified, treating the posterior means obtained under all three orderings as an orthogonally

mixed sample.

4 Simulation study

In this section, we perform a simulation study to assess the properties of our proposed WOP ex-post
identification approach. As a benchmark we also apply the PLT ex-ante identification approach.
We will analyze 27 different model setups, which all have some features in common. First, for every
cross section, at least 20% of the variation is explained by the factors. Allowing for data series whose
variation cannot be explained by any of the factors potentially complicates the estimation of the
factors, see Boivin and Ng (2006). Second, the explanatory power of the founders of Carvalho et al.
(2008), i.e. the loadings that are used to identify the model in the PLT approach, is exactly the
average of all variables loading on the same factor. This implies that the identification constraints
are not extraordinarily well, but also not extraordinarily badly chosen. Third, the parameters always
satisfy the conditions of the PLT constraints, i.e. the loadings matrices used in the simulation
are all positive lower triangular. We choose this property to allow for direct comparison of the
results under PLT with the simulated parameters without further transformations. The WOP
identification scheme, on the other hand, by definition will not provide a result that satisfies these
constraints. To reach comparable results, the resulting final distribution under the WO P scheme will
be transformed with respect to the simulated parameters. The transformation matrix is obtained by
mapping the mean of the posterior distribution onto the simulated parameters via OP.? Afterwards
all sampled points of the posterior distribution under the WOP scheme are transformed by the
resulting transformation matrix. To get a fair comparison with the PLT scheme we do the same

with the PLT samples, too, and refer to them as transformed PLT. Note that in exploratory

3Note that Doz et al. (2011) choose a similar approach to compare their factor estimates with the simulated factors,
however, they use an OLS regression to determine the required transformation matrix, resulting in an approximately
orthogonal matrix, while OP provides an exactly orthogonal matrix.



factor analysis, it is common to perform an orthogonal transformation of the estimates. Thus, the
orthogonal transformation that maps the posterior distributions onto the simulated parameters is
needed to reach sensible results if we like to analyze distributions of directional parameters like

loadings or factors.

We consider data sets with short (7" = 30), medium (7" = 60), and long (7" = 150) factors and
with N = 10, N = 40, and N = 100 cross-sections. Each of these setups is estimated for models
with K = 2, K = 3 and K = 4 factors. The parameters are summarized in © = (A, X, F') with
>, assumed diagonal. The factor loadings are simulated according to the aforementioned conditions.
We investigate the corresponding 27 different scenarios. In all cases, the number of factors is assumed

to be known. We use inverse Gamma priors for the variances with ag; = fg; = 1 foralli=1,..., N.

The length of the burn-in may vary, depending on the model size and the sampler we use. We set
the initial burn-in to 1,000 draws. During this period, the PLT approach is allowed to jointly flip
around the signs of each pair of factors and loadings vectors if the full conditional density for one
or multiple loadings vectors indicates significantly negative loadings where the constraints require
positive ones. This will help the constrained sampler in the case of inconveniently chosen starting
values. Beyond this initial burn-in phase of 1,000 draws, we will determine the required length of
the burn-in, monitoring convergence via the statistics provided in Geweke (1991) for the invariant

parameters. This procedure ensures that we actually obtain a sample from the posterior distribution.

For the post-screening via the WO P scheme, we perform five iterations to reach convergence. We
find that PLT generally requires substantially more iterations to converge than the unconstrained
sampler. Especially in setups with more than two factors, we often require a burn-in sequence three

to five times longer than for WOP.

Due to scaling problems occurring in large N small T settings, the RMSE does not reflect the
performance of the samplers accurately with respect to the factors and loadings. We thus consider
a scaling-invariant measure, the correlations between the (OP transformed) mean of the posterior
distributions and the simulated parameters. The correlation results are given in tables 1 and 2.
Correlations between posterior means and true values under the WOP scheme are at least slightly
higher than under the PLT scheme, if transformed PLT results are considered for factors and
loadings. The improvement by the WOP scheme is more pronounced in models with more than two

factors. The WOUP scheme provides at least as good results as the PLT scheme for all model setups.

The RMSEs for the covariance parameters, which are invariant to orthogonal transformations and

not affected by scaling issues, are given in table 3 and are almost identical for PLT and WOP. Since

10



directional identification is not required to estimate the covariance parameters, this comparison is in

fact one between PLT and the unconstrained sampler.

Table 4 gives a measure of the correlation between the factors and loadings. We evaluate the
estimates for the (undirected) systematic part of the data FA’, which can be obtained without
directional identification, and the directed estimates of the factors F' and loadings A. Out of these

estimates, we calculate a divergence measure given as

N T R R 2
S (52 (30) - (5277 (7)) 18
i=1 t=1 r=1 r=1 r=1
We find that divergence between the undirected and directed estimates for the factors and loadings is
substantially larger for PLT than for WOP, indicating that the posterior distributions of the factors
and loadings are non-elliptical and possibly multimodal. Eventually, we look at the 85% coverage
intervals, see e.g. Hoff (2009), of the systematic part of the data F'A’ and the covariances and find
that for both measures, the simulated values are in fact covered in 85% of the cases, indicating that

identification has little impact on the variance decomposition.

In the next step, we assess the numerical properties of the posterior sampler by means of Monte
Carlo errors. For parameters invariant to orthogonal transformations, differences between both ap-
proaches are not very pronounced (see tables 6 and 7). In some setups, the unconstrained sampler
provides slightly better results. However, for parameters that depend on directional identification

the numerical standard errors of the WOP approach are much smaller (see tables 8 and 9).

Hence, the ex-ante identification has almost no impact on the inference of parameters invariant
to orthogonal transformations. Modest improvements can be obtained by skipping ex-ante identifi-
cation and applying the unconstrained sampler. If inference on parameters that require directional
identification is concerned, the WOUP approach provides better results. Correlations between true
and estimated factors and loadings are generally moderately, for some setups substantially higher.

The numerical accuracy of the estimates can be improved by WOP compared to PLT.

One source for the poorer performance of the PLT approach lies in the shapes of the posterior
distributions that are implied by the ex-ante constraints. As discussed before, PLT may generate
non-elliptical posterior distributions or even posterior distributions with multiple modes. Such dis-
tributions are much harder to handle with the Gibbs sampler. Convergence of the Gibbs sampler
can be very poor under such circumstances (Woodard, 2011). Such convergence problems can be

eliminated by the use of the unconstrained sampler and the ex-post identification scheme WOP.

11



5 Empirical example

We analyze a data set of growth rates on 10 equity indices over a period from 1973Q3 until 2011Q3,
obtained from DataStream®. The industries considered are oil and gas (OILGS), basic materials
(BMATR), industrial goods (INDUS), consumer goods (CNSMG), health care (HLTHC), consumer
services (CNSMS), telecommunications (TELCM), utilities (UTILS), financial services (FINAN) and
technology (TECNO). Based on a preliminary analysis based on the information criteria of Bai and

Ng (2002) we estimate factor models with two factors.

Recall that the PLT approach allows for N!/(N — K)! different choices for the founders of the
model. For a large number of cross-sections, possibly in combination with many factors, this quickly
becomes infeasible, as has been noted by Carvalho (2006) and Carvalho et al. (2008). In our setup
with ten series and two factors, there are 90 different orderings that we can compare to analyze the
ordering effect on the constrained sampler. We start by putting the first series in the first position,
alternating between the second to tenth series for the second position. Next, we put the second series
in the first position and alternate between the remaining ones, and so forth. If the ordering of the
data had no effect on the estimates, it should be possible to orthogonally transform the estimated

factors and loadings vectors per cross-section obtained under different orderings into each other.

To get rid of the orthogonal variation in the estimates across the orderings, we treat both sets of
the 90 posterior means of the loadings as orthogonally mixed samples. Afterwards, they are both
transformed by OP such that their means satisfy the PLT constraints. The top two plots of figure
2 show the accordingly transformed factors for PLT for all 90 orderings of the data. Both factors
look quite similar, with a moderate degree of dispersion. The bottom two plots, on the other hand,
display a much smaller degree of variation across the 90 orderings of the data. The absence of
identification constraints helps to obtain results that do not depend on the ordering of the series.
Likewise, the variation in the estimated loadings over the different orderings, which is shown in
table 10, is much larger for the PLT estimates than for the WOP estimates, despite the means
being similar. Eventually, we will look at the idiosyncratic covariance parameters. The estimates are
shown in table 11. There is no significant difference between any parameters for PLT and WOP, so
the estimated idiosyncratic part of the model does not differ under both estimation schemes.

The empirical example underlines that both PLT and the unconstrained sampler provide similar
results as long as directional invariant parameters are concerned. However, PLT has the disadvantage
that results vary with the ordering of the data, while WOP provides results that do not depend on
the ordering of the data.

12



6 Conclusion

In Bayesian estimation of factor models, constraints on the parameter space ensuring identifiability of
factors and loadings can be troublesome. The PLT identification scheme results in posterior densities
which may be non-elliptical or may even have multiple local modes. In any case, the shape of the
posterior density depends on the ordering of the data. This characteristic of the PLT constrained
posterior densities, reflected in the output of the constrained Gibbs sampler, make the use of an

ex-post identification scheme attractive.

We suggest to refrain from ex-ante identification and instead use the output of the unconstrained
sampler, which, we argue, stems from an orthogonally mixing distribution. It is possible to remove the
mixing from the unconstrained Gibbs output, using the orthogonal Procrustes transformation devised
by Schénemann (1966), which we extend by a weighting component. We find that the resulting
Bayes estimates yield numerically superior and, in terms of statistical accuracy, competitive results,
compared to the PLT approach. In those cases where using the constrained sampler results in non-
well-behaved posterior densities, whose means may be no viable estimators, the WO P approach does
not experience any problems. Results obtained under different WOP schemes can be orthogonally
transformed into each other and into economically interpretable results. Note that the approach may
also be suited for identification of dynamic factor models. However, a detailed discussion of this issue

is beyond the scope of this paper.

Estimating a two-factor model for a data set of ten equity indices, we confirm that the PLT
identification scheme is sensitive to ordering. Our ex-post identification approach based on the
weighted orthogonal Procrustes, on the other hand, yields very similar results under all possible
different orderings. Thus it seems recommendable to use the ex-post identification procedure to
avoid problems with the posterior distributions and thus the estimates derived therefrom, obtaining

identical parameter estimates, independent of the ordering of the data series.
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PLT WOP
N T K min lq med uq max min lq med uq max
10 30 2 0.0717 0.1044 0.1762 0.2094 0.2525 0.0716 0.1049 0.1759 0.1972 0.2488
10 30 3 0.1023 0.1459 0.1528 0.1749 0.2513 0.1024 0.1483 0.1530 0.1745 0.2547
10 30 4 0.0954 0.1399 0.1699 0.1994 0.2797 0.1001 0.1300 0.1617 0.2058 0.2753
10 60 2 0.0603 0.0892 0.1178 0.1438 0.1719 0.0607 0.0891 0.1162 0.1415 0.1737
10 60 3 0.0809 0.0929 0.1142 0.1344 0.1716 0.0824 0.0921 0.1146 0.1322 0.1928
10 60 4 0.0752 0.1145 0.1228 0.1645 0.2725 0.0760 0.1139 0.1217 0.1620 0.2699
10 150 2 0.0285 0.0458 0.0728 0.0893 0.1111 0.0286 0.0458 0.0727 0.0874 0.1115
10 150 3 0.0517 0.0596 0.0704 0.0795 0.1085 0.0528 0.0600 0.0710 0.0801 0.1257
10 150 4 0.0618 0.0783 0.0839 0.1088 0.1592 0.0628 0.0765 0.0891 0.1073 0.1535
40 30 2 0.0824 0.1423 0.1754 0.2071 0.2580 0.0832 0.1422 0.1750 0.2065 0.2575
40 30 3 0.0823 0.1175 0.1472 0.1837 0.2628 0.0821 0.1172 0.1481 0.1842 0.2636
40 30 4 0.0784 0.1107 0.1402 0.1738 0.2537 0.0780 0.1107 0.1392 0.1738 0.2397
40 60 2 0.0600 0.1050 0.1244 0.1361 0.1794 0.0604 0.1051 0.1231 0.1335 0.1786
40 60 3 0.0397 0.0736 0.1042 0.1204 0.1785 0.0399 0.0736 0.1024 0.1207 0.1772
40 60 4 0.0439 0.0763 0.0932 0.1172 0.1925 0.0441 0.0762 0.0933 0.1172 0.1642
40 150 2 0.0360 0.0635 0.0806 0.0901 0.1052 0.0361 0.0637 0.0805 0.0901 0.1054
40 150 3 0.0294 0.0456 0.0614 0.0731 0.1126 0.0292 0.0457 0.0606 0.0731 0.1008
40 150 4 0.0307 0.0431 0.0529 0.0654 0.1029 0.0306 0.0430 0.0531 0.0655 0.1035
100 30 2 0.0534 0.1232 0.1588 0.1889 0.2913 0.0567 0.1237 0.1595 0.1873 0.2925
100 30 3 0.0544 0.1088 0.1421 0.1773 0.2675 0.0547 0.1087 0.1420 0.1755 0.2684
100 30 4 0.0627 0.0994 0.1281 0.1569 0.2627 0.0629 0.0999 0.1284 0.1557 0.2629
100 60 2 0.0333 0.0878 0.1137 0.1351 0.2307 0.0357 0.0875 0.1131 0.1347 0.1891
100 60 3 0.0367 0.0794 0.0973 0.1179 0.2082 0.0371 0.0795 0.0970 0.1176 0.2085
100 60 4 0.0374 0.0654 0.0871 0.1076 0.1773 0.0373 0.0653 0.0870 0.1077 0.1781
100 150 2 0.0251 0.0516 0.0659 0.0829 0.1033 0.0255 0.0518 0.0659 0.0828 0.1033
100 150 3 0.0206 0.0483 0.0620 0.0765 0.1116 0.0206 0.0484 0.0621 0.0765 0.1113
100 150 4 0.0236  0.0391 0.0530 0.0657 0.1051 0.0237 0.0392 0.0529 0.0661 0.1053

Table 3: RMSEs for the error covariance parameters. Instead of reporting all N parameters per model, we only
give the minimum (min), lower quartile (lq), median (med), upper quartile (uq) and maximum (max).
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N T K PLT WOP
10 30 2 1.7904  (2.0800) 0.3521  (0.0340)
10 30 3 6.7457  (1.7820) 0.6784  (0.1900)
10 30 4 6.8205  (1.7907) 1.0251  (0.1718)
10 60 2 0.8220  (0.7367) 0.2516  (0.0256)
10 60 3 3.9047  (3.1545) 0.4518  (0.1650)
10 60 4 6.8975  (2.0395) 0.8802  (0.2243)
10 150 2 0.3924 (0.1389) 0.1520  (0.0097)
10 150 3 1.8427  (0.8217) 0.2575  (0.0219)
10 150 4 71776 (3.0651) 0.6017  (0.2180)
40 30 2 3.9896  (5.6306) 0.4565  (0.0103)
40 30 3 11.5812  (4.7491) 0.7220  (0.0210)
40 30 4 16.1750  (3.7290) 1.0221  (0.0182)
40 60 2 3.0296  (5.7009) 0.4425  (0.0129)
40 60 3 9.9685  (6.8669) 0.6890 (0.0184)
40 60 4 11.9271 (7.5055) 0.9603  (0.0226)
40 150 2 0.5065 (0.2057) 0.2705  (0.0105)
40 150 3 4.8346  (5.3977) 0.4010  (0.0146)
40 150 4 4.5695 (1.5449) 0.5291  (0.0137)
100 30 2 4.9078  (5.1580) 0.3041  (0.0163)
100 30 3 11.2491 (6.6144) 0.4593  (0.0201)
100 30 4 19.4439  (5.7920) 0.6157  (0.0278)
100 60 2 7.0157  (11.7991) 0.4394  (0.0171)
100 60 3 10.1146 (8.8365) 0.6923  (0.0217)
100 60 4 21.4234  (10.3978) 0.9679  (0.0235)
100 150 2 1.2406  (0.5314) 0.4673  (0.0192)
100 150 3 4.9478  (5.0763) 0.7336  (0.0183)
100 150 4 12.2751 (5.5279) 1.0342  (0.0177)

Table 4: Divergence between the systematic part and the factors and loadings. Standard deviations in parentheses.
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PLT WOP
N T K Yu FA Yy FA
10 30 2 0.8667  (0.1028) 0.8196  (0.0448) 0.8733  (0.0944) 0.8371 (0.0438)
10 30 3 0.8433 (0.1135) 0.8268  (0.0378) 0.8267 (0.1143) 0.8487  (0.0341)
10 30 4 0.8767 (0.1251) 0.8228  (0.0355) 0.8867 (0.1074) 0.8453  (0.0330)
10 60 2 0.8600 (0.1192) 0.8378  (0.0341) 0.8600 (0.1133) 0.8465  (0.0336)
10 60 3 0.8300 (0.1119) 0.8458  (0.0311) 0.8233 (0.1006) 0.8554  (0.0277)
10 60 4 0.8533 (0.1196) 0.8348  (0.0274) 0.8533 (0.1196) 0.8466  (0.0245)
10 150 2 0.8500 (0.1253) 0.8431  (0.0263) 0.8533  (0.1279) 0.8477  (0.0252)
10 150 3 0.8767 (0.1165) 0.8503  (0.0175) 0.8633 (0.1159) 0.8557  (0.0177)
10 150 4 0.8100  (0.1213) 0.8351  (0.0223) 0.8333  (0.1241) 0.8441  (0.0230)
40 30 2 0.8625  (0.0424) 0.8295  (0.0295) 0.8608  (0.0419) 0.8369  (0.0293)
40 30 3 0.8417 (0.0585) 0.8466  (0.0284) 0.8383  (0.0556) 0.8539  (0.0278)
40 30 4 0.8633 (0.0579) 0.8474  (0.0210) 0.8625 (0.0544) 0.8586  (0.0191)
40 60 2 0.8617 (0.0512) 0.8406  (0.0227) 0.8667 (0.0527) 0.8483  (0.0233)
40 60 3 0.8533  (0.0439) 0.8384  (0.0187) 0.8567 (0.0435) 0.8466  (0.0177)
40 60 4 0.8458  (0.0542) 0.8409 (0.0174) 0.8433  (0.0537) 0.8486  (0.0162)
40 150 2 0.8750  (0.0549) 0.8500 (0.0152) 0.8667  (0.0558) 0.8520  (0.0148)
40 150 3 0.8533  (0.0495) 0.8382  (0.0133) 0.8525  (0.0480) 0.8430 (0.0126)
40 150 4 0.8700 (0.0407) 0.8477 (0.0129) 0.8692  (0.0424) 0.8516  (0.0128)
100 30 2 0.8637 (0.0346) 0.8503  (0.0240) 0.8643 (0.0346) 0.8534  (0.0246)
100 30 3 0.8727 (0.0333) 0.8515 (0.0174) 0.8740 (0.0323) 0.8553  (0.0176)
100 30 4 0.8680 (0.0287) 0.8515 (0.0133) 0.8697  (0.0204) 0.8553  (0.0132)
100 60 2 0.8523  (0.0316) 0.8483  (0.0179) 0.8540 (0.0306) 0.8529  (0.0176)
100 60 3 0.8550  (0.0264) 0.8486  (0.0163) 0.8570 (0.0272) 0.8523  (0.0157)
100 60 4 0.8563 (0.0255) 0.8488  (0.0180) 0.8577 (0.0245) 0.8537  (0.0183)
100 150 2 0.8623  (0.0360) 0.8469  (0.0150) 0.8640 (0.0335) 0.8483  (0.0149)
100 150 3 0.8493 (0.0362) 0.8477 (0.0119) 0.8517  (0.0353) 0.8493  (0.0119)
100 150 4 0.8543 (0.0380) 0.8510 (0.0133) 0.8523  (0.0381) 0.8533 (0.0129)

Table 5: Share of parameters contained in the 85% coverage interval. Standard deviations in parentheses.

20



PLT WOP
N T K min lq med uq max min lq med uq max
10 30 2 0.0019 0.0023 0.0036 0.0101 0.0369 0.0013 0.0019 0.0021 0.0039 0.0056
10 30 3 0.0030 0.0034 0.0042 0.0072 0.0155 0.0030 0.0032 0.0036 0.0043 0.0051
10 30 4 0.0025 0.0034 0.0054 0.0074 0.0158 0.0025 0.0034 0.0048 0.0058 0.0100
10 60 2 0.0010 0.0011 0.0016 0.0021 0.0024 0.0010 0.0011 0.0014 0.0019 0.0028
10 60 3 0.0016 0.0021 0.0033 0.0048 0.0223 0.0014 0.0018 0.0023 0.0031 0.0050
10 60 4 0.0014 0.0027 0.0049 0.0082 0.0235 0.0014 0.0025 0.0036 0.0048 0.0098
10 150 2 0.0007 0.0008 0.0010 0.0015 0.0041 0.0007 0.0008 0.0011 0.0014 0.0041
10 150 3 0.0013 0.0013 0.0016 0.0028 0.0061 0.0010 0.0010 0.0018 0.0030 0.0050
10 150 4 0.0013 0.0022 0.0045 0.0102 0.0142 0.0014 0.0022 0.0027 0.0073 0.0105
40 30 2 0.0010 0.0020 0.0026 0.0035 0.0712 0.0009 0.0016 0.0022 0.0024 0.0034
40 30 3 0.0009 0.0017 0.0020 0.0030 0.0536 0.0009 0.0015 0.0019 0.0024 0.0035
40 30 4 0.0009 0.0017 0.0021 0.0029 0.0198 0.0009 0.0016 0.0020 0.0025 0.0046
40 60 2 0.0010 0.0014 0.0017 0.0023 0.0426 0.0008 0.0012 0.0014 0.0018 0.0020
40 60 3 0.0007 0.0011 0.0015 0.0018 0.0383 0.0007 0.0010 0.0013 0.0015 0.0022
40 60 4 0.0009 0.0012 0.0014 0.0018 0.0130 0.0006 0.0011 0.0013 0.0016 0.0021
40 150 2 0.0006 0.0007 0.0008 0.0010 0.0013 0.0005 0.0007 0.0009 0.0010 0.0011
40 150 3 0.0004 0.0006 0.0007 0.0009 0.0017 0.0004 0.0006 0.0007 0.0009 0.0012
40 150 4 0.0005 0.0006 0.0008 0.0009 0.0021 0.0004 0.0006 0.0007 0.0009 0.0012
100 30 2 0.0007 0.0015 0.0019 0.0024 0.0331 0.0007 0.0014 0.0018 0.0022 0.0040
100 30 3 0.0009 0.0016 0.0020 0.0025 0.0252 0.0007 0.0014 0.0017 0.0022 0.0039
100 30 4 0.0005 0.0013 0.0018 0.0021 0.0167 0.0006 0.0012 0.0016 0.0021 0.0035
100 60 2 0.0006 0.0010 0.0013 0.0016 0.1129 0.0004 0.0009 0.0011 0.0014 0.0021
100 60 3 0.0005 0.0009 0.0011 0.0015 0.0485 0.0004 0.0009 0.0011 0.0013 0.0022
100 60 4 0.0004 0.0008 0.0010 0.0013 0.0573 0.0003 0.0007 0.0009 0.0013 0.0019
100 150 2 0.0003 0.0006 0.0007 0.0009 0.0016 0.0003 0.0005 0.0007 0.0009 0.0012
100 150 3 0.0003 0.0005 0.0007 0.0008 0.0019 0.0003 0.0005 0.0006 0.0008 0.0013
100 150 4 0.0002 0.0005 0.0006 0.0007 0.0059 0.0002 0.0005 0.0006 0.0007 0.0011

Table 6: Numerical standard errors for the idiosyncratic variances. Instead of reporting all N parameters per
model, we only give the minimum (min), lower quartile (lq), median (med), upper quartile (uq) and maximum
(max).

21



PLT WOP
N T K min lq med uq max min lq med uq max
10 30 2 0.0023 0.0069 0.0103 0.0184 0.1811 0.0017 0.0030 0.0037 0.0048 0.0115
10 30 3 0.0033 0.0070 0.0101 0.0161 0.1201 0.0021 0.0044 0.0052 0.0063 0.0112
10 30 4 0.0035 0.0062 0.0081 0.0121 0.0399 0.0024 0.0050 0.0060 0.0077 0.0184
10 60 2 0.0014 0.0027 0.0034 0.0044 0.0206 0.0013 0.0026 0.0031 0.0038 0.0066
10 60 3 0.0021 0.0044 0.0060 0.0098 0.0721 0.0021 0.0036 0.0042 0.0051 0.0138
10 60 4 0.0026  0.0056 0.0088 0.0158 0.0648 0.0024 0.0042 0.0051 0.0067 0.0230
10 150 2 0.0009 0.0024 0.0028 0.0038 0.0153 0.0011 0.0024 0.0029 0.0035 0.0128
10 150 3 0.0020 0.0035 0.0043 0.0058 0.0229 0.0016 0.0032 0.0039 0.0047 0.0143
10 150 4 0.0022 0.0048 0.0073 0.0116 0.0432 0.0023 0.0040 0.0050 0.0072 0.0368
40 30 2 0.0011 0.0036 0.0050 0.0075 0.2929 0.0006 0.0021 0.0026 0.0032 0.0067
40 30 3 0.0014 0.0032 0.0041 0.0057 0.2192 0.0013 0.0025 0.0029 0.0035 0.0074
40 30 4 0.0019 0.0036 0.0044 0.0056 0.0954 0.0015 0.0030 0.0036 0.0044 0.0094
40 60 2 0.0012 0.0027 0.0037 0.0061 0.3544 0.0009 0.0019 0.0023 0.0026 0.0050
40 60 3 0.0013 0.0031 0.0040 0.0057 0.2187 0.0011 0.0021 0.0024 0.0029 0.0054
40 60 4 0.0017 0.0031 0.0038 0.0049 0.0961 0.0011 0.0025 0.0029 0.0033 0.0054
40 150 2 0.0008 0.0016 0.0019 0.0022 0.0326 0.0007 0.0015 0.0018 0.0021 0.0037
40 150 3 0.0009 0.0019 0.0022 0.0026 0.0580 0.0009 0.0017 0.0020 0.0023 0.0040
40 150 4 0.0011 0.0023 0.0026 0.0031 0.0691 0.0012 0.0021 0.0023 0.0026 0.0046
100 30 2 0.0006 0.0021 0.0027 0.0034 0.2647 0.0005 0.0016 0.0021 0.0027 0.0052
100 30 3 0.0007 0.0027 0.0034 0.0042 0.1325 0.0007 0.0021 0.0025 0.0031 0.0058
100 30 4 0.0011 0.0025 0.0031 0.0039 0.1838 0.0009 0.0022 0.0026 0.0033 0.0064
100 60 2 0.0004 0.0017 0.0023 0.0032 0.5552 0.0003 0.0012 0.0015 0.0019 0.0048
100 60 3 0.0010 0.0022 0.0028 0.0037 0.3094 0.0007 0.0015 0.0018 0.0022 0.0049
100 60 4 0.0008 0.0021 0.0025 0.0032 0.3579 0.0007 0.0017 0.0020 0.0024 0.0052
100 150 2 0.0004 0.0011 0.0013 0.0015 0.0565 0.0004 0.0011 0.0013 0.0015 0.0032
100 150 3 0.0005 0.0013 0.0016 0.0019 0.0805 0.0004 0.0012 0.0014 0.0017 0.0031
100 150 4 0.0007 0.0015 0.0018 0.0021 0.1221 0.0005 0.0014 0.0016 0.0019 0.0035

Table 7: Numerical standard errors for the product of factors and loadings. Instead of reporting all TN parameters
per model, we only give the minimum (min), lower quartile (1), median (med), upper quartile (uq) and maximum
(max).
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PLT WOP
N T K min lq med uq max min lq med uq max
10 30 2 0.0061 0.0413 0.0917 0.1631 0.4039 0.0016 0.0031 0.0038 0.0049 0.0124
10 30 3 0.0091 0.0402 0.0620 0.1031 0.3038 0.0021 0.0046 0.0055 0.0066 0.0121
10 30 4 0.0108 0.0250 0.0326 0.0436 0.0794 0.0033 0.0054 0.0067 0.0090 0.0230
10 60 2 0.0011 0.0028 0.0035 0.0044 0.0171 0.0012 0.0026 0.0031 0.0039 0.0067
10 60 3 0.0068 0.0443 0.0764 0.1323 0.3798 0.0021 0.0036 0.0043 0.0053 0.0138
10 60 4 0.0103 0.0398 0.0653 0.0959 0.2798 0.0024 0.0044 0.0054 0.0072 0.0245
10 150 2 0.0010 0.0025 0.0031 0.0040 0.0166 0.0011 0.0024 0.0029 0.0035 0.0130
10 150 3 0.0024 0.0048 0.0062 0.0086 0.0229 0.0016 0.0032 0.0039 0.0047 0.0147
10 150 4 0.0033 0.0352 0.0698 0.1120 0.4182 0.0019 0.0039 0.0051 0.0076 0.0401
40 30 2 0.0010 0.0045 0.0072 0.0120 0.3279 0.0008 0.0021 0.0027 0.0033 0.0073
40 30 3 0.0184 0.0745 0.1085 0.1469 0.4012 0.0014 0.0026 0.0032 0.0038 0.0081
40 30 4 0.0123 0.0413 0.0594 0.0836 0.2189 0.0014 0.0032 0.0039 0.0048 0.0099
40 60 2 0.0012 0.0028 0.0039 0.0064 0.3636 0.0008 0.0020 0.0023 0.0027 0.0050
40 60 3 0.0046 0.0361 0.0622 0.1041 0.4426 0.0010 0.0021 0.0025 0.0030 0.0059
40 60 4 0.0025 0.0635 0.1069 0.1687 0.5094 0.0008 0.0026 0.0031 0.0035 0.0057
40 150 2 0.0008 0.0017 0.0022 0.0028 0.0232 0.0007 0.0015 0.0018 0.0021 0.0037
40 150 3 0.0009 0.0037 0.0054 0.0079 0.0443 0.0009 0.0017 0.0020 0.0023 0.0041
40 150 4 0.0016 0.0038 0.0050 0.0066 0.0894 0.0011 0.0021 0.0023 0.0026 0.0046
100 30 2 0.0013 0.0269 0.0612 0.1115 0.3320 0.0005 0.0016 0.0021 0.0027 0.0053
100 30 3 0.0010 0.0241 0.0495 0.0932 0.4309 0.0004 0.0021 0.0025 0.0031 0.0060
100 30 4 0.0067 0.0568 0.0861 0.1411 0.5027 0.0008 0.0022 0.0027 0.0034 0.0071
100 60 2 0.0005 0.0430 0.0931 0.1727 0.6783 0.0003 0.0012 0.0016 0.0020 0.0049
100 60 3 0.0058 0.0560 0.0905 0.1392 0.5380 0.0007 0.0015 0.0019 0.0023 0.0051
100 60 4 0.0116 0.0633 0.0956 0.1441 0.5691 0.0006 0.0018 0.0021 0.0026 0.0054
100 150 2 0.0004 0.0022 0.0040 0.0066 0.0450 0.0004 0.0011 0.0013 0.0015 0.0031
100 150 3 0.0009 0.0114 0.0243 0.0454 0.1913 0.0004 0.0013 0.0015 0.0017 0.0032
100 150 4 0.0035 0.0342 0.0509 0.0776 0.2902 0.0005 0.0015 0.0017 0.0020 0.0035
Table 8: Numerical standard errors for the product of factors and loadings (mean of F' times mean of A). Instead

of reporting all TN parameters per model, we only give the minimum (min), lower quartile (Iq), median (med),

upper quartile (uq) and maximum (max).
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PLT WOP
N T K min lq med uq max min lq med uq max
10 30 2 0.0418 0.0687 0.1266 0.1670 0.2508 0.0023 0.0036 0.0053 0.0094 0.0110
10 30 3 0.0254 0.0413 0.0673 0.1284 0.1424 0.0035 0.0067 0.0099 0.0119 0.0151
10 30 4 0.0138 0.0186 0.0231 0.0295 0.0553 0.0060 0.0084 0.0094 0.0112 0.0161
10 60 2 0.0013 0.0024 0.0042 0.0054 0.0088 0.0014 0.0030 0.0034 0.0061 0.0097
10 60 3 0.0335 0.0888 0.1022 0.1304 0.1694 0.0029 0.0054 0.0058 0.0069 0.0089
10 60 4 0.0151 0.0264 0.0552 0.0753 0.1169 0.0044 0.0057 0.0070 0.0095 0.0112
10 150 2 0.0008 0.0018 0.0028 0.0042 0.0047 0.0006 0.0020 0.0029 0.0041 0.0050
10 150 3 0.0014 0.0036 0.0059 0.0075 0.0096 0.0012 0.0028 0.0034 0.0035 0.0072
10 150 4 0.0019 0.0334 0.0632 0.0897 0.1018 0.0017 0.0031 0.0041 0.0068 0.0120
40 30 2 0.0018 0.0098 0.0130 0.0208 0.1463 0.0017 0.0068 0.0090 0.0144 0.0262
40 30 3 0.0452 0.1444 0.2029 0.2894 0.4837 0.0036 0.0093 0.0152 0.0190 0.0318
40 30 4 0.0259 0.0780 0.1054 0.1285 0.1870 0.0062 0.0119 0.0177 0.0208 0.0362
40 60 2 0.0030 0.0053 0.0080 0.0102 0.0667 0.0019 0.0044 0.0064 0.0085 0.0135
40 60 3 0.0414 0.0744 0.1002 0.1291 0.2485 0.0029 0.0056 0.0073 0.0106 0.0186
40 60 4 0.0085 0.0923 0.1439 0.2369 0.3367 0.0016 0.0080 0.0108 0.0131 0.0227
40 150 2 0.0015 0.0023 0.0034 0.0051 0.0103 0.0012 0.0020 0.0027 0.0041 0.0081
40 150 3 0.0019 0.0047 0.0063 0.0088 0.0139 0.0014 0.0025 0.0039 0.0054 0.0088
40 150 4 0.0025 0.0043 0.0053 0.0069 0.0101 0.0023 0.0033 0.0043 0.0056 0.0076
100 30 2 0.0231 0.1106 0.1966 0.2828 0.6475 0.0021 0.0062 0.0097 0.0132 0.0247
100 30 3 0.0064 0.1216 0.2091 0.3205 0.7269 0.0021 0.0098 0.0124 0.0180 0.0284
100 30 4 0.0226 0.1918 0.3061 0.4732 0.8942 0.0047 0.0152 0.0202 0.0253 0.0401
100 60 2 0.0320 0.1918 0.2821 0.3603 0.6203 0.0016 0.0067 0.0091 0.0118 0.0231
100 60 3 0.0526 0.1915 0.2300 0.3319 0.6053 0.0034 0.0101 0.0148 0.0192 0.0370
100 60 4 0.0353 0.1547 0.2773 0.3667 0.5878 0.0051 0.0162 0.0213 0.0275 0.0423
100 150 2 0.0022 0.0055 0.0081 0.0109 0.0282 0.0021 0.0046 0.0068 0.0094 0.0156
100 150 3 0.0056 0.0196 0.0405 0.0655 0.1084 0.0021 0.0063 0.0084 0.0111 0.0153
100 150 4 0.0105 0.0411 0.0656 0.0959 0.1667 0.0024 0.0080 0.0100 0.0133 0.0198

Table 9: Numerical standard errors for the sum of the squared loadings. Instead of reporting all N parameters
per model, we only give the minimum (min), lower quartile (1), median (med), upper quartile (uq) and maximum
(max).
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PLT WOP
A1 A2 A1 A2
OILGS 0.7797 0.0000 0.7814 0.0000
(0.0046)  (0.0886)  (0.0350)  (0.0315)
BMATR 0.6899 0.5076 0.6965 0.5151
(0.0246)  (0.0201)  (0.0147)  (0.0133)
INDUS 0.7406 0.5735 0.7525 0.5777
(0.0233)  (0.0196)  (0.0130)  (0.0117)
CNSMG 0.5473 0.6572 0.5532 0.6679
(0.0197)  (0.0212)  (0.0056)  (0.0060)
HLTHC 0.4571 0.6603 0.4662 0.6665
(0.0289)  (0.0293)  (0.0157)  (0.0146)
CNSMS 0.5506 0.8030 0.5580 0.8135
(0.0326)  (0.0358)  (0.0068)  (0.0081)
TELCM 0.3868 0.5411 0.4025 0.5377
(0.0251)  (0.0244)  (0.0190)  (0.0171)
UTILS 0.5777 0.3082 0.6044 0.2899
(0.0469)  (0.0498)  (0.0242)  (0.0209)
FINAN 0.6155 0.6145 0.6332 0.6129
(0.0157)  (0.0178)  (0.0133)  (0.0116)
TECNO 0.5219 0.5490 0.5291 0.5566
(0.0232)  (0.0233)  (0.0156)  (0.0145)

Table 10: Estimated factor loadings parameters for equity indices. Standard deviations over the 90 different
orderings in parentheses. Results have been rotated such that their mean takes the positive lower triangular
shape.
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PLT WOP
OILGS 0.3577  0.3929
(0.0439)  (0.0382)
BMATR  0.2710 0.2739
(0.0045)  (0.0036)
INDUS 0.1280 0.1284
(0.0042)  (0.0034)
CNSMG 0.2747 0.2754
(0.0012)  (0.0009)
HLTHC 0.3602 0.3573
(0.0038)  (0.0033)
CNSMS 0.0561 0.0605
(0.0044)  (0.0044)
TELCM 0.5643 0.5616
(0.0048)  (0.0045)
UTILS 0.5603 0.5470
(0.0294)  (0.0268)
FINAN 0.2497 0.2431
(0.0080)  (0.0082)
TECNO 0.4293  0.4260
(0.0043)  (0.0041)

Table 11: Estimated idiosyncratic variance parameters for equity indices. Standard deviations over the 90 different
orderings in parentheses.
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Figure 2: Estimated factors from equity indices. Factors in the first row are PLT results, factors in the second
row are WOP results.
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A The unconstrained Gibbs sampler

For the model described in Equation (1) and prior distributions given in Equations (3) to (6) the
unconstrained sampling is achieved via iterative sampling from the following full conditional distri-

butions, given as

T
FFIASY) = T 2105 e {—i(ft — s (fe - uf»} , (19)
t=1

where Qy, = (A'S7'A + )7 and py, = Qp (A'S; 1 y). Throughout this paper, we will assume

diagonality for 3, resulting in

A AR 1

SulEANY) = t — —— 0 20

redray) = Iins () ewt-mih (20)

where a; = %T + ag; and 3; = % + Zthl(yit - /\gft)2 + By; for all i = 1,...,N and ag; = Bp; = 1

forall i =1...,N. The form of the full conditional distribution for A depends on the assumptions
2

concerning ¥,,. Since %, = diag(o?,...,02), then the full conditional distribution can be factorized

along dimension N yielding
al K | 1
sairy.s) = Jlen fonten {0 mre i -m}. e

i=1
where Q), = (%ftft’ + )7t and py, = Q)\Z(% Zthl vitft). In case X, is not diagonal, factorization
along the N dimension does not work.
B Numerical illustration for non-ellipticity and multimodality

For illustration purposes, we will consider a data set Y with N = 10 cross-sections and time dimension

T = 60, which is driven by K = 2 static factors. This data set is simulated using as parameters

0.100 —-0.200  0.500 0.600 0.100 0.174 —-0.153 -0.470 0.186 —0.577
0.000  0.200 —0.100 0.400 —0.900 0.429 -0.392 0.652 0.282 —0.541
(22)
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and

Sy = diag(0.990,0.920,0.740,0.480, 0.180, 0.786, 0.823, 0.354, 0.886, 0.374). (23)

We will consider three different orderings of the data. The first is the above ordering, denoted
Y |01, the second orders the series as 2,3,1,4,5,6,7,8,9,10, denoted Y |O2, and the third uses the
ordering 5,2,1,3,4,6,7,8,9,10, denoted Y |Os.

If normal priors are assumed for the loadings and the factors, the posterior distribution has a
continuum of maxima that are all orthogonal transformations of each other. The first row of figure
1 shows the Gibbs output from an unconstrained sampler as it is denoted in Appendix A for the
loadings of cross-section eight for Y'|O;, Y'|O2 and Y |Os. Since orthogonal transformations between

the Gibbs sweeps are not ruled out, the sampler moves along the circle in all three cases.

The following example will illustrate the reasons for non-ellipticity and multimodality, using the

three orderings of the simulated data set. Consider the first ordering of the data Y'|Oy, such that

Y|01 = F|01Al|01 + U|01 with U|01 = (U1|01, e ,UT|01)/ and ut|01 ~ N(O,Zu’Ol).
(24)

We can use a permutation matrix P; 2 to rearrange the cross-sections and obtain the second

ordering of the data Y |Os, i.e.

0 0 1 Oq1x7)
0 0 0

Y|Oy = Y|O1Py  with Pio= (1x7) (25)

0 1 0 01x7)

Orx1y O@x1) Ogxyy Iz
Consequently, we obtain
Y|Oy = F|O3AN'|Og+ U|O

= F‘OIDP{,QA‘OlD;D{,2A|01A,‘OIP172 =+ U‘OlpLQ, (26)

where Dp; Ao, I8 the orthogonal matrix that maps P1’72A]01 in such a way that it satisfies the PLT
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constraints. This implies that
AlOy = P3A|O1Dp; 40, (27)
and

24|02 = Pl35u|01Pra. (28)

Now consider one point from the posterior density of A|O;. Take for example the loadings ma-
trix derived from the principal components solution to the factor model for Y'|O;, which is then

transformed to satisfy the PLT constraints, i.e.

0.411 -0.333 0.319 —-0.249 0.827 —0.435 0.537 -0.807 —-0.179 0.327
0.000 0419 -0.720 -0.716 —-0.027 —-0.252 0.364 0.378 —0.360 0.656
(29)

A*O) =

i ) ) —0.6227 —0.7824 L
This point can be transformed, using P; 2 and Dp{ LA* |0y = , which is a rota-
’ 0.7824 —0.6227

tion matrix with angle v = 0.7147, to obtain

/ *
Py oA*|O1Dpy a+ 0,

0.536 —0.762  0.256 —0.405 -0.536 0.074 —0.050 0.799 -0.171  0.309
0.000 0.199 -0.321 0.640 0.631 0.497 —-0.647 0.396 0.364 —0.664
(30)

which is the same as A*|O2, i.e. the loadings matrix from the principal components solution for Y|Oa,
transformed to satisfy the PLT constraints. Accordingly, the estimate for the covariance matrix for

Y |0,
¥r|01 = diag(0.831, 0.713, 0.380, 0.426, 0.315, 0.747, 0.579, 0.205, 0.838, 0.463), (31)
can be transformed to

P{7222|01P1,2 = diag(0.713, 0.380, 0.831, 0.426, 0.315, 0.748, 0.579, 0.205, 0.838, 0.463),
(32)
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which is the same as X7 |0s.

Next, consider another point from the posterior density of A|O;p in the vicinity of A*|O1, say

0.411 -0.333 0319 —-0.249 0.828 —-0.435 0.537 -0.807 —-0.179 0.327
0.000 0.319 -0.720 —-0.716 -0.027 —-0.252 0.364 0.378 —0.360 0.656
(33)

AfjO; =

We apply the same permutation and rotation matrices P12 and Dp; a+|0,, and obtain

P{,AT01Dpy p-10,

0.457 —-0.762 0.256 —0.405 -0.536 0.074 —0.050 0.799 -0.171  0.309

0.062 0.199 -0.321 0.640 —-0.631 0.497 —-0.647 0.396 0.364 —0.664
(34)

which does not satisfy the PLT constraints. If we do not chose the rotation matrix Dp; a+j0,, but the

. . —0.7225 —0.6914 . i
rotation matrix _Dpl/ LAT0; = , Tepresenting a rotation by an angle v = 0.757m,

0.6914 —0.7225
we obtain

P1/,2AT|01DP1”2AH01

0.461 —-0.728 —0.297 -0.315 —-0.616 0.140 —0.137 0.845 —0.120 0.217

0.000 0.300 —0.284 0.689 —0.553 0.483 —-0.634 0.285 0.384 —0.700
(35)

Thus the matrix D P/ ,A*|O, CAnnot be applied to validly transform all points of the posterior density
for A|O; into points of the posterior density for A|O2. Conversely, there exist points in the posterior

density of A|O2 that can only be reached if a different rotation, namely D Pl A0 18 applied.

A]01,55]01  A*[0s,%5]0;  A*[O3, 57|05

initial value -755.9969 -755.9969 -755.9969
left rotation by vy = —im -757.5443 -761.1392 -761.4656
right rotation by v = =7 -757.6931 -758.5168 -763.0706

Table 12: Log likelihood values for rotations of the PCA estimates.
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Next, we will consider the principal components estimates for all three orderings Y01, Y |02
and Y|Os, which are afterwards transformed by Dj«o,, Da+|0, and Dy« |o,, respectively, to satisfy
the PLT constraint. Of course, all three solutions reach the same log likelihood value, which is
—1755.9969. Now consider a rotation of each loadings matrix to the left and to the right by some
arbitrary angle, say %71. Obviously, the resulting value will no longer satisfy the PLT constraint, so
we have to impose it separately. Table 12 shows the results of this experiment: For Y|O;, imposing
the constraints has little effect, so the log likelihood value stays nearly the same. For Y|Os, if we
rotate to the right, the likelihood again does not change much. For a rotation to the left, we observe
a more pronounced change. Eventually, for Y|Os, we see that both a rotation to the left and the
right effects the log likelihood value to a greater extent. Figure 3 shows the same for the whole circle.
Consider the solid line first: Whereas for Y'|O1, the log likelihood is nearly flat, it is flat on the left
and steep on the right side for Y'|Og, whereas it is steep on both sides for Y|O3. Note that the unit
scale prior ensures that the contribution of the prior along the circle is identical, so the log likelihood
must only be shifted to obtain the log posterior. It is easily seen that under the first ordering, the
sampler can move along the circle much more easily than under the third ordering. For the second
ordering, it can easily move to the right, but not to the left. Thus the ordering has an effect on the
sampler’s potential to move along the circle, or the range of rotations it will cover. For a wide range
of rotations, represented by a flat log likelihood along the circle, the resulting posterior densities will
lose their ellipticity property. This can be verified by comparing figure 3 with the sampler’s output

in the second row of figure 1.

Rotated estimate for ¥ [0 Rotated estimate for ¥ [0, Rotated estimate for ¥ [0,

Log likelihood
Log likelihood

Figure 3: Log likelihood values of the principal components estimates, rotated along the circle, with constraints
imposed.

Now note that rotations are not the only orthogonal transformations we must consider. There are
also reflections and permutations, i.e. sign and label switchings of the factors and loadings. These

may likewise occur while sampling. In the R?, all orthogonal transformations are expressible as a
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product of one rotation and one permutation, so we are able to cover all the potential orthogonal
transformations by additionally taking label switching into account. Obviously, the only label switch-
ing there is in a two-factor model is a switching of the first and second factor. Thus we exchange
the factor labels and perform the same rotations as before, denoted by the dashed line in figure 3.
We see that a second mode emerges. This mode is not located on the opposite side from the first
one, nor is the distance between the first and second mode identical for all three orderings. We may
thus consider this a case of genuine and non-systematic multimodality. Of course, the second mode
is more likely reached by the sampler if it can cover larger parts of the circle. Thus we find that the
sampler for Y|O; reaches a second mode, while the other two samplers do not, as the second row of

figure 1 shows.

C The orthogonal Procrustes transformation

The orthogonal Procrustes problem is a minimization problem of the following form: Assume that
we have two matrices X and Y, which both have dimension N x K. We want to find an orthogonal

matrix A that solves
XA = Y+E st. AA =AA=1Ix with tr(E'E)=min. (36)

This problem has been solved by Schénemann (1966) in the following way: Write

g = g1+g (37)
with the minimization as
g1 = tr(F'E)=tr(AX'XA-24'X"Y +Y'Y) (38)
and the constraint as
g2 = tr(A(AA-1T)), (39)

where A is a K x K matrix of Lagrange multipliers.
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Taking the derivative with respect to A yields

99

54 (X'X + X'X)A - 2X'Y + A(A + A') = 0. (40)

Rearranging the terms, we obtain

A+ AN
2

= AX'Y - A(X'X)A, (41)

where the term on the left hand side and A’(X’'X)A are symmetric, so A’X'Y must be symmetric

as well, i.e.
AXY = Y'XA, (42)
or, equivalently,
XY = AY'XA. (43)
If we write the square of the latter, we obtain
XYY'X = AY'XAAX'YA=AYXX'YA, (44)

since AA" = I. We can perform a spectral decomposition on both X’YY’X and Y/ X X'Y, resulting

n
WDW' = AVDV'A’, (45)

where the matrix of eigenvalues D is the same for both decompositions, while the eigenvectors V and

W are different. Now

W = AV, (46)
and, consequently,

A = WV, (47)
We know have a necessary condition for A to be an orthogonal projection of X onto Y. Since we
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need a minimum, we must consider

tr(F'E) = tr(AX'XA—24X'Y +Y'Y)
= tr(X'X +Y'Y) - 2tr(AX'Y). (48)

Since this expression has to be minimized and the first term is fixed, we have to maximize the second

term.

Plugging in the orthogonal projection solution for A from equation 47, we have

tr(A’X'Y) = tr

where we use the singular value decomposition
X'y = wD%V (50)
and some properties of the trace function. Thus, solving for D% in equation (50), we obtain
D% = W'X'YV = R,W'X'YVRy, (51)

where the column signs in V and W are undetermined, so the last equality holds for reflection

matrices Ry and Ryy. Since the solution in equation (47) is in fact
A = WV'=WRwRyV' = WRyyV’ (52)

and the product of two reflection matrices is a reflection matrix itself, we merely have to find the Ry v

that minimizes D%° out of the K? potential solutions. This is obtained by complete enumeration.

D Simulation experiment for removing orthogonal mixing

An orthogonally mizing sampler generates a sequence of draws {A(S)}le from a distribution that is

subject to orthogonal transformations D? after each draw s, generating an orthogonally mized sample.
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The orientation of the distribution in draw s relative to the orientation in draw 1 is thus D) =
D'D? ... D51, Note that D®) is likewise an orthogonal matrix. Hence, the orthogonally mixed
sample can also be interpreted as {]\(S)D(S)}le, where A(®) represents draw s from the directionally
identified distribution, and D) represents the orthogonal transformation component. Both A(®)
and D) stem from hidden Markov processes. We are not interested in the properties of D), but
rather want to get rid of it. Nonetheless, sampling A®) D) should help to preserve the properties
of A(®) better than sampling A®®) under identification constraints. Afterwards, we use the WOP
algorithm to remove the effect of the D) from the sample and obtain {A®) DS | where D is a

unique orthogonal matrix.

Using no directional identification constraints, the unconstrained Gibbs sampler for the factor
model discussed in Appendix A is an orthogonally mixing sampler in this sense. Having previ-
ously obtained a draw A(®) D*  the moments of the full conditional distribution of F' subject to the

unobservable D from the previous iteration are

Qs |D* = (DNE'ADS + 1)1
— (Ds/(A/EI—LlA + I)DS)—I
D¥(NS,'A+1)"'D*

= DQyD* (53)
and
pp|D* = (DQy,D*)(D¥ASuy)
— DS/thAZuyt
= D%uy,. (54)

Analogously, the moments of the full conditional distribution of A subject to the unobservable matrix

D? from the previous iteration are

O\ |D* = (0;°D"F'FD*+1)"!
= (D¥(0;°F'F +1)D*)~*
= D*(0;*F'F+1)"'D*
= DYQ,,D* (55)
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and

pn|D* = D¥Qy D*(0; 2D F'y;)
= D%Q,, (Ui_QF/yZ-)
= Dsllu/\i. (56)

The following sweep for A will then yield AGS+Y) Dst1 where the unobservable At is a draw from
the full conditional distribution prior to its latest orthogonal transformation Dt If we want all
the A(®) to originate from a distribution with the same directional identification, we use the above

reasoning and replace D? by D®) in the conditional moments.

The following experiment will demonstrate the capability of the weighted orthogonal Procrustes
(WOP) procedure to recover parameters from an orthogonally mixed sample. As we generate the
sample, we will follow the notion of A®) and DG as separate unobservable processes, where the A®)

are drawn from a directionally identified distribution and the D) are arbitrary orthogonal matrices.

We simulate a sequence of matrices {A(9)}9 2_1, where S = 10000 and AG) = (;\gs)/, e ,:\S\s,)/) with
N =100 and )\E )~ N (i, ;) for all i = 1,..., N with the parameters p; drawn from a K-variate
standard Normal distribution with K = 6 and X; drawn from a K-variate scaled Wishart distribution
IW(S,v) with £ = Ik and v = 10.

Next, we create subsamples containing the first k£ columns of each matrix, where k € {2,3,4,5,6},
ie. {A[(f)k]}z For each of the resulting five samples, we then draw a sequence of k:—dimensional
rotation matrices {Qk 9 1, a sequence of k-dimensional permutation matrices {P S 1, and a

sequence of k-dimensional reflection matrices {R )} afterwards multiplying them to obtain

s=1>
{D(S = Qk P(S R( s S 1> which is again a sequence of orthogonal matrices. We then use the
orthogonal matrices of the appropriate dimension to create the orthogonally mixed samples, i.e.

(S) s) s)

Now we cons1der only the first n rows of each matrix for each of the five samples, where n €
{10, 20,60, 100}. Note that the entries of the first five rows and two columns in the data before adding
the orthogonal variation is identical throughout the resulting 20 samples. We can thus evaluate the

effect of increasing the number of rows or the number of columns based on these reference parameters.

Consider the WOP procedure for {AD(S 1: kz]}S 1, with fixed point (5)A¥

. (i, 1:4) and weights ma-

trix W, with g € {0,1,2,...,G — 1} denoting the number of completed iterations of the sam-

—AD

[Lin, 1:K] i.e. the last observation, and

pler, where for ¢ = 0, we have fixed point (O)Afl: 1:k]
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— -1
Wiy = diag((oywit, - - 0 Wnn) With @y = S <Z§1 \/S\ZD(S)/)\ZD(S)> , and for ¢ > 1, we use

*

. . S 1 (s) T . o

as fixed point (Q)A[l:n,lzk] = § 2 e (Q)A[lzmlzk] and Wy = diag((gwir, . .., (gjwnn) With gywi; =
_1 ~

det (% 255:1((9);\58) _ (g))\;)((g)}gs) _ (g))\;k)/) " where {(Q)Aff:)n,lzk}}gzl denotes the output of the

WOP procedure from iteration g. Hence the output after G iterations is
A(s 1 D®
{(G)Aflz)n,lzk} o= WOP({A[lf:n,l;k] 21, G). (57)

We apply the WOP procedure to each of the orthogonally mixed samples, running it for G = 5
iterations. The restored sample has an orientation different from the original one. Thus we determine
the transformation matrix for the (unweighted) orthogonal Procrustes that projects the mean of the
restored sample onto the mean of the original sample before orthogonal mixing. This transformation

is then applied to each matrix, aligning the restored data with the mean of the original data.

Eventually, we calculate the element-wise percentiles of the original data before orthogonal mixing
and the restored data after removing the orthogonal mixing and compare them. If the original data
has been properly restored, the percentiles should be very close to each other. Figure 4 shows the QQ
plots for k = 2 and k = 5, with increasing number of rows used per matrix. Considering parameter
As2 for k = 2, we find that the first WOP iteration does not restore the percentiles well if only
information from 10 rows is available. If we add more rows, allowing more information to be used,
the problem disappears. Likewise, additional WOP iterations help to match the restored with the
original percentiles. Now consider parameter A1 for £ = 5. If only ten rows are available - a case
where the identification constraints for the factor model are not satisfied - additional WO P iterations
do not ensure a good percentile matching. Adding more information by using additional rows of each

matrix, however, helps to fix this problem.

We now measure the squared deviation between the 1st, 5th, 25th, 50th, 75th, 95th and 99th
percentiles of the simulated and the restored data. Table 13 reports the average squared deviations
for k£ ranging from 2 to 6. The left seven columns in each table show the results if the empirical
mean from the unobservable data before mixing is used, the right seven columns show the results if
only information from the orthogonally mixed sample is used. Consider first the left seven columns,
where the mean before mixing is assumed to be known. We see that for increasing G and n, the

average squared deviations for all the considered quantiles approach zero. Thus for sufficiently large
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G and n,

WwoP <{A1n1k s= 1’G‘SZA[1n1k> ~ {A[lnlk]D}gzla (58)

where D is a unique orthogonal matrix very close to the identity matrix. Hence we can restore the
information from the simulated data out of the orthogonally mixed sample if we only know the mean
of the simulated data. The effect of additional iterations of the sampler is almost negligible, so we

may choose G as low as 1 or 2.

Now we compare the results from the right seven columns per table with those from the left
seven columns per table. We see that the average squared deviations from the sampler that uses
information about the - unobservable - mean of the simulated data and the sampler that does not

use this information approach each other as G increases. Thus, for sufficiently large G and n,
S
WOP({Alnlk Yom1,G) & {A[lnlk] Yoo (59)

i.e. we do not need the mean of the simulated data to recover other information about the data. Note,
however, that the effect of additional iterations of the sampler is quite large here, so we may choose
a larger value for G than if the mean of the simulated data is known, where each iteration improves
improves inference about the mean, which serves as the fixed point in the subsequent iteration of
the sampler. Moreover, D is not close to the identity matrix any more, but instead close to the

orthogonal projection of (O)AEk onto the mean of the simulated data.

1:n,1:k]

Overall, we observe that the average squared deviation for the central quantiles is much smaller
than for the tails, which is easily explained by the fact that each normally distributed sample contains
more information about the center of the distribution than about its tails. Moreover, for increasing
values of k, we require larger values of n, because each additional dimension adds a source of uncer-

tainty. The angular deviation between vectors in the R? is univariate, while the angular deviation

between vectors in the R? is bivariate, etc.
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