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Abstract

Due to their well-known indeterminacies, factor models require identifying assumptions to

guarantee unique parameter estimates. For Bayesian estimation, these identifying assumptions

are usually implemented by imposing constraints on certain model parameters. This strategy,

however, may result in posterior distributions with shapes that depend on the ordering of cross-

sections in the data set. We propose an alternative approach, which relies on a sampler without

the usual identifying constraints. Identi�cation is reached ex-post based on a Procrustes trans-

formation. Resulting posterior estimates are ordering invariant and show favorable properties

with respect to convergence and statistical as well as numerical accuracy.
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1 Introduction

Bayesian Factor analysis is a well-established tool in econometrics with a host of applications in

economics and �nance (e.g. Geweke and Zhou, 1996; Otrok and Whiteman, 1998; Kose et al., 2003;

Bernanke et al., 2005). Latent factors in�uence observable data through factor loadings, where iden-

tifying assumptions are required to obtain unique estimates for the factors and loadings. Geweke and

Zhou (1996) suggested an identi�cation scheme that has been used in many applications, sometimes

in the slightly modi�ed form of Aguilar and West (2000). It is also common to use overidentifying

restrictions, where certain factor loadings are set to zero, implying the assumption that the corre-

sponding cross-sectional units are not a�ected by the corresponding factors (e.g. by Kose et al.,

2003). Especially for a large number of cross-sections, this has led to the development of sparse

factor models (West, 2003). In a di�erent approach, Frühwirth-Schnatter and Lopes (2009) develop

a sampler that selects the cross-sections used for identi�cation during the sampling process.

For the exactly identi�ed factor model, the ordering of the cross-sections should have no e�ect

on the inference results. Lopes and West (2004), however, �nd that model selection criteria used

to choose the number of factors are in�uenced by the way the cross-sections are ordered. Carvalho

(2006) and Carvalho et al. (2008) �nd that parameter estimates di�er, depending on the ordering

of the data de�ning which are the �rst K observations serving as the founders of the model. They

develop a hierarchical approach to �nd the most appropriate subset of cross-sections to be used for

identi�cation.

We will address the causes of these di�culties, analyzing the e�ect of the set of identifying con-

straints suggested by Geweke and Zhou (1996). These constraints are implemented by using truncated

prior distributions. Hence, the restrictions guarantee a unique maximum of the likelihood underlying

the posterior distribution. They do not, however, guarantee the non-existence of local modes. This

has already been observed by Rubin and Thayer (1982, 1983) in the context of maximum likelihood

estimation of explanatory and con�rmatory factor models. The choice of constraints in�uences the

shape of the likelihood and thus the posterior distribution, e�ecting the behavior of the Gibbs sam-

pler. Consequently, ex-ante identi�cation in�uences the inference on the parameters of the factor

model and functions of these with respect to directed parameters, like factor loadings.

Instead of enforcing constraints on the parameter space ex-ante, leading to the aforementioned

undesirable properties, we propose to identify the parameters ex-post based on orthogonal trans-

formations of the unconstrained Gibbs sampler output. Ex-post identi�cation approaches are well

known in the econometric literature in the context of �nite mixture models. Similar to factor models,
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�nite mixture models are typically not identi�ed. Labels of the mixture components can be changed

around. Thus, given symmetric priors, the posterior distribution has multiple modes. Identi�cation

can be achieved by imposing an ordering of the labels with respect to at least one of the parameters

that are subject to label switching. However, if this identifying assumption is introduced by prior

distributions, the choice of the constraint may have a signi�cant impact on posterior estimates. Thus,

while the identifying assumption does not change the maximum posterior value, it has consequences

for the shape of the posterior. In addition, it is often observed in �nite mixture models with ex

ante identifying assumptions that posterior distributions show local modes. The occurrence of such

local modes has severe consequences for the mixing behavior of the Gibbs sampler. In general, con-

vergence cannot be guaranteed. To cure this problem, Frühwirth-Schnatter (2001, 2006) propose to

skip identifying assumptions and instead enforce relabeling within the sampler. In the context of

�nite mixtures, identi�cation is achieved by applying relabeling algorithms, see Celeux (1998) and

Stephens (2000).

A factor model without directional identi�cation can be interpreted as a continuous mixture. The

mixing takes place via orthogonal transformations, hence we call the sampler orthogonally mixing and

the corresponding output orthogonally mixed. We will use this output and adapt the remedy that is

proposed for �nite mixture models, i.e. introducing an ex-post identi�cation strategy by likewise ap-

plying orthogonal transformations. Our approach uses the orthogonal Procrustes transformation by

Schönemann (1966) to recover meaningful directed parameter estimates. The orthogonal Procrustes

transformation can deal with label and sign switching, both of which result in a �nite number of mix-

ture components, but also with rotations, which result in an in�nite number of mixture components.

We hence extend the post-screening literature with respect to the considered model classes, develop-

ing an approach for factor models, and with respect to the type of mixing, developing an approach

that goes beyond �nite mixtures. Our approach does not require any constraints for the loadings

matrix and is thus purely exploratory, with no need of theoretical reasoning before estimating the

model. Inference results obtained under di�erent orderings of the data are therefore equivalent under

an orthogonal transformation.

To illustrate the properties of ex-post identi�cation, we provide a simulation study within the

framework of a static factor model comparing ex-post identi�cation inference results with those

from the constrained sampling approach by Geweke and Zhou (1996), which provides identi�cation

through a positive lower triangular loadings matrix. We check both samplers for their convergence

properties, as well as statistical and numerical accuracy. Convergence is generally obtained faster for

the ex-post identi�cation scheme. Statistical accuracy is similar to that of the ex-ante identi�cation
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scheme for parameters invariant under orthogonal transformations and if the ex-ante scheme does

not produce pathological posterior distributions. Such pathological cases do not occur under ex-post

identi�cation. The numerical accuracy of estimates is much higher for the ex-post identi�cation

scheme.

Eventually, we analyze a data set of ten equity indices, addressing the ordering problem. While

the ordering of the data series has an e�ect on the parameter estimates for the ex-ante identi�cation

scheme, the parameter estimates from the ex-post identi�cation scheme do not depend on the ordering

of the series.

The paper proceeds as follows. Section 2 reviews the identi�cation problem for factor models and

its relation to orthogonal transformations and demonstrates why the typically used identi�cation

schemes do not succeed in preventing such orthogonal transformations. Section 3 introduces the

concept of ex-post identi�cation. Section 4 provides a simulation study that shows the improvements

for the ex-post identi�cation scheme. Section 5 provides an empirical application, and section 6

concludes.

2 Model setup and directional identi�cation

Assume a factor model of the following form

Y = FΛ′ + U, (1)

where Y = (y1, . . . , yT )′ is an T ×N matrix of observable demeaned data, F = (f1, . . . , fT )′ denotes

a T ×K matrix of K latent factors and Λ = (λ1, . . . , λN )′ represents the N ×K matrix of loadings.

U = (u1, . . . , uT )′ is a T ×N matrix of errors, where ut
i.i.d.∼ N (0,Σu). The corresponding likelihood

is given as

f(Y |F,Λ,Σu) =
T∏
t=1

|Σu|−.5(2π)−.5N exp{−.5(yt − ftΛ′)′Σ−1
u (yt − ftΛ′)}. (2)

Introducing priors for Λ and Σu as

π(Λ) =

N∏
i=1

(2π)−.5K exp{−.5λ′iI−1
K λi}, (3)

π(Σu) = 2−
mN
2

1

ΓN (m2 )
|S0|

m
2 |Σu|−

m+N+1
2 exp

{
−1

2
tr(S0Σ−1

u )

}
, (4)
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or, if Σu = diag(σ2
1, . . . , σ

2
n),

π(Σu) =
N∏
i=1

αβ0i0i

Γ(α0i)
σ
−2(α0i+1)
i exp

{
−β0i

σ2
ui

}
, (5)

and assuming that ft is a priori normally distributed with mean zero and covariance IK , i.e.

π(F ) =

T∏
t=1

(2π)−.5K exp{−.5ftI−1
K f ′t}, (6)

allows to derive the marginalized likelihood as

f(Y |Λ,Σu) =
T∏
t=1

|(Σu + ΛΛ′)|−.5(2π)−.5N exp{−.5y′t(Σu + ΛΛ′)−1yt}. (7)

As the likelihood as well as the priors are invariant under orthogonal transformations, the pos-

terior distribution under investigation requires identifying assumptions to allow for a meaningful

Bayesian analysis. Orthogonal transformations include rotations, re�ections and permutations of the

K-dimensional factors ft and loadings λi and are represented by matrices D having the property

DD′ = D′D = IK . (8)

Without further identifying assumptions, iterative sampling from the full conditional distributions

derived from the above setup, see Appendix A for details, would result in parameter trajectories

subject to element-wise orthogonal transformations, thus allowing for no meaningful inference with

respect to the directed parameters and variables, i.e. the factors and factor loadings.

To ensure identi�cation, Geweke and Zhou (1996) propose to constrain the parameter space of

the loadings to a positive lower triangular (PLT ) matrix, i.e.

Λ =


λ11 λ12 . . . λ1N

0 λ22 λ23 . . . λ2N

...
. . .

. . .
...

0 . . . 0 λKK . . . λKN



′

, with λii > 0, i = 1, . . . ,K. (9)

Imposing this PLT constraint on the loadings matrix guarantees that no point in the parameter

space that satis�es the constraint can undergo an orthogonal transformation other than the identity
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and still satisfy the constraint. The zero restrictions rule out rotation and label switching, and

the positivity constraints rule out sign switching. Since the PLT constraint is conditional on the

ordering of the data, there are N !/(N −K)! di�erent possibilities at hand to achieve identi�cation.

We denote an identi�cation approach relying on a data ordering O1 as PLT |O1 identi�cation scheme.

Considering that for each loadings matrix Λ there exists a unique orthogonal matrix DΛ such that

ΛDΛ satis�es constraints of the PLT form, see e.g. Muirhead (1982), the following transformation

allows for mapping of the parameter space under one PLT identi�cation scheme PLT |O1 into that

under a di�erent one PLT |O2, i.e.

PLT |O1 → PLT |O2 = {DΛO1
: ΛO1DΛO1

∈ PLT |O2} for all ΛO1 ∈ PLT |O1 (10)

The transformation in equation (10) involves an in�nite number of orthogonal matrices DΛ.
1 To ob-

tain the same posterior distribution up to an orientation, however, the transformation should be done

by a single orthogonal matrix for all points. Further, the position of the constraints of PLT |O2 to-

wards the posterior distribution obtained under PLT |O1 determines which set of orthogonal matrices

transforms how much probability mass.2

As pointed out by Lopes and West (2004) and Carvalho et al. (2008), inference results depend

on the data ordering and thus on the selected PLT scheme. Consider reordering a sample initially

following ordering O1 in such a way that it satis�es ordering O2 afterwards. Using the aforementioned

transformation, it is now possible to map each point obtained from the Gibbs sampler under PLT |O1

into a point that could have been obtained under PLT |O2, i.e.

{
Λ̃

(s)
O2

}S
s=1

=
{

Λ̃
(s)
O1
D

(s)
ΛO1

}S
s=1

. (11)

Note, however, that this mapping rule has a mixing e�ect. The resulting mixtures in such cases display

features like multimodality and non-ellipticity complicating inference as noted e.g. by Ardia and

Hoogerheide (2010). Thus identi�cation via introduction of PLT constraints may have undesirable

consequences for the shape of the posterior distribution, which causes numerical problems for the

Gibbs sampler and complicates the interpretation and inference derived from the Gibbs output.

Appendix B discusses a numerical example for the behavior of the unconstrained Gibbs sampler

1All points satisfying both sets of constraints are transformed by the identity matrix, whereas all points with
identical row vectors for the founders under the second set of constraints are transformed by the same orthogonal
matrix.

2Moreover, for a comprehensive analysis of the e�ect of such transformations on the probability space, each of the
possible N !/(N −K)! orderings should be considered.

5



and the Gibbs sampler under PLT constraints. We simulate a data set for a model withK = 2 factors

and N = 10 cross-sections, of which the �rst �ve are arranged in three di�erent orderings, while the

remaining �ve stay identical. The data are analyzed by means of the unconstrained Gibbs sampler

and the PLT constrained Gibbs sampler. The �rst row of �gure 1 shows the unconstrained output

as Gibbs sequences and bivariate contour plots for cross section eight under the three orderings, the

second row shows the according PLT constrained output. In both cases, 20,000 draws have been

discarded as burn-in, another 20,000 have been kept. The unconstrained Gibbs sampler output is

un�t for inference under all three orderings. The PLT constrained sampler, on the other hand, looks

suitable for inference under the third ordering, but displays non-ellipticity under the second, and

non-ellipticity and multimodality under the �rst ordering.

3 An ex-post identi�cation scheme

In the following we propose an ex-post identi�cation scheme for Bayesian analysis of factor models.

Ex-post identi�cation approaches are well known to the Bayesian literature, especially in the context

of �nite mixture models (Frühwirth-Schnatter, 2001, 2006). In this context they are used when label

switching (Redner and Walker, 1984) occurs in the output of an unconstrained sampler. Richardson

and Green (1997) advise to use di�erent identi�ability constraints when postprocessing the MCMC

output. For �nite mixtures Stephens (2000) and Frühwirth-Schnatter (2001) propose the use of

relabeling algorithms that screen the output of the unconstrained sampler and sort the labels to

minimize some divergence measures, e.g. Kullback-Leibler distances. The main idea behind the

relabeling approach in �nite mixtures is that the output of the unconstrained sampler in fact stems

from a mixture distribution. The mixing is discrete and occurs via permutations of the labels. The

relabeling algorithm reverses the transformation and thus the mixing.

The unconstrained Gibbs sampler for the factor model generates an orthogonally mixed sample,

i.e. under the absence of parameter constraints, the obtained draws lack orientation and thus do

not allow for meaningful inference via the calculation of arithmetic means. We suggest to apply an

analogy to the �nite mixture literature discussed above in order to solve the directional identi�cation

problem. However, since orthogonal mixing does not only involve relabeling but also re�ections

and rotations, existing relabeling algorithms do not apply here. Instead we propose the use of the

orthogonal Procrustes (OP ) transformation as devised by Schönemann (1966) to recover unique

posterior estimates from the orthogonally mixed sample. The ex-post identi�cation is achieved via

post-screening the unconstrained Gibbs sampling output. To achieve identi�cation, the following
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criterion is considered

Q =
N∑
i=1

(λ̃i(D)− λ∗i )′(λ̃i(D)− λ∗i ) = tr
[
(Λ̃(D)− Λ∗)(Λ̃(D)− Λ∗)′

]
, (12)

where Λ∗ = (λ∗1, . . . , λ
∗
N )′ denotes a chosen �xed point and Λ̃(D) = (λ̃1(D), . . . , λ̃N (D))′ denotes a

draw from the unconstrained distribution conditional on an unknown orthogonal transformation D.

The relabeling is then concerned with determining a set of orthogonal matrices and a �xed point, i.e.

{{D(r)}Rr=1,Λ
∗} = arg min

R∑
r=1

tr
[
(Λ̃(r)(D(r))− Λ∗)(Λ̃(r)(D(r))− Λ∗)′

]
. (13)

The minimization is achieved iteratively via a two-step optimization, based on an initial choice of Λ∗.

Note that the result is identi�ed up to an orthogonal transformation, since the right side of equation

(13) yields the same result if {D(r)}Rr=1 and Λ∗ are all orthogonally transformed by the same matrix.

Hence the initial choice of Λ∗ e�ects the orientation of the eventual Λ∗. Apart from this e�ect on the

orientation of the result, we �nd robustness of the algorithm with respect to the initial choice of Λ∗,

as long as it stems from the orthogonally mixing posterior distribution. For convenience, we choose

the last draw from the unconstrained sampler.

Step 1 Operationalizing Λ̃(r)(D(r)) as Λ̃(r)D(r) yields the following minimization problem for D(r),

i.e.

D(r) = arg min tr
[
(Λ̃(r)D(r) − Λ∗)(Λ̃(r)D(r) − Λ∗)′

]
subject to D(r)′D(r) = I. (14)

The solution of this orthogonal Procrustes (OP ) problem is provided by Schönemann (1966).

It involves the following calculations

1.1 De�ne Sr = Λ̃(r)′Λ∗.

1.2 Do the eigenvalue decomposition S′rSr = V1,rMrV
′

1,r.

1.3 Do the eigenvalue decomposition SrS
′
r = V2,rMrV

′
2,r.

1.4 Find the unique re�ection matrix Rr for which ((RrV2,r)
′SrV1,r)ii ≥ 0 for all i = 1, . . . ,K.

1.5 Obtain the orthogonal transformation matrix D(r) = (RrV2,r)V
′

1,r.

1.6 Transform the observed matrix and obtain Λ̃(r) = Λ̃(r)D(r).

For further details on the derivation of this solution, see Appendix C. Note that if the dispersion
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between the cross sections is rather large, the solutions may be improved via consideration of

weights. Thus Step 1.1 above is altered into

1.1a De�ne Sr = Λ̃(r)′WΛ∗,

where the weights matrix has to be diagonal. We initialize the weights as the inverses of the

estimated lengths of the loadings vectors, i.e.

wii = R

(
R∑
r=1

√
λ̃

(r)′
i λ̃

(r)
i

)−1

, i = 1, . . . , N. (15)

Consecutively, we use as weights a function of the number of factors and the determinants of the

estimated covariance matrices, which are a measure invariant to orthogonal transformations,

i.e.

wii = det

(
1

R

R∑
r=1

(λ̃
(r)
i − λ

∗
i )(λ̃

(r)
i − λ

∗
i )
′

)− 1
K

, i = 1, . . . , N. (16)

This procedure will be called Weighted Orthogonal Procrustes (WOP ) transformation in the

following.

Step 2 Choose Λ∗ as

λ∗i =
1

R

R∑
r=1

λ̃
(r)
i D(r), i = 1, . . . , N. (17)

Step 1 thus minimizes the (weighted) distance between the transformed observations and the current

Λ∗. Hence the best choice for Λ∗ would be the mean of the oriented sample we aim to restore.

Of course, this mean is unobservable. Still, the mean of an approximation to the oriented sample,

obtained in step 1, is a better choice for Λ∗ than the initial arbitrary draw. Therefore we update Λ∗

to this value. With a better approximation to the mean, conversely, we are able to obtain a better

approximation to the oriented sample. For arbitrary initial choices of Λ∗ taken from the orthogonally

mixing sample, �ve iterations usually su�ce to achieve convergence to a �xed point Λ∗, which is also

the posterior mean of Λ. The sequence of factor matrices is accordingly transformed. To obtain

a well-interpretable result, the user is free to apply an orthogonal transformation to the resulting

ex-post identi�ed posterior afterwards.

Note that for this procedure to work, the {Λ̃(r)Λ̃(r)′}Rr=1 must have converged to a stationary
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distribution and the sampler must be well-mixing for {Λ̃(r)Λ̃(r)′}Rr=1 to ensure that the moments can

be recovered properly. It does not matter, however, how the orthogonal transformation matrices

are distributed, as long as they are all orthogonal. Mixing can be sped up by occasionally adding

random orthogonal transformation steps. Appendix D gives a simulation experiment for the removal

of orthogonal mixing via theWOP approach. We apply theWOP on the output of the unconstrained

sampler shown in the �rst row of �gure 1 and obtain the output shown in the third row. Note that the

orientation of the posterior distributions under WOP is arbitrary and hence a common orientation

has been identi�ed, treating the posterior means obtained under all three orderings as an orthogonally

mixed sample.

4 Simulation study

In this section, we perform a simulation study to assess the properties of our proposed WOP ex-post

identi�cation approach. As a benchmark we also apply the PLT ex-ante identi�cation approach.

We will analyze 27 di�erent model setups, which all have some features in common. First, for every

cross section, at least 20% of the variation is explained by the factors. Allowing for data series whose

variation cannot be explained by any of the factors potentially complicates the estimation of the

factors, see Boivin and Ng (2006). Second, the explanatory power of the founders of Carvalho et al.

(2008), i.e. the loadings that are used to identify the model in the PLT approach, is exactly the

average of all variables loading on the same factor. This implies that the identi�cation constraints

are not extraordinarily well, but also not extraordinarily badly chosen. Third, the parameters always

satisfy the conditions of the PLT constraints, i.e. the loadings matrices used in the simulation

are all positive lower triangular. We choose this property to allow for direct comparison of the

results under PLT with the simulated parameters without further transformations. The WOP

identi�cation scheme, on the other hand, by de�nition will not provide a result that satis�es these

constraints. To reach comparable results, the resulting �nal distribution under theWOP scheme will

be transformed with respect to the simulated parameters. The transformation matrix is obtained by

mapping the mean of the posterior distribution onto the simulated parameters via OP .3 Afterwards

all sampled points of the posterior distribution under the WOP scheme are transformed by the

resulting transformation matrix. To get a fair comparison with the PLT scheme we do the same

with the PLT samples, too, and refer to them as transformed PLT . Note that in exploratory

3Note that Doz et al. (2011) choose a similar approach to compare their factor estimates with the simulated factors,
however, they use an OLS regression to determine the required transformation matrix, resulting in an approximately
orthogonal matrix, while OP provides an exactly orthogonal matrix.
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factor analysis, it is common to perform an orthogonal transformation of the estimates. Thus, the

orthogonal transformation that maps the posterior distributions onto the simulated parameters is

needed to reach sensible results if we like to analyze distributions of directional parameters like

loadings or factors.

We consider data sets with short (T = 30), medium (T = 60), and long (T = 150) factors and

with N = 10, N = 40, and N = 100 cross-sections. Each of these setups is estimated for models

with K = 2, K = 3 and K = 4 factors. The parameters are summarized in Θ = (Λ,Σu, F ) with

Σu assumed diagonal. The factor loadings are simulated according to the aforementioned conditions.

We investigate the corresponding 27 di�erent scenarios. In all cases, the number of factors is assumed

to be known. We use inverse Gamma priors for the variances with α0i = β0i = 1 for all i = 1, . . . , N .

The length of the burn-in may vary, depending on the model size and the sampler we use. We set

the initial burn-in to 1,000 draws. During this period, the PLT approach is allowed to jointly �ip

around the signs of each pair of factors and loadings vectors if the full conditional density for one

or multiple loadings vectors indicates signi�cantly negative loadings where the constraints require

positive ones. This will help the constrained sampler in the case of inconveniently chosen starting

values. Beyond this initial burn-in phase of 1,000 draws, we will determine the required length of

the burn-in, monitoring convergence via the statistics provided in Geweke (1991) for the invariant

parameters. This procedure ensures that we actually obtain a sample from the posterior distribution.

For the post-screening via the WOP scheme, we perform �ve iterations to reach convergence. We

�nd that PLT generally requires substantially more iterations to converge than the unconstrained

sampler. Especially in setups with more than two factors, we often require a burn-in sequence three

to �ve times longer than for WOP .

Due to scaling problems occurring in large N small T settings, the RMSE does not re�ect the

performance of the samplers accurately with respect to the factors and loadings. We thus consider

a scaling-invariant measure, the correlations between the (OP transformed) mean of the posterior

distributions and the simulated parameters. The correlation results are given in tables 1 and 2.

Correlations between posterior means and true values under the WOP scheme are at least slightly

higher than under the PLT scheme, if transformed PLT results are considered for factors and

loadings. The improvement by the WOP scheme is more pronounced in models with more than two

factors. The WOP scheme provides at least as good results as the PLT scheme for all model setups.

The RMSEs for the covariance parameters, which are invariant to orthogonal transformations and

not a�ected by scaling issues, are given in table 3 and are almost identical for PLT andWOP . Since
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directional identi�cation is not required to estimate the covariance parameters, this comparison is in

fact one between PLT and the unconstrained sampler.

Table 4 gives a measure of the correlation between the factors and loadings. We evaluate the

estimates for the (undirected) systematic part of the data FΛ′, which can be obtained without

directional identi�cation, and the directed estimates of the factors F and loadings Λ. Out of these

estimates, we calculate a divergence measure given as√√√√ N∑
i=1

T∑
t=1

(
1

R

R∑
r=1

(
f̃

(r)
t λ̃

(r)
i

)
−

(
1

R

R∑
r=1

f̃
(r)
t

)(
1

R

R∑
r=1

λ̃
(r)
i

))2

. (18)

We �nd that divergence between the undirected and directed estimates for the factors and loadings is

substantially larger for PLT than forWOP , indicating that the posterior distributions of the factors

and loadings are non-elliptical and possibly multimodal. Eventually, we look at the 85% coverage

intervals, see e.g. Ho� (2009), of the systematic part of the data FΛ′ and the covariances and �nd

that for both measures, the simulated values are in fact covered in 85% of the cases, indicating that

identi�cation has little impact on the variance decomposition.

In the next step, we assess the numerical properties of the posterior sampler by means of Monte

Carlo errors. For parameters invariant to orthogonal transformations, di�erences between both ap-

proaches are not very pronounced (see tables 6 and 7). In some setups, the unconstrained sampler

provides slightly better results. However, for parameters that depend on directional identi�cation

the numerical standard errors of the WOP approach are much smaller (see tables 8 and 9).

Hence, the ex-ante identi�cation has almost no impact on the inference of parameters invariant

to orthogonal transformations. Modest improvements can be obtained by skipping ex-ante identi�-

cation and applying the unconstrained sampler. If inference on parameters that require directional

identi�cation is concerned, the WOP approach provides better results. Correlations between true

and estimated factors and loadings are generally moderately, for some setups substantially higher.

The numerical accuracy of the estimates can be improved by WOP compared to PLT .

One source for the poorer performance of the PLT approach lies in the shapes of the posterior

distributions that are implied by the ex-ante constraints. As discussed before, PLT may generate

non-elliptical posterior distributions or even posterior distributions with multiple modes. Such dis-

tributions are much harder to handle with the Gibbs sampler. Convergence of the Gibbs sampler

can be very poor under such circumstances (Woodard, 2011). Such convergence problems can be

eliminated by the use of the unconstrained sampler and the ex-post identi�cation scheme WOP .

11



5 Empirical example

We analyze a data set of growth rates on 10 equity indices over a period from 1973Q3 until 2011Q3,

obtained from DataStream R©. The industries considered are oil and gas (OILGS), basic materials

(BMATR), industrial goods (INDUS), consumer goods (CNSMG), health care (HLTHC), consumer

services (CNSMS), telecommunications (TELCM), utilities (UTILS), �nancial services (FINAN) and

technology (TECNO). Based on a preliminary analysis based on the information criteria of Bai and

Ng (2002) we estimate factor models with two factors.

Recall that the PLT approach allows for N !/(N −K)! di�erent choices for the founders of the

model. For a large number of cross-sections, possibly in combination with many factors, this quickly

becomes infeasible, as has been noted by Carvalho (2006) and Carvalho et al. (2008). In our setup

with ten series and two factors, there are 90 di�erent orderings that we can compare to analyze the

ordering e�ect on the constrained sampler. We start by putting the �rst series in the �rst position,

alternating between the second to tenth series for the second position. Next, we put the second series

in the �rst position and alternate between the remaining ones, and so forth. If the ordering of the

data had no e�ect on the estimates, it should be possible to orthogonally transform the estimated

factors and loadings vectors per cross-section obtained under di�erent orderings into each other.

To get rid of the orthogonal variation in the estimates across the orderings, we treat both sets of

the 90 posterior means of the loadings as orthogonally mixed samples. Afterwards, they are both

transformed by OP such that their means satisfy the PLT constraints. The top two plots of �gure

2 show the accordingly transformed factors for PLT for all 90 orderings of the data. Both factors

look quite similar, with a moderate degree of dispersion. The bottom two plots, on the other hand,

display a much smaller degree of variation across the 90 orderings of the data. The absence of

identi�cation constraints helps to obtain results that do not depend on the ordering of the series.

Likewise, the variation in the estimated loadings over the di�erent orderings, which is shown in

table 10, is much larger for the PLT estimates than for the WOP estimates, despite the means

being similar. Eventually, we will look at the idiosyncratic covariance parameters. The estimates are

shown in table 11. There is no signi�cant di�erence between any parameters for PLT and WOP , so

the estimated idiosyncratic part of the model does not di�er under both estimation schemes.

The empirical example underlines that both PLT and the unconstrained sampler provide similar

results as long as directional invariant parameters are concerned. However, PLT has the disadvantage

that results vary with the ordering of the data, while WOP provides results that do not depend on

the ordering of the data.

12



6 Conclusion

In Bayesian estimation of factor models, constraints on the parameter space ensuring identi�ability of

factors and loadings can be troublesome. The PLT identi�cation scheme results in posterior densities

which may be non-elliptical or may even have multiple local modes. In any case, the shape of the

posterior density depends on the ordering of the data. This characteristic of the PLT constrained

posterior densities, re�ected in the output of the constrained Gibbs sampler, make the use of an

ex-post identi�cation scheme attractive.

We suggest to refrain from ex-ante identi�cation and instead use the output of the unconstrained

sampler, which, we argue, stems from an orthogonally mixing distribution. It is possible to remove the

mixing from the unconstrained Gibbs output, using the orthogonal Procrustes transformation devised

by Schönemann (1966), which we extend by a weighting component. We �nd that the resulting

Bayes estimates yield numerically superior and, in terms of statistical accuracy, competitive results,

compared to the PLT approach. In those cases where using the constrained sampler results in non-

well-behaved posterior densities, whose means may be no viable estimators, theWOP approach does

not experience any problems. Results obtained under di�erent WOP schemes can be orthogonally

transformed into each other and into economically interpretable results. Note that the approach may

also be suited for identi�cation of dynamic factor models. However, a detailed discussion of this issue

is beyond the scope of this paper.

Estimating a two-factor model for a data set of ten equity indices, we con�rm that the PLT

identi�cation scheme is sensitive to ordering. Our ex-post identi�cation approach based on the

weighted orthogonal Procrustes, on the other hand, yields very similar results under all possible

di�erent orderings. Thus it seems recommendable to use the ex-post identi�cation procedure to

avoid problems with the posterior distributions and thus the estimates derived therefrom, obtaining

identical parameter estimates, independent of the ordering of the data series.
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PLT WOP

N T K min lq med uq max min lq med uq max

10 30 2 0.0717 0.1044 0.1762 0.2094 0.2525 0.0716 0.1049 0.1759 0.1972 0.2488
10 30 3 0.1023 0.1459 0.1528 0.1749 0.2513 0.1024 0.1483 0.1530 0.1745 0.2547
10 30 4 0.0954 0.1399 0.1699 0.1994 0.2797 0.1001 0.1300 0.1617 0.2058 0.2753
10 60 2 0.0603 0.0892 0.1178 0.1438 0.1719 0.0607 0.0891 0.1162 0.1415 0.1737
10 60 3 0.0809 0.0929 0.1142 0.1344 0.1716 0.0824 0.0921 0.1146 0.1322 0.1928
10 60 4 0.0752 0.1145 0.1228 0.1645 0.2725 0.0760 0.1139 0.1217 0.1620 0.2699
10 150 2 0.0285 0.0458 0.0728 0.0893 0.1111 0.0286 0.0458 0.0727 0.0874 0.1115
10 150 3 0.0517 0.0596 0.0704 0.0795 0.1085 0.0528 0.0600 0.0710 0.0801 0.1257
10 150 4 0.0618 0.0783 0.0839 0.1088 0.1592 0.0628 0.0765 0.0891 0.1073 0.1535
40 30 2 0.0824 0.1423 0.1754 0.2071 0.2580 0.0832 0.1422 0.1750 0.2065 0.2575
40 30 3 0.0823 0.1175 0.1472 0.1837 0.2628 0.0821 0.1172 0.1481 0.1842 0.2636
40 30 4 0.0784 0.1107 0.1402 0.1738 0.2537 0.0780 0.1107 0.1392 0.1738 0.2397
40 60 2 0.0600 0.1050 0.1244 0.1361 0.1794 0.0604 0.1051 0.1231 0.1335 0.1786
40 60 3 0.0397 0.0736 0.1042 0.1204 0.1785 0.0399 0.0736 0.1024 0.1207 0.1772
40 60 4 0.0439 0.0763 0.0932 0.1172 0.1925 0.0441 0.0762 0.0933 0.1172 0.1642
40 150 2 0.0360 0.0635 0.0806 0.0901 0.1052 0.0361 0.0637 0.0805 0.0901 0.1054
40 150 3 0.0294 0.0456 0.0614 0.0731 0.1126 0.0292 0.0457 0.0606 0.0731 0.1008
40 150 4 0.0307 0.0431 0.0529 0.0654 0.1029 0.0306 0.0430 0.0531 0.0655 0.1035
100 30 2 0.0534 0.1232 0.1588 0.1889 0.2913 0.0567 0.1237 0.1595 0.1873 0.2925
100 30 3 0.0544 0.1088 0.1421 0.1773 0.2675 0.0547 0.1087 0.1420 0.1755 0.2684
100 30 4 0.0627 0.0994 0.1281 0.1569 0.2627 0.0629 0.0999 0.1284 0.1557 0.2629
100 60 2 0.0333 0.0878 0.1137 0.1351 0.2307 0.0357 0.0875 0.1131 0.1347 0.1891
100 60 3 0.0367 0.0794 0.0973 0.1179 0.2082 0.0371 0.0795 0.0970 0.1176 0.2085
100 60 4 0.0374 0.0654 0.0871 0.1076 0.1773 0.0373 0.0653 0.0870 0.1077 0.1781
100 150 2 0.0251 0.0516 0.0659 0.0829 0.1033 0.0255 0.0518 0.0659 0.0828 0.1033
100 150 3 0.0206 0.0483 0.0620 0.0765 0.1116 0.0206 0.0484 0.0621 0.0765 0.1113
100 150 4 0.0236 0.0391 0.0530 0.0657 0.1051 0.0237 0.0392 0.0529 0.0661 0.1053

Table 3: RMSEs for the error covariance parameters. Instead of reporting all N parameters per model, we only
give the minimum (min), lower quartile (lq), median (med), upper quartile (uq) and maximum (max).
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N T K PLT WOP

10 30 2 1.7904 (2.0800) 0.3521 (0.0340)

10 30 3 6.7457 (1.7820) 0.6784 (0.1900)

10 30 4 6.8205 (1.7907) 1.0251 (0.1718)

10 60 2 0.8220 (0.7367) 0.2516 (0.0256)

10 60 3 3.9047 (3.1545) 0.4518 (0.1650)

10 60 4 6.8975 (2.0395) 0.8802 (0.2243)

10 150 2 0.3924 (0.1389) 0.1520 (0.0097)

10 150 3 1.8427 (0.8217) 0.2575 (0.0219)

10 150 4 7.1776 (3.0651) 0.6017 (0.2180)

40 30 2 3.9896 (5.6306) 0.4565 (0.0103)

40 30 3 11.5812 (4.7491) 0.7220 (0.0210)

40 30 4 16.1750 (3.7290) 1.0221 (0.0182)

40 60 2 3.0296 (5.7009) 0.4425 (0.0129)

40 60 3 9.9685 (6.8669) 0.6890 (0.0184)

40 60 4 11.9271 (7.5055) 0.9603 (0.0226)

40 150 2 0.5065 (0.2057) 0.2705 (0.0105)

40 150 3 4.8346 (5.3977) 0.4010 (0.0146)

40 150 4 4.5695 (1.5449) 0.5291 (0.0137)

100 30 2 4.9078 (5.1580) 0.3041 (0.0163)

100 30 3 11.2491 (6.6144) 0.4593 (0.0201)

100 30 4 19.4439 (5.7920) 0.6157 (0.0278)

100 60 2 7.0157 (11.7991) 0.4394 (0.0171)

100 60 3 10.1146 (8.8365) 0.6923 (0.0217)

100 60 4 21.4234 (10.3978) 0.9679 (0.0235)

100 150 2 1.2406 (0.5314) 0.4673 (0.0192)

100 150 3 4.9478 (5.0763) 0.7336 (0.0183)

100 150 4 12.2751 (5.5279) 1.0342 (0.0177)

Table 4: Divergence between the systematic part and the factors and loadings. Standard deviations in parentheses.
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PLT WOP

N T K ΣU FΛ′ ΣU FΛ′

10 30 2 0.8667 (0.1028) 0.8196 (0.0448) 0.8733 (0.0944) 0.8371 (0.0438)

10 30 3 0.8433 (0.1135) 0.8268 (0.0378) 0.8267 (0.1143) 0.8487 (0.0341)

10 30 4 0.8767 (0.1251) 0.8228 (0.0355) 0.8867 (0.1074) 0.8453 (0.0330)

10 60 2 0.8600 (0.1192) 0.8378 (0.0341) 0.8600 (0.1133) 0.8465 (0.0336)

10 60 3 0.8300 (0.1119) 0.8458 (0.0311) 0.8233 (0.1006) 0.8554 (0.0277)

10 60 4 0.8533 (0.1196) 0.8348 (0.0274) 0.8533 (0.1196) 0.8466 (0.0245)

10 150 2 0.8500 (0.1253) 0.8431 (0.0263) 0.8533 (0.1279) 0.8477 (0.0252)

10 150 3 0.8767 (0.1165) 0.8503 (0.0175) 0.8633 (0.1159) 0.8557 (0.0177)

10 150 4 0.8100 (0.1213) 0.8351 (0.0223) 0.8333 (0.1241) 0.8441 (0.0230)

40 30 2 0.8625 (0.0424) 0.8295 (0.0295) 0.8608 (0.0419) 0.8369 (0.0293)

40 30 3 0.8417 (0.0585) 0.8466 (0.0284) 0.8383 (0.0556) 0.8539 (0.0278)

40 30 4 0.8633 (0.0579) 0.8474 (0.0210) 0.8625 (0.0544) 0.8586 (0.0191)

40 60 2 0.8617 (0.0512) 0.8406 (0.0227) 0.8667 (0.0527) 0.8483 (0.0233)

40 60 3 0.8533 (0.0439) 0.8384 (0.0187) 0.8567 (0.0435) 0.8466 (0.0177)

40 60 4 0.8458 (0.0542) 0.8409 (0.0174) 0.8433 (0.0537) 0.8486 (0.0162)

40 150 2 0.8750 (0.0549) 0.8500 (0.0152) 0.8667 (0.0558) 0.8520 (0.0148)

40 150 3 0.8533 (0.0495) 0.8382 (0.0133) 0.8525 (0.0480) 0.8430 (0.0126)

40 150 4 0.8700 (0.0407) 0.8477 (0.0129) 0.8692 (0.0424) 0.8516 (0.0128)

100 30 2 0.8637 (0.0346) 0.8503 (0.0240) 0.8643 (0.0346) 0.8534 (0.0246)

100 30 3 0.8727 (0.0333) 0.8515 (0.0174) 0.8740 (0.0323) 0.8553 (0.0176)

100 30 4 0.8680 (0.0287) 0.8515 (0.0133) 0.8697 (0.0294) 0.8553 (0.0132)

100 60 2 0.8523 (0.0316) 0.8483 (0.0179) 0.8540 (0.0306) 0.8529 (0.0176)

100 60 3 0.8550 (0.0264) 0.8486 (0.0163) 0.8570 (0.0272) 0.8523 (0.0157)

100 60 4 0.8563 (0.0255) 0.8488 (0.0180) 0.8577 (0.0245) 0.8537 (0.0183)

100 150 2 0.8623 (0.0360) 0.8469 (0.0150) 0.8640 (0.0335) 0.8483 (0.0149)

100 150 3 0.8493 (0.0362) 0.8477 (0.0119) 0.8517 (0.0353) 0.8493 (0.0119)

100 150 4 0.8543 (0.0380) 0.8510 (0.0133) 0.8523 (0.0381) 0.8533 (0.0129)

Table 5: Share of parameters contained in the 85% coverage interval. Standard deviations in parentheses.
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PLT WOP

N T K min lq med uq max min lq med uq max

10 30 2 0.0019 0.0023 0.0036 0.0101 0.0369 0.0013 0.0019 0.0021 0.0039 0.0056
10 30 3 0.0030 0.0034 0.0042 0.0072 0.0155 0.0030 0.0032 0.0036 0.0043 0.0051
10 30 4 0.0025 0.0034 0.0054 0.0074 0.0158 0.0025 0.0034 0.0048 0.0058 0.0100
10 60 2 0.0010 0.0011 0.0016 0.0021 0.0024 0.0010 0.0011 0.0014 0.0019 0.0028
10 60 3 0.0016 0.0021 0.0033 0.0048 0.0223 0.0014 0.0018 0.0023 0.0031 0.0050
10 60 4 0.0014 0.0027 0.0049 0.0082 0.0235 0.0014 0.0025 0.0036 0.0048 0.0098
10 150 2 0.0007 0.0008 0.0010 0.0015 0.0041 0.0007 0.0008 0.0011 0.0014 0.0041
10 150 3 0.0013 0.0013 0.0016 0.0028 0.0061 0.0010 0.0010 0.0018 0.0030 0.0050
10 150 4 0.0013 0.0022 0.0045 0.0102 0.0142 0.0014 0.0022 0.0027 0.0073 0.0105
40 30 2 0.0010 0.0020 0.0026 0.0035 0.0712 0.0009 0.0016 0.0022 0.0024 0.0034
40 30 3 0.0009 0.0017 0.0020 0.0030 0.0536 0.0009 0.0015 0.0019 0.0024 0.0035
40 30 4 0.0009 0.0017 0.0021 0.0029 0.0198 0.0009 0.0016 0.0020 0.0025 0.0046
40 60 2 0.0010 0.0014 0.0017 0.0023 0.0426 0.0008 0.0012 0.0014 0.0018 0.0020
40 60 3 0.0007 0.0011 0.0015 0.0018 0.0383 0.0007 0.0010 0.0013 0.0015 0.0022
40 60 4 0.0009 0.0012 0.0014 0.0018 0.0130 0.0006 0.0011 0.0013 0.0016 0.0021
40 150 2 0.0006 0.0007 0.0008 0.0010 0.0013 0.0005 0.0007 0.0009 0.0010 0.0011
40 150 3 0.0004 0.0006 0.0007 0.0009 0.0017 0.0004 0.0006 0.0007 0.0009 0.0012
40 150 4 0.0005 0.0006 0.0008 0.0009 0.0021 0.0004 0.0006 0.0007 0.0009 0.0012
100 30 2 0.0007 0.0015 0.0019 0.0024 0.0331 0.0007 0.0014 0.0018 0.0022 0.0040
100 30 3 0.0009 0.0016 0.0020 0.0025 0.0252 0.0007 0.0014 0.0017 0.0022 0.0039
100 30 4 0.0005 0.0013 0.0018 0.0021 0.0167 0.0006 0.0012 0.0016 0.0021 0.0035
100 60 2 0.0006 0.0010 0.0013 0.0016 0.1129 0.0004 0.0009 0.0011 0.0014 0.0021
100 60 3 0.0005 0.0009 0.0011 0.0015 0.0485 0.0004 0.0009 0.0011 0.0013 0.0022
100 60 4 0.0004 0.0008 0.0010 0.0013 0.0573 0.0003 0.0007 0.0009 0.0013 0.0019
100 150 2 0.0003 0.0006 0.0007 0.0009 0.0016 0.0003 0.0005 0.0007 0.0009 0.0012
100 150 3 0.0003 0.0005 0.0007 0.0008 0.0019 0.0003 0.0005 0.0006 0.0008 0.0013
100 150 4 0.0002 0.0005 0.0006 0.0007 0.0059 0.0002 0.0005 0.0006 0.0007 0.0011

Table 6: Numerical standard errors for the idiosyncratic variances. Instead of reporting all N parameters per
model, we only give the minimum (min), lower quartile (lq), median (med), upper quartile (uq) and maximum
(max).
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PLT WOP

N T K min lq med uq max min lq med uq max

10 30 2 0.0023 0.0069 0.0103 0.0184 0.1811 0.0017 0.0030 0.0037 0.0048 0.0115
10 30 3 0.0033 0.0070 0.0101 0.0161 0.1201 0.0021 0.0044 0.0052 0.0063 0.0112
10 30 4 0.0035 0.0062 0.0081 0.0121 0.0399 0.0024 0.0050 0.0060 0.0077 0.0184
10 60 2 0.0014 0.0027 0.0034 0.0044 0.0206 0.0013 0.0026 0.0031 0.0038 0.0066
10 60 3 0.0021 0.0044 0.0060 0.0098 0.0721 0.0021 0.0036 0.0042 0.0051 0.0138
10 60 4 0.0026 0.0056 0.0088 0.0158 0.0648 0.0024 0.0042 0.0051 0.0067 0.0230
10 150 2 0.0009 0.0024 0.0028 0.0038 0.0153 0.0011 0.0024 0.0029 0.0035 0.0128
10 150 3 0.0020 0.0035 0.0043 0.0058 0.0229 0.0016 0.0032 0.0039 0.0047 0.0143
10 150 4 0.0022 0.0048 0.0073 0.0116 0.0432 0.0023 0.0040 0.0050 0.0072 0.0368
40 30 2 0.0011 0.0036 0.0050 0.0075 0.2929 0.0006 0.0021 0.0026 0.0032 0.0067
40 30 3 0.0014 0.0032 0.0041 0.0057 0.2192 0.0013 0.0025 0.0029 0.0035 0.0074
40 30 4 0.0019 0.0036 0.0044 0.0056 0.0954 0.0015 0.0030 0.0036 0.0044 0.0094
40 60 2 0.0012 0.0027 0.0037 0.0061 0.3544 0.0009 0.0019 0.0023 0.0026 0.0050
40 60 3 0.0013 0.0031 0.0040 0.0057 0.2187 0.0011 0.0021 0.0024 0.0029 0.0054
40 60 4 0.0017 0.0031 0.0038 0.0049 0.0961 0.0011 0.0025 0.0029 0.0033 0.0054
40 150 2 0.0008 0.0016 0.0019 0.0022 0.0326 0.0007 0.0015 0.0018 0.0021 0.0037
40 150 3 0.0009 0.0019 0.0022 0.0026 0.0580 0.0009 0.0017 0.0020 0.0023 0.0040
40 150 4 0.0011 0.0023 0.0026 0.0031 0.0691 0.0012 0.0021 0.0023 0.0026 0.0046
100 30 2 0.0006 0.0021 0.0027 0.0034 0.2647 0.0005 0.0016 0.0021 0.0027 0.0052
100 30 3 0.0007 0.0027 0.0034 0.0042 0.1325 0.0007 0.0021 0.0025 0.0031 0.0058
100 30 4 0.0011 0.0025 0.0031 0.0039 0.1838 0.0009 0.0022 0.0026 0.0033 0.0064
100 60 2 0.0004 0.0017 0.0023 0.0032 0.5552 0.0003 0.0012 0.0015 0.0019 0.0048
100 60 3 0.0010 0.0022 0.0028 0.0037 0.3094 0.0007 0.0015 0.0018 0.0022 0.0049
100 60 4 0.0008 0.0021 0.0025 0.0032 0.3579 0.0007 0.0017 0.0020 0.0024 0.0052
100 150 2 0.0004 0.0011 0.0013 0.0015 0.0565 0.0004 0.0011 0.0013 0.0015 0.0032
100 150 3 0.0005 0.0013 0.0016 0.0019 0.0805 0.0004 0.0012 0.0014 0.0017 0.0031
100 150 4 0.0007 0.0015 0.0018 0.0021 0.1221 0.0005 0.0014 0.0016 0.0019 0.0035

Table 7: Numerical standard errors for the product of factors and loadings. Instead of reporting all TN parameters
per model, we only give the minimum (min), lower quartile (lq), median (med), upper quartile (uq) and maximum
(max).
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PLT WOP

N T K min lq med uq max min lq med uq max

10 30 2 0.0061 0.0413 0.0917 0.1631 0.4039 0.0016 0.0031 0.0038 0.0049 0.0124
10 30 3 0.0091 0.0402 0.0620 0.1031 0.3038 0.0021 0.0046 0.0055 0.0066 0.0121
10 30 4 0.0108 0.0250 0.0326 0.0436 0.0794 0.0033 0.0054 0.0067 0.0090 0.0230
10 60 2 0.0011 0.0028 0.0035 0.0044 0.0171 0.0012 0.0026 0.0031 0.0039 0.0067
10 60 3 0.0068 0.0443 0.0764 0.1323 0.3798 0.0021 0.0036 0.0043 0.0053 0.0138
10 60 4 0.0103 0.0398 0.0653 0.0959 0.2798 0.0024 0.0044 0.0054 0.0072 0.0245
10 150 2 0.0010 0.0025 0.0031 0.0040 0.0166 0.0011 0.0024 0.0029 0.0035 0.0130
10 150 3 0.0024 0.0048 0.0062 0.0086 0.0229 0.0016 0.0032 0.0039 0.0047 0.0147
10 150 4 0.0033 0.0352 0.0698 0.1120 0.4182 0.0019 0.0039 0.0051 0.0076 0.0401
40 30 2 0.0010 0.0045 0.0072 0.0120 0.3279 0.0008 0.0021 0.0027 0.0033 0.0073
40 30 3 0.0184 0.0745 0.1085 0.1469 0.4012 0.0014 0.0026 0.0032 0.0038 0.0081
40 30 4 0.0123 0.0413 0.0594 0.0836 0.2189 0.0014 0.0032 0.0039 0.0048 0.0099
40 60 2 0.0012 0.0028 0.0039 0.0064 0.3636 0.0008 0.0020 0.0023 0.0027 0.0050
40 60 3 0.0046 0.0361 0.0622 0.1041 0.4426 0.0010 0.0021 0.0025 0.0030 0.0059
40 60 4 0.0025 0.0635 0.1069 0.1687 0.5094 0.0008 0.0026 0.0031 0.0035 0.0057
40 150 2 0.0008 0.0017 0.0022 0.0028 0.0232 0.0007 0.0015 0.0018 0.0021 0.0037
40 150 3 0.0009 0.0037 0.0054 0.0079 0.0443 0.0009 0.0017 0.0020 0.0023 0.0041
40 150 4 0.0016 0.0038 0.0050 0.0066 0.0894 0.0011 0.0021 0.0023 0.0026 0.0046
100 30 2 0.0013 0.0269 0.0612 0.1115 0.3320 0.0005 0.0016 0.0021 0.0027 0.0053
100 30 3 0.0010 0.0241 0.0495 0.0932 0.4309 0.0004 0.0021 0.0025 0.0031 0.0060
100 30 4 0.0067 0.0568 0.0861 0.1411 0.5027 0.0008 0.0022 0.0027 0.0034 0.0071
100 60 2 0.0005 0.0430 0.0931 0.1727 0.6783 0.0003 0.0012 0.0016 0.0020 0.0049
100 60 3 0.0058 0.0560 0.0905 0.1392 0.5380 0.0007 0.0015 0.0019 0.0023 0.0051
100 60 4 0.0116 0.0633 0.0956 0.1441 0.5691 0.0006 0.0018 0.0021 0.0026 0.0054
100 150 2 0.0004 0.0022 0.0040 0.0066 0.0450 0.0004 0.0011 0.0013 0.0015 0.0031
100 150 3 0.0009 0.0114 0.0243 0.0454 0.1913 0.0004 0.0013 0.0015 0.0017 0.0032
100 150 4 0.0035 0.0342 0.0509 0.0776 0.2902 0.0005 0.0015 0.0017 0.0020 0.0035

Table 8: Numerical standard errors for the product of factors and loadings (mean of F times mean of Λ). Instead
of reporting all TN parameters per model, we only give the minimum (min), lower quartile (lq), median (med),
upper quartile (uq) and maximum (max).
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PLT WOP

N T K min lq med uq max min lq med uq max

10 30 2 0.0418 0.0687 0.1266 0.1670 0.2508 0.0023 0.0036 0.0053 0.0094 0.0110
10 30 3 0.0254 0.0413 0.0673 0.1284 0.1424 0.0035 0.0067 0.0099 0.0119 0.0151
10 30 4 0.0138 0.0186 0.0231 0.0295 0.0553 0.0060 0.0084 0.0094 0.0112 0.0161
10 60 2 0.0013 0.0024 0.0042 0.0054 0.0088 0.0014 0.0030 0.0034 0.0061 0.0097
10 60 3 0.0335 0.0888 0.1022 0.1304 0.1694 0.0029 0.0054 0.0058 0.0069 0.0089
10 60 4 0.0151 0.0264 0.0552 0.0753 0.1169 0.0044 0.0057 0.0070 0.0095 0.0112
10 150 2 0.0008 0.0018 0.0028 0.0042 0.0047 0.0006 0.0020 0.0029 0.0041 0.0050
10 150 3 0.0014 0.0036 0.0059 0.0075 0.0096 0.0012 0.0028 0.0034 0.0035 0.0072
10 150 4 0.0019 0.0334 0.0632 0.0897 0.1018 0.0017 0.0031 0.0041 0.0068 0.0120
40 30 2 0.0018 0.0098 0.0130 0.0208 0.1463 0.0017 0.0068 0.0090 0.0144 0.0262
40 30 3 0.0452 0.1444 0.2029 0.2894 0.4837 0.0036 0.0093 0.0152 0.0190 0.0318
40 30 4 0.0259 0.0780 0.1054 0.1285 0.1870 0.0062 0.0119 0.0177 0.0208 0.0362
40 60 2 0.0030 0.0053 0.0080 0.0102 0.0667 0.0019 0.0044 0.0064 0.0085 0.0135
40 60 3 0.0414 0.0744 0.1002 0.1291 0.2485 0.0029 0.0056 0.0073 0.0106 0.0186
40 60 4 0.0085 0.0923 0.1439 0.2369 0.3367 0.0016 0.0080 0.0108 0.0131 0.0227
40 150 2 0.0015 0.0023 0.0034 0.0051 0.0103 0.0012 0.0020 0.0027 0.0041 0.0081
40 150 3 0.0019 0.0047 0.0063 0.0088 0.0139 0.0014 0.0025 0.0039 0.0054 0.0088
40 150 4 0.0025 0.0043 0.0053 0.0069 0.0101 0.0023 0.0033 0.0043 0.0056 0.0076
100 30 2 0.0231 0.1106 0.1966 0.2828 0.6475 0.0021 0.0062 0.0097 0.0132 0.0247
100 30 3 0.0064 0.1216 0.2091 0.3205 0.7269 0.0021 0.0098 0.0124 0.0180 0.0284
100 30 4 0.0226 0.1918 0.3061 0.4732 0.8942 0.0047 0.0152 0.0202 0.0253 0.0401
100 60 2 0.0320 0.1918 0.2821 0.3603 0.6203 0.0016 0.0067 0.0091 0.0118 0.0231
100 60 3 0.0526 0.1915 0.2300 0.3319 0.6053 0.0034 0.0101 0.0148 0.0192 0.0370
100 60 4 0.0353 0.1547 0.2773 0.3667 0.5878 0.0051 0.0162 0.0213 0.0275 0.0423
100 150 2 0.0022 0.0055 0.0081 0.0109 0.0282 0.0021 0.0046 0.0068 0.0094 0.0156
100 150 3 0.0056 0.0196 0.0405 0.0655 0.1084 0.0021 0.0063 0.0084 0.0111 0.0153
100 150 4 0.0105 0.0411 0.0656 0.0959 0.1667 0.0024 0.0080 0.0100 0.0133 0.0198

Table 9: Numerical standard errors for the sum of the squared loadings. Instead of reporting all N parameters
per model, we only give the minimum (min), lower quartile (lq), median (med), upper quartile (uq) and maximum
(max).
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PLT WOP

λ1 λ2 λ1 λ2
OILGS 0.7797 0.0000 0.7814 0.0000

(0.0946) (0.0886) (0.0350) (0.0315)

BMATR 0.6899 0.5076 0.6965 0.5151
(0.0246) (0.0201) (0.0147) (0.0133)

INDUS 0.7406 0.5735 0.7525 0.5777
(0.0233) (0.0196) (0.0130) (0.0117)

CNSMG 0.5473 0.6572 0.5532 0.6679
(0.0197) (0.0212) (0.0056) (0.0060)

HLTHC 0.4571 0.6603 0.4662 0.6665
(0.0289) (0.0293) (0.0157) (0.0146)

CNSMS 0.5506 0.8030 0.5580 0.8135
(0.0326) (0.0358) (0.0068) (0.0081)

TELCM 0.3868 0.5411 0.4025 0.5377
(0.0251) (0.0244) (0.0190) (0.0171)

UTILS 0.5777 0.3082 0.6044 0.2899
(0.0469) (0.0498) (0.0242) (0.0209)

FINAN 0.6155 0.6145 0.6332 0.6129
(0.0157) (0.0178) (0.0133) (0.0116)

TECNO 0.5219 0.5490 0.5291 0.5566
(0.0232) (0.0233) (0.0156) (0.0145)

Table 10: Estimated factor loadings parameters for equity indices. Standard deviations over the 90 di�erent
orderings in parentheses. Results have been rotated such that their mean takes the positive lower triangular
shape.
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PLT WOP

OILGS 0.3577 0.3929
(0.0439) (0.0382)

BMATR 0.2710 0.2739
(0.0045) (0.0036)

INDUS 0.1280 0.1284
(0.0042) (0.0034)

CNSMG 0.2747 0.2754
(0.0012) (0.0009)

HLTHC 0.3602 0.3573
(0.0038) (0.0033)

CNSMS 0.0561 0.0605
(0.0044) (0.0044)

TELCM 0.5643 0.5616
(0.0048) (0.0045)

UTILS 0.5603 0.5470
(0.0294) (0.0268)

FINAN 0.2497 0.2431
(0.0080) (0.0082)

TECNO 0.4293 0.4260
(0.0043) (0.0041)

Table 11: Estimated idiosyncratic variance parameters for equity indices. Standard deviations over the 90 di�erent
orderings in parentheses.
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Figure 2: Estimated factors from equity indices. Factors in the �rst row are PLT results, factors in the second
row are WOP results.
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A The unconstrained Gibbs sampler

For the model described in Equation (1) and prior distributions given in Equations (3) to (6) the

unconstrained sampling is achieved via iterative sampling from the following full conditional distri-

butions, given as

f(F |Λ,Σu, Y ) =
T∏
t=1

(2π)−
k
2 |Ωft |−

1
2 exp

{
−1

2
(ft − µft)′Ω−1

ft
(ft − µft)

}
, (19)

where Ωft = (Λ′Σ−1
u Λ + I)−1 and µft = Ωft(Λ

′Σ−1
u yt). Throughout this paper, we will assume

diagonality for Σu resulting in

f(Σu|F,Λ, Y ) =
N∏
i=1

βαi
i

Γ(αi)

(
1

σ2
i

)αi−1

exp{− 1

σ2
i

βi}, (20)

where αi = 1
2T + α0j and βi = 1

2 +
∑T

t=1(yit − λ′ift)2 + β0i for all i = 1, . . . , N and α0i = β0i = 1

for all i = 1 . . . , N . The form of the full conditional distribution for Λ depends on the assumptions

concerning Σu. Since Σu = diag(σ2
1, . . . , σ

2
n), then the full conditional distribution can be factorized

along dimension N yielding

f(Λ|F, Y,Σu) =
N∏
i=1

(2π)−
K
2 |Ωλi |

− 1
2 exp

{
−1

2
(λi − µλi)

′Ω−1
_i (λi − µλi)

}
, (21)

where Ωλi = ( 1
σ2
i
ftf
′
t + I)−1 and µλi = Ωλi(

1
σ2
i

∑T
t=1 yitft). In case Σu is not diagonal, factorization

along the N dimension does not work.

B Numerical illustration for non-ellipticity and multimodality

For illustration purposes, we will consider a data set Y withN = 10 cross-sections and time dimension

T = 60, which is driven by K = 2 static factors. This data set is simulated using as parameters

Λ =

 0.100 −0.200 0.500 0.600 0.100 0.174 −0.153 −0.470 0.186 −0.577

0.000 0.200 −0.100 0.400 −0.900 0.429 −0.392 0.652 0.282 −0.541

′
(22)
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and

ΣU = diag(0.990, 0.920, 0.740, 0.480, 0.180, 0.786, 0.823, 0.354, 0.886, 0.374). (23)

We will consider three di�erent orderings of the data. The �rst is the above ordering, denoted

Y |O1, the second orders the series as 2,3,1,4,5,6,7,8,9,10, denoted Y |O2, and the third uses the

ordering 5,2,1,3,4,6,7,8,9,10, denoted Y |O3.

If normal priors are assumed for the loadings and the factors, the posterior distribution has a

continuum of maxima that are all orthogonal transformations of each other. The �rst row of �gure

1 shows the Gibbs output from an unconstrained sampler as it is denoted in Appendix A for the

loadings of cross-section eight for Y |O1, Y |O2 and Y |O3. Since orthogonal transformations between

the Gibbs sweeps are not ruled out, the sampler moves along the circle in all three cases.

The following example will illustrate the reasons for non-ellipticity and multimodality, using the

three orderings of the simulated data set. Consider the �rst ordering of the data Y |O1, such that

Y |O1 = F |O1Λ′|O1 + U |O1 with U |O1 = (u1|O1, . . . , uT |O1)′ and ut|O1 ∼ N (0,Σu|O1).

(24)

We can use a permutation matrix P1,2 to rearrange the cross-sections and obtain the second

ordering of the data Y |O2, i.e.

Y |O2 = Y |O1P1,2 with P1,2 =


0 0 1 0(1×7)

1 0 0 0(1×7)

0 1 0 0(1×7)

0(7×1) 0(7×1) 0(7×1) I7

 . (25)

Consequently, we obtain

Y |O2 = F |O2Λ′|O2 + U |O2

= F |O1DP ′1,2Λ|O1
D′P ′1,2Λ|O1

Λ′|O1P1,2 + U |O1P1,2, (26)

where DP ′1,2Λ|O1
is the orthogonal matrix that maps P ′1,2Λ|O1 in such a way that it satis�es the PLT
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constraints. This implies that

Λ|O2 = P ′1,2Λ|O1DP ′1,2Λ|O1
(27)

and

Σu|O2 = P ′1,2Σu|O1P1,2. (28)

Now consider one point from the posterior density of Λ|O1. Take for example the loadings ma-

trix derived from the principal components solution to the factor model for Y |O1, which is then

transformed to satisfy the PLT constraints, i.e.

Λ∗|O1 =

 0.411 −0.333 0.319 −0.249 0.827 −0.435 0.537 −0.807 −0.179 0.327

0.000 0.419 −0.720 −0.716 −0.027 −0.252 0.364 0.378 −0.360 0.656

′ .
(29)

This point can be transformed, using P1,2 and DP ′1,2Λ∗|O1
=

−0.6227 −0.7824

0.7824 −0.6227

, which is a rota-

tion matrix with angle γ = 0.714π, to obtain

P ′1,2Λ∗|O1DP ′1,2Λ∗|O1

=

 0.536 −0.762 0.256 −0.405 −0.536 0.074 −0.050 0.799 −0.171 0.309

0.000 0.199 −0.321 0.640 0.631 0.497 −0.647 0.396 0.364 −0.664

′ ,
(30)

which is the same as Λ∗|O2, i.e. the loadings matrix from the principal components solution for Y |O2,

transformed to satisfy the PLT constraints. Accordingly, the estimate for the covariance matrix for

Y |O1,

Σ∗u|O1 = diag(0.831, 0.713, 0.380, 0.426, 0.315, 0.747, 0.579, 0.205, 0.838, 0.463), (31)

can be transformed to

P ′1,2Σ∗u|O1P1,2 = diag(0.713, 0.380, 0.831, 0.426, 0.315, 0.748, 0.579, 0.205, 0.838, 0.463),

(32)
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which is the same as Σ∗u|O2.

Next, consider another point from the posterior density of Λ|O1 in the vicinity of Λ∗|O1, say

Λ†|O1 =

 0.411 −0.333 0.319 −0.249 0.828 −0.435 0.537 −0.807 −0.179 0.327

0.000 0.319 −0.720 −0.716 −0.027 −0.252 0.364 0.378 −0.360 0.656

′ .
(33)

We apply the same permutation and rotation matrices P1,2 and DP ′1,2Λ∗|O1
, and obtain

P ′1,2Λ†|O1DP ′1,2Λ∗|O1

=

 0.457 −0.762 0.256 −0.405 −0.536 0.074 −0.050 0.799 −0.171 0.309

0.062 0.199 −0.321 0.640 −0.631 0.497 −0.647 0.396 0.364 −0.664

′ ,
(34)

which does not satisfy the PLT constraints. If we do not chose the rotation matrix DP ′1,2Λ∗|O1
, but the

rotation matrix DP ′1,2Λ†|O1
=

−0.7225 −0.6914

0.6914 −0.7225

, representing a rotation by an angle γ = 0.757π,

we obtain

P ′1,2Λ†|O1DP ′1,2Λ†|O1

=

 0.461 −0.728 −0.297 −0.315 −0.616 0.140 −0.137 0.845 −0.120 0.217

0.000 0.300 −0.284 0.689 −0.553 0.483 −0.634 0.285 0.384 −0.700

′ .
(35)

Thus the matrix DP ′1,2Λ∗|O1
cannot be applied to validly transform all points of the posterior density

for Λ|O1 into points of the posterior density for Λ|O2. Conversely, there exist points in the posterior

density of Λ|O2 that can only be reached if a di�erent rotation, namely DP ′1,2Λ†|O1
, is applied.

Λ∗|O1,Σ
∗
u|O1 Λ∗|O2,Σ

∗
u|O2 Λ∗|O3,Σ

∗
u|O3

initial value -755.9969 -755.9969 -755.9969

left rotation by γ = − 1
5π -757.5443 -761.1392 -761.4656

right rotation by γ = 1
5π -757.6931 -758.5168 -763.0706

Table 12: Log likelihood values for rotations of the PCA estimates.
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Next, we will consider the principal components estimates for all three orderings Y |O1, Y |O2

and Y |O3, which are afterwards transformed by DΛ∗|O1
, DΛ∗|O2

and DΛ∗|O3
, respectively, to satisfy

the PLT constraint. Of course, all three solutions reach the same log likelihood value, which is

−755.9969. Now consider a rotation of each loadings matrix to the left and to the right by some

arbitrary angle, say 1
5π. Obviously, the resulting value will no longer satisfy the PLT constraint, so

we have to impose it separately. Table 12 shows the results of this experiment: For Y |O1, imposing

the constraints has little e�ect, so the log likelihood value stays nearly the same. For Y |O2, if we

rotate to the right, the likelihood again does not change much. For a rotation to the left, we observe

a more pronounced change. Eventually, for Y |O3, we see that both a rotation to the left and the

right e�ects the log likelihood value to a greater extent. Figure 3 shows the same for the whole circle.

Consider the solid line �rst: Whereas for Y |O1, the log likelihood is nearly �at, it is �at on the left

and steep on the right side for Y |O2, whereas it is steep on both sides for Y |O3. Note that the unit

scale prior ensures that the contribution of the prior along the circle is identical, so the log likelihood

must only be shifted to obtain the log posterior. It is easily seen that under the �rst ordering, the

sampler can move along the circle much more easily than under the third ordering. For the second

ordering, it can easily move to the right, but not to the left. Thus the ordering has an e�ect on the

sampler's potential to move along the circle, or the range of rotations it will cover. For a wide range

of rotations, represented by a �at log likelihood along the circle, the resulting posterior densities will

lose their ellipticity property. This can be veri�ed by comparing �gure 3 with the sampler's output

in the second row of �gure 1.

Figure 3: Log likelihood values of the principal components estimates, rotated along the circle, with constraints
imposed.

Now note that rotations are not the only orthogonal transformations we must consider. There are

also re�ections and permutations, i.e. sign and label switchings of the factors and loadings. These

may likewise occur while sampling. In the R2, all orthogonal transformations are expressible as a
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product of one rotation and one permutation, so we are able to cover all the potential orthogonal

transformations by additionally taking label switching into account. Obviously, the only label switch-

ing there is in a two-factor model is a switching of the �rst and second factor. Thus we exchange

the factor labels and perform the same rotations as before, denoted by the dashed line in �gure 3.

We see that a second mode emerges. This mode is not located on the opposite side from the �rst

one, nor is the distance between the �rst and second mode identical for all three orderings. We may

thus consider this a case of genuine and non-systematic multimodality. Of course, the second mode

is more likely reached by the sampler if it can cover larger parts of the circle. Thus we �nd that the

sampler for Y |O1 reaches a second mode, while the other two samplers do not, as the second row of

�gure 1 shows.

C The orthogonal Procrustes transformation

The orthogonal Procrustes problem is a minimization problem of the following form: Assume that

we have two matrices X and Y , which both have dimension N ×K. We want to �nd an orthogonal

matrix A that solves

XA = Y + E s.t. AA′ = A′A = IK with tr(E′E) = min. (36)

This problem has been solved by Schönemann (1966) in the following way: Write

g = g1 + g2 (37)

with the minimization as

g1 = tr(E′E) = tr(A′X ′XA− 2A′X ′Y + Y ′Y ) (38)

and the constraint as

g2 = tr(Λ(A′A− I)), (39)

where Λ is a K ×K matrix of Lagrange multipliers.
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Taking the derivative with respect to A yields

∂g

∂A
= (X ′X +X ′X)A− 2X ′Y +A(Λ + Λ′)

!
= 0. (40)

Rearranging the terms, we obtain

Λ + Λ′

2
= A′X ′Y −A′(X ′X)A, (41)

where the term on the left hand side and A′(X ′X)A are symmetric, so A′X ′Y must be symmetric

as well, i.e.

A′X ′Y = Y ′XA, (42)

or, equivalently,

X ′Y = A′Y ′XA. (43)

If we write the square of the latter, we obtain

X ′Y Y ′X = A′Y ′XAA′X ′Y A = A′Y XX ′Y A, (44)

since AA′ = I. We can perform a spectral decomposition on both X ′Y Y ′X and Y ′XX ′Y , resulting

in

WDW ′ = AVDV ′A′, (45)

where the matrix of eigenvalues D is the same for both decompositions, while the eigenvectors V and

W are di�erent. Now

W = AV, (46)

and, consequently,

A = WV ′. (47)

We know have a necessary condition for A to be an orthogonal projection of X onto Y . Since we
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need a minimum, we must consider

tr(E′E) = tr(A′X ′XA− 2A′X ′Y + Y ′Y )

= tr(X ′X + Y ′Y )− 2tr(A′X ′Y ). (48)

Since this expression has to be minimized and the �rst term is �xed, we have to maximize the second

term.

Plugging in the orthogonal projection solution for A from equation 47, we have

tr(A′X ′Y ) = tr(VW ′X ′Y )

= tr(VW ′WD0.5V ′)

= tr(WW ′D0.5V ′V )

= tr(D0.5), (49)

where we use the singular value decomposition

X ′Y = WD0.5V ′ (50)

and some properties of the trace function. Thus, solving for D0.5 in equation (50), we obtain

D0.5 = W ′X ′Y V = R′WW
′X ′Y V RV , (51)

where the column signs in V and W are undetermined, so the last equality holds for re�ection

matrices RV and RW . Since the solution in equation (47) is in fact

A = WV ′ = WRWRV V
′ = WRWV V

′ (52)

and the product of two re�ection matrices is a re�ection matrix itself, we merely have to �nd the RWV

that minimizes D0.5 out of the K2 potential solutions. This is obtained by complete enumeration.

D Simulation experiment for removing orthogonal mixing

An orthogonally mixing sampler generates a sequence of draws {Λ̃(s)}Ss=1 from a distribution that is

subject to orthogonal transformationsDs after each draw s, generating an orthogonally mixed sample.
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The orientation of the distribution in draw s relative to the orientation in draw 1 is thus D̃(s) =

D1D2 . . . Ds−1. Note that D̃(s) is likewise an orthogonal matrix. Hence, the orthogonally mixed

sample can also be interpreted as {Λ̃(s)D̃(s)}Ss=1, where Λ̃(s) represents draw s from the directionally

identi�ed distribution, and D̃(s) represents the orthogonal transformation component. Both Λ̃(s)

and D̃(s) stem from hidden Markov processes. We are not interested in the properties of D̃(s), but

rather want to get rid of it. Nonetheless, sampling Λ̃(s)D̃(s) should help to preserve the properties

of Λ̃(s) better than sampling Λ̃(s) under identi�cation constraints. Afterwards, we use the WOP

algorithm to remove the e�ect of the D̃(s) from the sample and obtain {Λ̃(s)D}Ss=1, where D is a

unique orthogonal matrix.

Using no directional identi�cation constraints, the unconstrained Gibbs sampler for the factor

model discussed in Appendix A is an orthogonally mixing sampler in this sense. Having previ-

ously obtained a draw Λ̃(s)Ds, the moments of the full conditional distribution of F subject to the

unobservable Ds from the previous iteration are

Ωft |Ds = (Ds′Λ′Σ−1
u ΛDs + I)−1

= (Ds′(Λ′Σ−1
u Λ + I)Ds)−1

= Ds′(Λ′Σ−1
u Λ + I)−1Ds

= Ds′ΩftD
s (53)

and

µft |Ds = (Ds′ΩftD
s)(Ds′ΛΣuyt)

= Ds′ΩftΛΣuyt

= Ds′µft . (54)

Analogously, the moments of the full conditional distribution of Λ subject to the unobservable matrix

Ds from the previous iteration are

Ωλi |D
s = (σ−2

i Ds′F ′FDs + I)−1

= (Ds′(σ−2
i F ′F + I)Ds)−1

= Ds′(σ−2
i F ′F + I)−1Ds

= Ds′ΩλiD
s (55)

37



and

µλi |D
s = Ds′ΩλiD

s(σ−2
i Ds′F ′yi)

= Ds′Ωλi(σ
−2
i F ′yi)

= Ds′µλi . (56)

The following sweep for Λ will then yield Λ̃(s+1)Ds+1, where the unobservable Λ̃(s+1) is a draw from

the full conditional distribution prior to its latest orthogonal transformation Ds+1. If we want all

the Λ̃(s) to originate from a distribution with the same directional identi�cation, we use the above

reasoning and replace Ds by D̃(s) in the conditional moments.

The following experiment will demonstrate the capability of the weighted orthogonal Procrustes

(WOP ) procedure to recover parameters from an orthogonally mixed sample. As we generate the

sample, we will follow the notion of Λ̃(s) and D̃(s) as separate unobservable processes, where the Λ̃(s)

are drawn from a directionally identi�ed distribution and the D̃(s) are arbitrary orthogonal matrices.

We simulate a sequence of matrices {Λ̃(s)}Ss=1, where S = 10000 and Λ̃(s) = (λ̃
(s)
1

′
, . . . , λ̃

(s)
N

′
) with

N = 100 and λ̃
(s)
i ∼ N (µi,Σi) for all i = 1, . . . , N with the parameters µi drawn from a K-variate

standard Normal distribution with K = 6 and Σi drawn from a K-variate scaled Wishart distribution

1
νW(Σ, ν) with Σ = IK and ν = 10.

Next, we create subsamples containing the �rst k columns of each matrix, where k ∈ {2, 3, 4, 5, 6},

i.e. {Λ̃(s)
[1:k]}

Z
z=1. For each of the resulting �ve samples, we then draw a sequence of k-dimensional

rotation matrices {Q̃(s)
k }

S
s=1, a sequence of k-dimensional permutation matrices {P̃ (s)

k }
S
s=1, and a

sequence of k-dimensional re�ection matrices {R̃(s)
k }

S
s=1, afterwards multiplying them to obtain

{D̃(s)
k = Q̃

(s)
k P̃

(s)
k R̃

(s)
k }

S
s=1, which is again a sequence of orthogonal matrices. We then use the

orthogonal matrices of the appropriate dimension to create the orthogonally mixed samples, i.e.

{Λ̃D̃(s)

[1:k] = Λ̃
(s)
[1:k]D̃

(s)
k }

S
s=1.

Now we consider only the �rst n rows of each matrix for each of the �ve samples, where n ∈

{10, 20, 60, 100}. Note that the entries of the �rst �ve rows and two columns in the data before adding

the orthogonal variation is identical throughout the resulting 20 samples. We can thus evaluate the

e�ect of increasing the number of rows or the number of columns based on these reference parameters.

Consider the WOP procedure for {Λ̃D̃(s)

[1:n,1:k]}
S
s=1, with �xed point (g)Λ

∗
[1:n,1:k] and weights ma-

trix W(g) with g ∈ {0, 1, 2, . . . , G − 1} denoting the number of completed iterations of the sam-

pler, where for g = 0, we have �xed point (0)Λ
∗
[1:n,1:k] = Λ̃D̃

(S)

[1:n,1:k], i.e. the last observation, and
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W(0) = diag((0)w11, . . . , (0)wnn) with (0)wii = S

(∑S
s=1

√
λ̃D̃

(s)

i

′
λ̃D̃

(s)

i

)−1

, and for g ≥ 1, we use

as �xed point (g)Λ
∗
[1:n,1:k] = 1

S

∑S
s=1 (g)Λ̃

(s)
[1:n,1:k] and W(g) = diag((g)w11, . . . , (g)wnn) with (g)wii =

det
(

1
S

∑S
s=1((g)λ̃

(s)
i − (g)λ

∗
i )((g)λ̃

(s)
i − (g)λ

∗
i )
′
)− 1

k
, where {(g)Λ̃

(s)
[1:n,1:k]}

S
s=1 denotes the output of the

WOP procedure from iteration g. Hence the output after G iterations is

{(G)Λ̃
(s)
[1:n,1:k]}

S
s=1 = WOP ({Λ̃D̃(s)

[1:n,1:k]}
S
s=1, G). (57)

We apply the WOP procedure to each of the orthogonally mixed samples, running it for G = 5

iterations. The restored sample has an orientation di�erent from the original one. Thus we determine

the transformation matrix for the (unweighted) orthogonal Procrustes that projects the mean of the

restored sample onto the mean of the original sample before orthogonal mixing. This transformation

is then applied to each matrix, aligning the restored data with the mean of the original data.

Eventually, we calculate the element-wise percentiles of the original data before orthogonal mixing

and the restored data after removing the orthogonal mixing and compare them. If the original data

has been properly restored, the percentiles should be very close to each other. Figure 4 shows the QQ

plots for k = 2 and k = 5, with increasing number of rows used per matrix. Considering parameter

λ5,2 for k = 2, we �nd that the �rst WOP iteration does not restore the percentiles well if only

information from 10 rows is available. If we add more rows, allowing more information to be used,

the problem disappears. Likewise, additional WOP iterations help to match the restored with the

original percentiles. Now consider parameter λ1,1 for k = 5. If only ten rows are available - a case

where the identi�cation constraints for the factor model are not satis�ed - additionalWOP iterations

do not ensure a good percentile matching. Adding more information by using additional rows of each

matrix, however, helps to �x this problem.

We now measure the squared deviation between the 1st, 5th, 25th, 50th, 75th, 95th and 99th

percentiles of the simulated and the restored data. Table 13 reports the average squared deviations

for k ranging from 2 to 6. The left seven columns in each table show the results if the empirical

mean from the unobservable data before mixing is used, the right seven columns show the results if

only information from the orthogonally mixed sample is used. Consider �rst the left seven columns,

where the mean before mixing is assumed to be known. We see that for increasing G and n, the

average squared deviations for all the considered quantiles approach zero. Thus for su�ciently large
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G and n,

WOP

(
{Λ̃D̃(s)

[1:n,1:k]}
S
s=1, G

∣∣∣ 1

S

S∑
s=1

Λ̃
(s)
[1:n,1:k]

)
≈ {Λ̃(s)

[1:n,1:k]D}
S
s=1, (58)

where D is a unique orthogonal matrix very close to the identity matrix. Hence we can restore the

information from the simulated data out of the orthogonally mixed sample if we only know the mean

of the simulated data. The e�ect of additional iterations of the sampler is almost negligible, so we

may choose G as low as 1 or 2.

Now we compare the results from the right seven columns per table with those from the left

seven columns per table. We see that the average squared deviations from the sampler that uses

information about the - unobservable - mean of the simulated data and the sampler that does not

use this information approach each other as G increases. Thus, for su�ciently large G and n,

WOP ({Λ̃D̃(s)

[1:n,1:k]}
S
s=1, G) ≈ {Λ̃(s)

[1:n,1:k]D}
S
s=1, (59)

i.e. we do not need the mean of the simulated data to recover other information about the data. Note,

however, that the e�ect of additional iterations of the sampler is quite large here, so we may choose

a larger value for G than if the mean of the simulated data is known, where each iteration improves

improves inference about the mean, which serves as the �xed point in the subsequent iteration of

the sampler. Moreover, D is not close to the identity matrix any more, but instead close to the

orthogonal projection of (0)Λ
∗
[1:n,1:k] onto the mean of the simulated data.

Overall, we observe that the average squared deviation for the central quantiles is much smaller

than for the tails, which is easily explained by the fact that each normally distributed sample contains

more information about the center of the distribution than about its tails. Moreover, for increasing

values of k, we require larger values of n, because each additional dimension adds a source of uncer-

tainty. The angular deviation between vectors in the R2 is univariate, while the angular deviation

between vectors in the R3 is bivariate, etc.

40



F
ig
u
re

4
:
Q
Q

p
lo
ts

fo
r
o
ri
g
in
a
l
a
n
d
re
st
o
re
d
d
a
ta
,
sh
ow

in
g
re
su
lt
s
fo
r
th
e
�
rs
t

5
ro
w
s
a
n
d

2
co
lu
m
n
s.

F
ro
m

to
p
to

b
o
tt
o
m

n
is
1
0
,
2
0
,
6
0
a
n
d
1
0
0
.
L
ef
t
co
lu
m
n

u
se
s
m
a
tr
ic
es

w
it
h
k

=
2
co
lu
m
n
s,
ri
g
h
t
co
lu
m
n
u
se
s
m
a
tr
ic
es

w
it
h
k

=
5
co
lu
m
n
s.

L
ig
h
t
a
n
d
d
a
rk

g
re
y
m
a
rk
er
s
d
en
o
te

re
su
lt
s
a
ft
er

o
n
e
a
n
d
�
v
e
W
O
P
it
er
a
ti
o
n
s,

re
sp
ec
ti
v
el
y.

41



k
n

G
q
0
1

q
0
5

q
2
5

q
5
0

q
7
5

q
9
5

q
9
9

q
0
1

q
0
5

q
2
5

q
5
0

q
7
5

q
9
5

q
9
9

2
1
0

1
0
.0

1
2
7

0
.0

0
6
3

0
.0

0
1
5

0
.0

0
0
9

0
.0

0
3
1

0
.0

0
9
8

0
.0

2
2
4

0
.4

2
1
5

0
.1

6
7
8

0
.0

6
0
3

0
.0

5
4
3

0
.0

8
6
1

0
.3

2
7
2

0
.6

3
4
9

2
1
0

5
0
.0

1
1
6

0
.0

0
5
7

0
.0

0
1
3

0
.0

0
0
7

0
.0

0
2
4

0
.0

0
8
2

0
.0

1
9
3

0
.0

1
1
6

0
.0

0
5
7

0
.0

0
1
3

0
.0

0
0
7

0
.0

0
2
4

0
.0

0
8
2

0
.0

1
9
3

2
2
0

1
0
.0

0
4
0

0
.0

0
2
0

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
1
3

0
.0

0
2
8

0
.0

0
5
4

0
.0

5
8
9

0
.0

1
0
6

0
.0

0
3
0

0
.0

0
3
2

0
.0

0
5
5

0
.0

1
8
2

0
.0

7
3
7

2
2
0

5
0
.0

0
2
8

0
.0

0
1
6

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
9

0
.0

0
1
9

0
.0

0
3
3

0
.0

0
2
8

0
.0

0
1
6

0
.0

0
0
1

0
.0

0
0
3

0
.0

0
0
9

0
.0

0
1
9

0
.0

0
3
3

2
6
0

1
0
.0

0
0
5

0
.0

0
0
5

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
4

0
.0

0
1
8

0
.0

0
1
1

0
.0

0
0
4

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
0
8

0
.0

0
3
8

2
6
0

5
0
.0

0
0
5

0
.0

0
0
4

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
1
3

0
.0

0
0
5

0
.0

0
0
4

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
1
3

2
1
0
0

1
0
.0

0
0
6

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
7

0
.0

0
0
7

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
2

0
.0

0
0
5

0
.0

0
2
1

2
1
0
0

5
0
.0

0
0
4

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
4

3
1
0

1
0
.0

1
2
7

0
.0

0
6
3

0
.0

0
1
5

0
.0

0
0
9

0
.0

0
3
1

0
.0

0
9
8

0
.0

2
2
4

0
.4

2
1
5

0
.1

6
7
8

0
.0

6
0
3

0
.0

5
4
3

0
.0

8
6
1

0
.3

2
7
2

0
.6

3
4
9

3
1
0

5
0
.0

1
1
6

0
.0

0
5
7

0
.0

0
1
3

0
.0

0
0
7

0
.0

0
2
4

0
.0

0
8
2

0
.0

1
9
3

0
.0

1
1
6

0
.0

0
5
7

0
.0

0
1
3

0
.0

0
0
7

0
.0

0
2
4

0
.0

0
8
2

0
.0

1
9
3

3
2
0

1
0
.0

0
4
0

0
.0

0
2
0

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
1
3

0
.0

0
2
8

0
.0

0
5
4

0
.0

5
8
9

0
.0

1
0
6

0
.0

0
3
0

0
.0

0
3
2

0
.0

0
5
5

0
.0

1
8
2

0
.0

7
3
7

3
2
0

5
0
.0

0
2
8

0
.0

0
1
6

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
9

0
.0

0
1
9

0
.0

0
3
3

0
.0

0
2
8

0
.0

0
1
6

0
.0

0
0
1

0
.0

0
0
3

0
.0

0
0
9

0
.0

0
1
9

0
.0

0
3
3

3
6
0

1
0
.0

0
0
5

0
.0

0
0
5

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
4

0
.0

0
1
8

0
.0

0
1
1

0
.0

0
0
4

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
0
8

0
.0

0
3
8

3
6
0

5
0
.0

0
0
5

0
.0

0
0
4

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
1
3

0
.0

0
0
5

0
.0

0
0
4

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
1
3

3
1
0
0

1
0
.0

0
0
6

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
7

0
.0

0
0
7

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
2

0
.0

0
0
5

0
.0

0
2
1

3
1
0
0

5
0
.0

0
0
4

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
2

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
4

4
1
0

1
0
.1

3
8
0

0
.0

7
5
0

0
.0

2
2
1

0
.0

1
0
9

0
.0

1
5
7

0
.0

4
8
9

0
.0

9
5
0

0
.4

8
3
6

0
.2

9
6
8

0
.2

2
2
4

0
.2

9
5
9

0
.4

9
6
9

1
.0

0
2
3

1
.4

7
2
9

4
1
0

5
0
.2

1
1
2

0
.1

2
3
4

0
.0

2
8
5

0
.0

1
1
0

0
.0

2
8
8

0
.1

2
2
7

0
.2

6
0
6

0
.1

0
9
2

0
.0

6
2
7

0
.0

1
5
6

0
.0

0
6
4

0
.0

1
2
1

0
.0

4
7
0

0
.1

0
4
7

4
2
0

1
0
.0

2
4
7

0
.0

1
0
7

0
.0

0
3
0

0
.0

0
1
9

0
.0

0
5
6

0
.0

1
2
5

0
.0

3
2
4

0
.4

8
1
1

0
.2

7
7
4

0
.1

8
3
8

0
.2

1
2
6

0
.3

1
9
3

0
.6

4
1
9

0
.9

9
4
2

4
2
0

5
0
.0

1
4
0

0
.0

0
9
6

0
.0

0
2
2

0
.0

0
1
2

0
.0

0
4
1

0
.0

1
2
2

0
.0

2
9
7

0
.0

1
4
0

0
.0

0
9
8

0
.0

0
2
2

0
.0

0
1
2

0
.0

0
4
2

0
.0

1
1
9

0
.0

2
9
4

4
6
0

1
0
.0

0
4
5

0
.0

0
1
9

0
.0

0
0
7

0
.0

0
0
4

0
.0

0
1
1

0
.0

0
2
1

0
.0

0
3
9

0
.0

1
7
2

0
.0

0
5
6

0
.0

0
2
0

0
.0

0
3
2

0
.0

0
7
4

0
.0

2
0
4

0
.0

7
1
2

4
6
0

5
0
.0

0
2
4

0
.0

0
1
8

0
.0

0
0
5

0
.0

0
0
3

0
.0

0
0
7

0
.0

0
2
1

0
.0

0
5
1

0
.0

0
2
4

0
.0

0
1
8

0
.0

0
0
5

0
.0

0
0
3

0
.0

0
0
7

0
.0

0
2
1

0
.0

0
5
1

4
1
0
0

1
0
.0

0
1
7

0
.0

0
0
6

0
.0

0
0
2

0
.0

0
0
1

0
.0

0
0
3

0
.0

0
0
9

0
.0

0
3
4

0
.0

0
5
3

0
.0

0
2
2

0
.0

0
0
5

0
.0

0
0
6

0
.0

0
1
0

0
.0

0
2
2

0
.0

0
8
2

4
1
0
0

5
0
.0

0
1
1

0
.0

0
0
6

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
8

0
.0

0
2
7

0
.0

0
1
1

0
.0

0
0
6

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
2

0
.0

0
0
8

0
.0

0
2
7

5
1
0

1
0
.2

0
4
7

0
.1

0
9
2

0
.0

3
2
8

0
.0

1
5
3

0
.0

2
3
6

0
.0

6
9
8

0
.1

4
1
0

0
.1

9
5
8

0
.0

9
0
8

0
.0

5
7
4

0
.0

8
7
1

0
.1

4
0
5

0
.2

8
5
1

0
.4

6
8
1

5
1
0

5
0
.2

2
0
9

0
.1

1
6
2

0
.0

3
8
8

0
.0

1
9
9

0
.0

3
3
6

0
.0

9
9
2

0
.1

9
9
1

0
.0

8
8
5

0
.0

4
3
0

0
.0

1
2
9

0
.0

0
8
0

0
.0

1
3
9

0
.0

3
7
5

0
.0

6
4
0

5
2
0

1
0
.0

4
9
2

0
.0

2
3
4

0
.0

0
8
2

0
.0

0
4
5

0
.0

0
9
2

0
.0

2
0
6

0
.0

4
0
8

0
.2

0
9
7

0
.1

0
6
7

0
.0

9
3
1

0
.1

4
3
1

0
.2

4
1
5

0
.4

6
7
8

0
.7

3
6
5

5
2
0

5
0
.0

2
7
9

0
.0

1
4
4

0
.0

0
3
9

0
.0

0
2
2

0
.0

0
5
4

0
.0

1
3
9

0
.0

2
5
6

0
.0

2
8
9

0
.0

1
4
7

0
.0

0
4
1

0
.0

0
2
1

0
.0

0
5
0

0
.0

1
3
5

0
.0

2
4
6

5
6
0

1
0
.0

0
5
9

0
.0

0
2
2

0
.0

0
0
8

0
.0

0
0
5

0
.0

0
1
4

0
.0

0
2
8

0
.0

0
5
4

0
.0

1
8
3

0
.0

0
8
5

0
.0

0
2
6

0
.0

0
3
6

0
.0

0
9
5

0
.0

2
7
1

0
.0

8
4
8

5
6
0

5
0
.0

0
5
6

0
.0

0
2
7

0
.0

0
0
8

0
.0

0
0
4

0
.0

0
1
2

0
.0

0
3
2

0
.0

0
6
1

0
.0

0
5
6

0
.0

0
2
7

0
.0

0
0
8

0
.0

0
0
4

0
.0

0
1
2

0
.0

0
3
2

0
.0

0
6
1

5
1
0
0

1
0
.0

0
2
0

0
.0

0
0
8

0
.0

0
0
2

0
.0

0
0
1

0
.0

0
0
5

0
.0

0
1
1

0
.0

0
1
9

0
.0

0
4
6

0
.0

0
2
2

0
.0

0
0
7

0
.0

0
0
8

0
.0

0
1
5

0
.0

0
1
9

0
.0

0
7
9

5
1
0
0

5
0
.0

0
2
0

0
.0

0
0
8

0
.0

0
0
2

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
1
0

0
.0

0
2
2

0
.0

0
2
0

0
.0

0
0
8

0
.0

0
0
2

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
1
0

0
.0

0
2
2

6
1
0

1
0
.6

3
2
5

0
.3

4
6
1

0
.0

8
7
1

0
.0

1
8
2

0
.0

3
2
8

0
.1

7
1
5

0
.3

6
1
5

0
.4

4
7
1

0
.2

3
1
2

0
.0

6
6
5

0
.0

5
7
3

0
.1

2
4
2

0
.3

6
9
4

0
.6

9
0
9

6
1
0

5
1
.5

3
3
1

0
.8

1
3
7

0
.1

9
4
7

0
.0

4
1
6

0
.0

7
9
9

0
.4

3
0
3

0
.9

1
8
5

0
.9

7
1
3

0
.5

2
4
5

0
.1

1
5
1

0
.0

1
6
7

0
.0

4
6
8

0
.2

9
0
2

0
.6

0
8
2

6
2
0

1
0
.1

4
1
7

0
.0

7
5
0

0
.0

1
8
6

0
.0

0
5
3

0
.0

1
3
7

0
.0

5
3
0

0
.1

0
9
9

0
.1

3
5
3

0
.1

0
1
5

0
.1

3
6
2

0
.2

1
7
8

0
.3

7
5
5

0
.7

3
9
3

1
.1

2
8
7

6
2
0

5
0
.1

1
9
2

0
.0

6
6
3

0
.0

1
4
9

0
.0

0
4
7

0
.0

1
0
2

0
.0

3
7
7

0
.0

8
1
6

0
.1

0
0
7

0
.0

5
4
5

0
.0

1
2
6

0
.0

0
4
2

0
.0

0
9
3

0
.0

3
0
2

0
.0

6
3
0

6
6
0

1
0
.0

1
1
8

0
.0

0
5
9

0
.0

0
1
5

0
.0

0
0
5

0
.0

0
1
4

0
.0

0
5
7

0
.0

1
2
3

0
.0

4
8
5

0
.0

1
6
1

0
.0

0
6
5

0
.0

1
0
1

0
.0

1
8
9

0
.0

5
9
5

0
.1

4
9
7

6
6
0

5
0
.0

0
9
5

0
.0

0
4
5

0
.0

0
1
2

0
.0

0
0
4

0
.0

0
1
2

0
.0

0
4
4

0
.0

1
0
7

0
.0

0
9
5

0
.0

0
4
5

0
.0

0
1
2

0
.0

0
0
4

0
.0

0
1
2

0
.0

0
4
4

0
.0

1
0
7

6
1
0
0

1
0
.0

0
3
9

0
.0

0
2
0

0
.0

0
0
5

0
.0

0
0
2

0
.0

0
0
6

0
.0

0
1
8

0
.0

0
4
2

0
.0

1
0
6

0
.0

0
4
1

0
.0

0
1
1

0
.0

0
1
5

0
.0

0
2
9

0
.0

0
7
0

0
.0

1
5
9

6
1
0
0

5
0
.0

0
3
9

0
.0

0
1
7

0
.0

0
0
5

0
.0

0
0
2

0
.0

0
0
5

0
.0

0
1
8

0
.0

0
4
7

0
.0

0
3
9

0
.0

0
1
7

0
.0

0
0
5

0
.0

0
0
2

0
.0

0
0
5

0
.0

0
1
8

0
.0

0
4
7

T
a
b
le
1
3
:
A
v
er
a
g
e
sq
u
a
re
d
d
ev
ia
ti
o
n
s
b
et
w
ee
n
si
m
u
la
te
d
a
n
d
re
st
o
re
d
sa
m
p
le
s
fo
r
k

=
2
to

k
=

6
,
m
ea
su
re
d
a
t
th
e
1
st

(q
0
1
),
5
th

(q
0
5
),
2
5
th

(q
2
5
),

5
0
th

(q
5
0
),
7
5
th

(q
7
5
),
9
5
th

(q
9
5
)
a
n
d
9
9
th

(q
9
9
)
p
er
ce
n
ti
le
s.

T
h
e
�
rs
t
se
v
en

co
lu
m
n
s
re
p
o
rt
re
su
lt
s
fo
r
k
n
ow

n
m
ea
n
s
o
f
th
e
si
m
u
la
te
d
d
a
ta
,
th
e
n
ex
t

se
v
en

co
lu
m
n
s
re
p
o
rt

re
su
lt
s
fo
r
u
n
k
n
ow

n
m
ea
n
s.

n
d
en
o
te
s
th
e
n
u
m
b
er

o
f
ro
w
s
u
se
d
,
G

d
en
o
te
s
th
e
n
u
m
b
er

o
f
it
er
a
ti
o
n
s
o
f
th
e
W
O
P
p
ro
ce
d
u
re
.

42


