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Abstract: This paper investigates the usefulness of switching Gaussian state space
models as a tool for implementing dynamic model selection in time-varying parameter

regression models. Dynamic model selection methods allow for model switching, where a

different model can be chosen at each point in time. Thus, they allow for the explanatory

variables in the time-varying parameter regression model to change over time. We compare

our exact approach to dynamic model selection to a popular existing procedure which relies

on the use of forgetting factor approximations. In an application, we investigate which

of several different forecasting procedures works best for inflation. We also investigate

whether the best forecasting method changes over time.
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1 Introduction

Bayesian model averaging or model selection (BMA or BMS) are commonly used when the

researcher is faced with many models. See, for instance, Hoeting, Madigan, Raftery and

Volinsky (1999) and Chipman, George andMcCulloch (2001) for surveys of these methods.

Numerous empirical applications use these methods. However, they were developed for

regression models or other models where parameters are constant over time. In time series

econometrics, motivated by strong empirical evidence of structural breaks or other forms

of parameter change in many economic variables, models where parameters change over

time have long been used. Models such as the time-varying parameter (TVP) regression

model have enjoyed great popularity, particularly in macroeconomics [see, among many

others, Cogley and Sargent (2005), Cogley, Morozov and Sargent (2005), Primiceri (2005),

Koop, Leon-Gonzalez and Strachan (2009), D’Agostino, Gambetti and Giannone (2011)

and Korobilis (2012)]. Just as with constant-coeffi cient models, it is possible that the

researcher working with TVP regression models will want to do model averaging and

selection. However, it will typically be desirable to do these in a time varying manner.

This leads to an interest in dynamic model averaging (DMA) or dynamic model selection

(DMS). With DMA, the weights used in the model averaging procedure can change over

time. With DMS, the model selected can change over time. This distinguishes it from

conventional model selection methods where one model is selected and assumed to hold

at all points in time.

The literature on DMA or DMS is much more limited than that on BMA or BMS.

Perhaps the most prominent DMA approach for use with TVP regression models is that

of Raftery, Karny and Ettler (2010). To explain what this algorithm involves, we begin by

defining the set of models under consideration. Let yt be a dependent variable and Zt be a

row vector containing explanatory variables. We have K models which are characterized

by having different subsets of Zt as explanatory variables. Denoting these by Z(k) for

k = 1, .., K, a set of TVP regression models can be written as:

yt = Z
(k)
t θ

(k)
t + ε

(k)
t (1)

θ
(k)
t+1 = θ

(k)
t + η

(k)
t ,

ε
(k)
t is N

(
0, σ

2(k)
ε

)
and η(k)t is N

(
0,Σ

(k)
η

)
.

DMA and DMS can be done by calculating Pr (st = k|yt−1) for k = 1, .., K where st ∈
{1, 2, .., K} denotes which model applies at each time period and yt = (y1, .., yt)

′.. DMS
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involves selecting, at time t, the single model with the highest value for Pr (st = k|yt−1).
DMA involves averaging across models using these probabilities. Different approaches to

DMA or DMS arise when different models or methods are used to calculate Pr (st = k|yt−1).
Raftery et al (2010), working in an application involving many explanatory variables and,

hence, a large model space, uses forgetting factor methods to approximate Pr (st = k|yt−1).
This leads to a computationally simple algorithm which does not require the use of Markov

chain Monte Carlo (MCMC) methods. In applications with many potential explanatory

variables [e.g. Raftery et al (2010), Koop and Korobilis (2012) and Koop and Tole (2012)],

the algorithm of Raftery et al (2010) does seem to be the only computationally feasible

algorithm currently available. However, as discussed in Section 3 of Raftery et al (2010),

it is an approximate method that does not arise from a particular statistical model of

model switching. Furthermore, it is a filtering algorithm as opposed to a smoothing al-

gorithm. That is, it provides the user with Pr (st = k|yt−1) for t = 1, .., T as opposed to

Pr
(
st = k|yT

)
.

The purpose of this paper is to propose the use of an alternative, model-based, way

of allowing for time-varying model switching and compare it to the algorithm of Raftery

et al (2010). This alternative is the family of switching Gaussian state space models

described in, among other places, Kim (1994), Kim and Nelson (1999) and Fruhwirth-

Schnatter (2001a, b). Switching Gaussian state space models will be described in the

following section. Here we note only that they have been occasionally used in econometric

applications [see Chapter 13 of Fruhwirth-Schnatter (2006) for a list of applications], but

typically for state space models where the system matrices vary across regimes, not for

selecting explanatory variables in TVP regression models [an exception being Chan et al

(2012)]. An advantage of the use of switching Gaussian state space models is that results

are not approximate, being based on a valid Bayesian posterior distribution. A further

advantage is that either filtered or smoothed estimates can be obtained using existing

algorithms.

A disadvantage of the use of switching Gaussian state space models is that MCMC

methods are required. This substantially raises the computational burden and means their

usage is limited to relatively few explanatory variables. However, it provides a setting in

which we can compare DMA using the algorithm of Raftery et al (2010) to DMA using

switching linear Gaussian state space models. If we find the algorithm of Raftery et al

(2010) to provide results which are quite different from those use switching Gaussian state

space models in a setting with a small model space, it will raise concerns about the use

of Raftery et al (2010)’s algorithm in the large model spaces where it is typically used.

This paper contains an application involving selecting between different independently
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produced forecasts of a dependent variable. That is, Zt will contain various forecasts of the

dependent variable yt. Methods for combining forecasts provided by different models goes

back to Bates and Granger (1969) and Granger (2006) provides a recent survey. Recent

approaches related to our own include Guidolin and Timmermann (2009), which uses a

Markov switching approach to model switching in constant coeffi cient models and Billio,

Casarin, Ravazzolo and van Dijk (2011) who develop an approach with time-varying

forecast weights. Our application is to forecasting US inflation. Papers such as Ang,

Bekaert and Wei (2007) consider various forecasts of inflation (e.g. forecasts produced by

professional forecasters, consumer surveys, econometric forecasts, etc.) and investigate

which ones forecast best. Ang, Bekaert and Wei (2007) find that surveys do. We add to

this literature using DMS and DMA methods. Note that, unlike Ang, Beckaert and Wei

(2007), we can have forecast switching so that, e.g., consumer surveys forecast best at

some points in time and econometric models forecast best at other times. We find [insert

preliminary results when available].

The remainder of this paper is organized as follows. The second section describes

how switching Gaussian state space models can be used to do DMS or DMA. The third

section describes our application. It is divided into sub-sections which: i) discuss some

general issues in combining inflation forecasts from various sources, ii) describe the data,

iii) present empirical results using the switching Gaussian state space approach and iv)

compare the latter approach to DMA and DMS using the methods of Raftery et al (2010).

2 DMA and DMS Using Switching Gaussian State

Space Models

The framework given in (1) is closely related to the switching linear Gaussian state space

model discussed, e.g., in Fruhwirth-Schnatter (2006, pages 393-394 and 406-410) who

provides several citations, mostly from the engineering literature, of papers which have

used such models. A switching Gaussian state space model can be written as:

yt = H
[st]
t θt + εt

θt = F
[st]
t θt−1 + ηt

where yt is observed, εt is N
(

0, σ
2[st]
ε

)
and ηt is N (0,Ση). The errors are independent of

each other and at all leads and lags. st ∈ {1, .., K} follows a Markov switching specifica-
tion, i.e. we have a Markov transition matrix with elements ζ ij = Pr (st = i|st−1 = j) for
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i, j = 1, .., K. xt is a vector of unobserved states.

We adapt this specification for use with variable selection in TVP regression models

by using particular forms for the system matrices. In particular, we set

H
[st]
t = ZtG

[st] (2)

F
[st]
t = I.

In our empirical work, we set Zt = (z1t, .., zKt) to contain K explanatory variables and

define G[st=k] to be the K ×K matrix which selects the kthexplanatory variable. That is,

G[st=k] is a matrix of zeros except for the (k, k)th element which is set to one.1 Defined in

this way, θt = (θ1t, .., θkt)
′ is a vector of time-varying regression coeffi cients. The choice

F
[st]
t = I leads to the conventional choice of random walk evolution of these coeffi cients.

We also let Ση be a diagonal matrix with kth diagonal element σ2ηk so that the regression

coeffi cients evolve independently of one another.

In our empirical work, Zt will contain different forecasts of inflation. It can be seen

that (2) implies that, when st = k, the TVP regression model using the kth explanatory

variable is used. Switches between different TVP regression models is controlled through

a Markov switching process with switching probabilities given by ζ ij. Thus, the switching

Gaussian state space model, with systemmatrices defined as in (2), can be used to do DMS

or DMA in the context of single statistical model. And Bayesian methods for posterior

inference (filtering and smoothing) in this model are developed in several places, including

Fruhwirth-Schnatter (2001a, b). In this paper, we use this algorithm (see the Technical

Appendix for details).

3 Application: Selecting the Best Inflation Forecasts

3.1 Introduction

The literature on forecasting inflation is voluminous [see, e.g., Faust and Wright (2012)

for a recent survey]. We aim to contribute to the literature on choosing between multiple

forecasts of inflation. In an influential paper, Ang, Bekaert and Wei (2007) compare

various methods for forecasting inflation including surveys (of professional forecasters and

of the public at large) and simple time series forecasting methods. Their main conclusion

1This definition of G[st=k] makes sense in our application. But other choices could be made in different
applications without altering the basic algorithm.
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about which methods forecast best is pithily summarized in the first two words of their

abstract: “Surveys do!”. Faust and Wright (2012) come to a similar conclusion using

different econometric methods. The purpose of our application is to investigate whether

this conclusion holds in the context of a more formal statistical modelling procedure

involving DMA and DMS. Most importantly, our framework allows us to investigate

whether the best forecasting model changes over time. After all, it is possible that the

time series econometrician (whose forecasts are based on past patterns in the data) will

forecast well in normal times, but forecast poorly around times of changes such as business

cycle turning points. Professional economists, who can use qualitative events observed

in real time (e.g. the collapse of Lehman Brothers) to aid in their forecasting, may be

better forecasters at turning points. DMS and DMA, can directly find patterns such as

these where the best forecasting procedure changes over time or over the business cycle.

Conventional methods, which just aim to find one best forecast procedure, cannot.

3.2 Data

Care must be taken with variable definitions and timing to make sure the forecasts made by

forecasters are matched up with the outcomes they are compared to. Given the influence

of the paper by Ang, Bekaert and Wei (2007), we follow their choices where possible. The

interested reader is referred to Ang, Bekaert and Wei (2007) who discuss the relevant

issues in detail. As a timing convention, note that all the t subscripts used below are for

the times that the forecasts are being made. So, for instance, in 1996Q1 surveys were

taken about inflation over the upcoming year through 1997Q1. These are dated as t =

1996Q1 in the equations below.

Our dependent variable is CPI inflation. Given that inflation forecasts are typically

one-year ahead, we use as our dependent variable an annual inflation rate. To be precise,

our dependent variable, πRt , is the realized value for inflation over the subsequent year

defined as

πRt = πt+1 + ..+ πt+4,

where

πt = log

(
Pt
Pt−1

)
and Pt is the CPI (Consumer Price Index for All Urban Consumers).

We use four different forecasts of annual inflation rates which can be thought of as

coming from four different sets of agents: i) the professional forecasters, ii) consumers, iii)
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time series econometricians and iv) a naive agent.

The professionals’ forecasts of inflation are taken from the Survey of Professional

Forecasters (SPF) available through the Federal Reserve Bank of Philadelphia website.

Detailed explanation about this data source are also available on this website. The infla-

tion forecast we use, πSPFt is the median of the one-year ahead inflation forecasts provided

by the professionals.

Consumers’forecasts of inflation are taken from the University of Michigan consumer

survey. Surveyed individuals are asked by how much they expect prices to change over

the next 12 months. The inflation forecast we use, πCSt , is the median of their forecasts.

There are dozens of different forecasts of inflation produced by time series econome-

tricians. However, it has proved diffi cult to beat simple forecasting models by much. For

instance, Stock and Watson (2010) argue that it is “exceedingly diffi cult to improve sys-

tematically on simple univariate forecasting models”. In this spirit, to represent the time

series econometrician, we use an autoregressive model. To be specific, πTSt is the forecast

of the time series econometrician using OLS forecasts from an AR(1) model. Forecasts

made at time t are made using information available up to and including time t−1. Given

that πRt is an average over four quarters, this means the model used for these forecasts is:

πRt = α + ρπRt−4 + εt.

Finally, we have our naive agent producing simple no-change forecasts, πNOCt , where

the forecaster simply uses the most recently available annual inflation rate as a forecast

for next year’s inflation. Thus,

πNOCt = πt−1 + ..+ πt−4.

All data except πSPFt is taken from the Federal Reserve Bank of St.. Louis’FRED

database.2 Our forecasts runs from 1981Q3 through 2011Q2 (i.e. the last forecast is made

in 2011Q2 which can be compared the the actual inflation outcome through 2012Q2).

Figure 1 plots the data.

2Where relevant, monthly data has been made into quarterly data by taking the observation for the
last month of the quarter. See Ang, Bekaert and Wei (2007), page 1171.
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Figure 1

In terms of the notation used in Section 2, yt = πRt and Zt =
(
πSPFt , πCSt , πTSt , πNOCt

)
.

All variables are in deviation from mean form and we do not include an intercept.

3.3 Smoothed Estimates using the Switching Gaussian State

Space Approach

Our main interest is in which of the four forecasts has been best at each point in time. To

shed light on this, we begin by presenting smoothed estimated of the regime probabilities,

Pr
(
st = k|yT

)
for k = 1, .., 4 and t = 1, .., T .

Our results confirm the general findings of Ang, Bekaert and Wei (2007) and Faust

and Wright (2012). Surveys, regardless of whether of consumers or professionals, do tend

to forecast better than either the time series econometrician or the naive agent. Simple

OLS regression methods also confirm this general finding. If we run a regression of yt on

each of the inflation forecasts, we find it to be 0.132, 0.104, 0.185 and 0.099, respectively

forπCSt , πTSt , π
SPF
t and πNOCt , respectively. However, our methods allow us to see some

interesting time variation in forecast performance.

The four panels in Figure 2 must, by definition, sum to one. It can be seen that it is

rarely the case for one model to be completely dominant (i.e. have Pr
(
st = k|yT

)
to be
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near one for any k). However, typically if the probability associated with the models using

the consumer and professional surveys are added together, they are dominant. However,

there is one interesting exception to this. At the time of the financial crisis, the naive

no-change forecast dominates. It caught the steep fall in inflation that occurred in the

recession better than any of the other approaches. The forecast of the time series econo-

metrician is particularly bad. Our methodology never allocates appreciable probability

to πTSt .

As to the question of whether professionals or consumers forecast better, it can be seen

that the answer depends on the time period. Throughout much of the 1990s (a stable

period) the consumer survey forecasts best. In the 1980’s, though, the professionals are

forecasting better. After 1996, there is a lot of switching between the two forecasts. And,

in the time of the financial crisis and shortly thereafter, both of the forecasts are beaten

by the no change forecast.

1985 1990 1995 2000 2005 2010
0

0.5

1
Smoothed Model Probabilities, Regressor: Consumer Survey

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
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1985 1990 1995 2000 2005 2010
0

0.5
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Figure 2
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Figure 3

Figure 3 plots the predictive likelihood for the switching Gaussian state space model

over time (see Technical Appendix for details). It can be seen that the performance of the

model does vary substantially over time. Unsurprisingly, it performs worst in the recent

financial crisis. But there are also other times of poor performance such as the early

1990s. It is interesting to note that these times of poor performance are also times where

we tend to find model switching. That is, the financial crisis was the time the model

switched to choosing the no-change forecast and the early 1990s was when it switched

from choosing the professional to consumer surveys. This indicates that, when forecast

performance is deteriorating,

More empirical results will follow.

3.3.1 Comparison to DMS using Methods of Raftery et al (2010)

This section remains to be completed.

4 Conclusions

To be completed.
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Technical Appendix
The switching linear Gaussian state-space model the we adopt is of the form:

p (s1 = k) = 1
K

ξjk = p (st = k|st−1 = j)

θ1 ∼ N (0K , 2IK)

θt = θt−1 + ηt

yt = ZtG
[st=k]θt + εt,

for t = 1, .., T and j, k = 1, .., K. Error assumptions and definitions of st ∈ {1, .., K} , yt, Zt
and G[st=k] are given in Section 2. The remaining parameters of the model are ψ =

(σ2η1, . . . , σ
2
ηK , σ

2[1]
ε , . . . , σ

2[K]
ε , ξ11, .., ξKK)′. We adopt a notational convention for data and

states such that subscripts denote a particular time period and superscripts denote all

periods up to that time period. For instance, st = (s1, .., st)
′ denotes all regime indicators

up to time t.

We use the Gibbs sampler that sequentially draws from p
(
θT |yT , sT , ψ

)
, p
(
sT |yT , θT , ψ

)
and p

(
ψ|yT , sT , θT

)
. This technical appendix briefly describes each of these conditional

posterior densities. The time-varying parameters are drawn from p
(
θT |yT , sT , ψ

)
us-

ing the algorithm of Chan and Jeliakov (2009). And p
(
sT |yT , θT , ψ

)
is drawn as in

Fruhwirth-Schnatter (2001a,b). Note that this algorithm provides us with an estimate of

p
(
yt|st, θt, ψ

)
which, when averaged over Gibbs draws, provides us with an estimate of

the predictive likelihood.

For p
(
ψ|yT , sT , θT

)
we use the following conditional posteriors. Given inverted Gamma

priors for σ2ηk (for k = 1, .., K) with prior hyperparameters c0k and C0k we obtain and

inverted Gamma posterior with arguments:

ck(S) = c0k + T
2
, Ck(S) = C0k +

∑T
t=1(θk,t+1−θk,t)

2

2
.

For σ2[k]ε we also use inverted Gamma priors leading to inverted Gamma conditional

posteriors. Given prior hyperparameters of c[k]0ε and C
[k]
0ε for k = 1, .., K, the posterior has

arguments

c
[k]
ε (S) = c

[k]
0ε + Nkk

2
, C

[k]
ε (S) = C

[k]
0ε + 1

2

∑T
t:st=k

(
yt − ZtG[st=k]θt

)2
,

where Njk counts the number of transitions from j to k. If j = k it counts the number of
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periods spent in regime k. Finally, let ξ be the matrix of Markov transition probabilities

ξjk and let ξj be the j
th row of this matrix. The prior for each row is assumed to be

Dirichlet:

ξj ∼ D(ej1, . . . , ejK), j = 1, . . . , K.

With the prior, the conditional posterior is also Dirichlet with

D(ej1 +Nj1, . . . , ejK +NjK), j = 1, . . . , K.
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