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Abstract

This article develops a new econometric methodology for performing stochastic model spec-
ification search (SMSS) in the vast model space of time-varying parameter VARs. This is
motivated by the concern of over-fitting and the typically imprecise inference in these highly
parameterized models. We build upon earlier work on SMSS in low dimensional models and
Bayesian Lasso shrinkage for time-varying parameter settings. For each VAR coefficient,
this new method automatically decides whether it is constant or time-varying. Moreover,
the proposed method can be used to shrink an otherwise unrestricted time-varying param-
eter VAR to a stationary VAR, thus providing an easy way to (probabilistically) impose
stationarity in time-varying parameter models. We demonstrate the effectiveness of the
approach with a topical application, where we investigate the dynamic effects of structural
shocks in government spending on U.S. taxes and GDP during a period of very low interest
rates.
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1 Introduction

Vector autoregressions (VARs) are widely used for modeling and forecasting in macroeco-
nomics. In particular, VARs have been used to understand the interactions between macroe-
conomic variables, often through the estimation of impulse response functions that characterize
the effects of a variety of structural shocks on key economic variables. In recent years there
has been much interest in extending the traditional constant coefficient VARs to time-varying
parameter VARs (TVP-VARs) where the VAR coefficients are allowed to gradually evolve over
time (see, among many others, Cogley and Sargent, 2005; Cogley, Primiceri, and Sargent,
2010; Koop, Leon-Gonzalez, and Strachan, 2011; Koop and Korobilis, 2012). This approach
is motivated by a growing body of empirical evidence that demonstrates the importance of
accommodating time-varying structures for model fitting and forecasting.

Even for a moderate size VAR, however, the number of parameters in the model can be quite
large relative to the number of observations. This can lead to imprecise estimation of impulse
response functions and poor forecast performance. This problem is exacerbated in TVP-VARs,
which are much higher dimensional than constant coefficient VARs. The potential problems
associated with parameter proliferation have led many researchers to use Bayesian shrinkage in
VARs to improve estimates precision and forecast performance (e.g., Banbura, Giannone, and
Reichlin, 2010; Carriero, Clark, and Marcellino, 2011; Koop, 2011; Korobilis, 2011). Applying
shrinkage to time-varying parameter models is less straightforward and it often requires compu-
tationally demanding algorithms (Chan, Koop, Leon-Gonzalez, and Strachan, 2012; Nakajima
and West, 2010) or approximate inference (Koop and Korobilis, 2012). A related issue is model
specification and model selection; although empirically a TVP-VAR that allows all VAR co-
efficients to change over time typically perform better than a constant coefficient VAR, it is
plausible and even likely that a TVP-VAR where only some coefficients are time-varying while
others are time-invariant will perform better than both alternatives. Reducing the number of
parameters that vary effectively reduces the total number of parameters thereby achieving a
degree of parsimony. However, it is unclear how one can decide a priori which coefficients are
fixed and which are time-varying.

A goal of this paper, following the interesting work of Frühwirth-Schnatter and Wagner (2010)
and Belmonte, Koop, and Korobolis (2011) (hereafter FSW and BKK, respectively), among
others, is to develop a new methodology to nest both time-varying and time-invariant VARs
that is applicable to high-dimensional settings. Our starting point is the stochastic model
specification search (SMSS) framework introduced in FSW. Specifically, for each VAR coeffi-
cient, we introduce an indicator that chooses between a time-varying against a time-invariant
parameter. This allows the model to automatically switch to a more parsimonious specification
when the time-variation of the coefficient is “small”. One computational challenge in this setup
is that in a typical VAR, the number of values the indicators can take can be very large — e.g.,
for a small VAR with 3 variables and 4 lags, the number of combinations is 239 ≈ 5.5×1011. To
circumvent this computation problem, we introduce a new hierarchical prior for the indicators
under which the stochastic model specification search can be performed efficiently. In addition,
this new approach also incorporates the hierarchical Lasso prior in BKK that provides addi-
tional shrinkage, while maintaining the natural and intuitive framework in FSW. The proposed
approach therefore adds to the growing literature on efficient methods of ensuring parsimony
in potentially over-parameterized TVP-VARs.
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Another advantage of the proposed approach is that it can be used to shrink the TVP-VAR
to a stationary, constant coefficient VAR. In macroeconomic applications it is often necessary
to impose stationarity conditions to avoid explosive impulse-response functions or forecasts.
However, imposing stationarity conditions in a TVP-VAR implies inequality constraints on the
time-varying coefficients, which results in a nonlinear state space model where conventional
Kalman filter-based algorithms cannot be used. As pointed out in Koop and Potter (2011),
the common way to impose stationarity in such settings — estimating the unconstrained TVP-
VAR using Kalman filter-based algorithms and discarding any draws that do not satisfy the
stationarity conditions — may lead to invalid inference. On the other hand, the single- and
multi-move samplers proposed in Koop and Potter (2011), though sampling from the correct
posterior distribution, can be computationally demanding. The proposed approach therefore
provides a computationally feasible alternative for imposing the stationarity conditions proba-
bilistically. By shrinking the TVP-VAR towards a stationary VAR, the model has the features
of a stationary model, while still allowing some weight on nonstationarity to capture (poorly
modeled) nonlinearities or extreme events.

In the second contribution of the paper we demonstrate the overall approach with a topical
application. In particular, we investigate the dynamic responses of output growth and govern-
ment revenues and expenditure to a shock to government spending. We generalize earlier work
by Blanchard and Perotti (2002) by allowing for general time variation in the model parame-
ters. We study the dynamic effects of structural shocks in government spending on U.S. taxes
and GDP during a period where the interest rate is close to zero. In doing so we compare the
inference obtained from the SMSS and the standard TVP-VAR specifications. We find that
the SMSS generally offers more accurate estimates. In particular, our results from the SMSS
show clearer evidence of an implication of Ricardian equivalence that the evolution of taxes
generally follows that of spending. This phenomenon is much more difficult to detect with the
standard TVP-VAR alone where the impulse responses are much less precisely estimated. In
contrast, the SMSS leads to a distinct, clear pattern of long run government spending and taxes
changing by the same amount during the period under examination. Overall, it appears that
the SMSS is able to efficiently allocate time variation among the model parameters such as to
strike an effective balance between parsimony and flexibility: most parameters are restricted
to be essentially constant, while a select few are allowed a large degree of time variation.

The rest of the article is organized as follows. In Section 2 we first extend the stochastic model
specification search approach of FSW to a multivariate setting. We then introduce a new
hierarchical prior on the indicators and highlights its advantages over competing approaches.
Section 3 outlines the posterior computation, and the empirical application that studies the ef-
fects of fiscal structural shocks on GDP growth. Section 4 presents the application to responses
of macro variables to fiscal policy shocks and Section 5 contains some final comments.

2 SMSS and State Space Models

A popular approach for allowing for time-varying coefficients in time series models is through
the state space specification. Specifically, suppose yt is an n× 1 vector of observations on the
dependent variables, Xt is an n ×m matrix of observations on explanatory variables and βt
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is an m× 1 vector of states. Then a generic state space model can be written as:

yt =Xtβt + εt, (1)

βt = βt−1 + ηt, (2)

where εt ∼ N (0,Σ), ηt ∼ N (0,Ω), and Ω is typically assumed to be a diagonal matrix
Ω = diag(ω2

1 , . . . , ω
2
m). The errors εt and ηt are assumed to be independent at all leads and

lags. Finally, the state equation (2) is initialized with β0 = α, where α ∼ N
(
α0,A

−1
0

)
. In a

TVP-VAR setting, we have Xt = In ⊗ x′
t, where In is the n × n identity matrix and xt is a

k × 1 vector of deterministic terms and lagged observations (hence m = nk).

This general state space framework encompasses a wide variety of commonly used time-varying
parameter (TVP) regression models in macroeconomics and has become a standard framework
for analyzing macroeconomic data. However, recent research has raised the concern that over-
fitting might be a problem for these highly parameterized models. Moreover, these high-
dimensional models typically give imprecise estimates, making any form of inference more
difficult. Motivated by these concerns, researchers might wish to have a more parsimonious
specification that reduces the potential problem of over-parameterization, while maintaining
the flexibility of the state space framework and so allowing time-variation of the coefficients.
For example, one might wish to have a default model with time-invariant coefficients, but
each of these coefficients can switch to being time-varying when there is strong evidence for
time-variation. In this way, one can maintain a parsimonious specification that leads to more
precise estimates, while minimizing the risk of model misspecification.

In what follows, we first outline two existing methods for performing a stochastic model speci-
fication search with the aim of shrinking the model towards a more parsimonious specification.
We then present a new method to perform the specification search, which has theoretical and
computational advantages over existing approaches.

2.1 Existing Approaches

In an important paper Frühwirth-Schnatter and Wagner (2010) (FSW) propose the follow-
ing framework for nesting both time-varying and time-invariant coefficient specifications. To
set the stage, consider again the generic state space model in (1)–(2), and recall that βt =
(β1,t, . . . , βm,t)

′ is the state vector at time t, β0 = α = (α1, . . . , αm)′ is the vector of initial
states, and Ω = diag(ω2

1, . . . , ω
2
m) is the covariance matrix for the state transition in (2). To

proceed, reparameterize γj,t = (βj,t−αj)/ωj for j = 1, . . . ,m, so that (1)–(2) can be rewritten
as

yt =Xtα+XtΩ
1

2γt + εt, (3)

γt = γt−1 + η̃t, (4)

where εt ∼ N (0,Σ), η̃t ∼ N (0, Im), and Ω
1

2 = diag(ω1, . . . , ωm). It is clear that when
ω1 = · · · = ωm = 0, the above specification reduces to a standard time-invariant regression
model. By allowing the ωj’s to have different values, the model (3)–(4) can therefore accom-
modate the possibility that some coefficients are time-varying, whereas others are constant
over time. More importantly, by specifying a suitable prior for the ωj’s, this framework pro-
vides a convenient way to shrink the TVP state space model to a more parsimonious constant
coefficient regression.
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Specifically, FSW propose the following independent normal priors each with a point mass
at 0:

p(ωj) = π0j1(ωj = 0) + (1− π0j)φ(0,∞)(ωj;µj , τ
2
j ), (5)

where π0j is the apriori probability that ωj equals 0, and φX(·;µ, σ
2) denotes the density of the

truncated N (µ, σ2) distribution with support in X. These priors can be equivalently specified
by introducing the indicators

dj =

{
0 with probability π0j
1 with probability 1− π0j

and ω̃j ∼ N (µj , τ
2
j ). Then, ωj = djω̃j has the desired distribution in (5).

Each vector d = (d1, . . . , dm)′ corresponds to a model in which some coefficients, specifically
those with dj = 1, are time-varying while others are not. Hence, the stochastic variable
selection approach of George and McCulloch (1993, 1997) can be adopted to perform the
stochastic model specification search. Particularly, FSW derive a Markov Chain Monte Carlo
(MCMC) algorithm for sampling the indicators simultaneously with the models parameters.
However, the main drawback of this approach is that it becomes computationally infeasible
when m is large. Specifically, in one step of the MCMC algorithm it is required to compute
the joint probability that d1 = i1, . . . , dm = im given the data and all the other parameters
except ωj’s, where (i1, . . . , im) ∈ {0, 1}m. This step becomes computationally infeasible when
m is large as there are altogether 2m combinations.

In view of this difficulty, Belmonte, Koop, and Korobolis (2011) (BKK) specify an alternative
hierarchical Lasso prior directly on the ωj’s as follows:

(ωj | τ
2
j ) ∼ N

(
0, τ2j

)

τ2j ∼ E

(
λ2

2

)
(6)

λ2 ∼ G (λ01, λ02) (7)

where E( · ) and G( · ) denote respectively the Exponential and the Gamma distributions. This
Lasso prior circumvents the model proliferation problem by removing the indicators, and at
the same time provides additional shrinkage towards the time-invariant model.

While the specification of BKK addresses the computation issue, this comes at the cost of losing
two attractive features of the FSW specification. First, while it is true that “if ωj is shrunk to
0... then we have a model with a constant parameter on predictor j”, the probability of such
shrinking ever occurring is in fact zero, i.e., Pr(ωj = 0) = 0. Second, the probability that the
indicator dj = 0 has an intuitive interpretation: it is the probability that the corresponding
coefficient does not change over time. As such, this is useful for prior elicitation — e.g., some
coefficients might be more likely to vary over time than others apriori. On the other hand,
prior elicitation in BKK’s specification is more difficult. Further, given the posterior draws of
the indicators in FSW’s specification, it is easy to compute posterior model probabilities for
model selection or other probabilities to assess various claims — e.g., output persistence does
not change over time — whereas these probabilities are more difficult to compute under the
specification of BKK.
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2.2 A Tobit Prior

Both the FSW and BKK prior specifications have attractive features: the former has a natu-
ral, intuitive interpretation that is useful for prior elicitation and computing various interesting
posterior quantities, whereas the latter provides additional shrinkage and leads to computa-
tionally feasible MCMC sampler even when the dimension of the states is large. We therefore
aim to have a setup that has the advantages of both specifications, while circumventing their
drawbacks. More specifically, we propose the following censored or Tobit prior on ωj . Introduce
the latent variable

ω∗
j ∼ N

(
µj, τ

2
j

)
,

and set

ωj =

{
0 if ω∗

j 6 0

ω∗
j if ω∗

j > 0.

It is easy to see that the marginal density of ωj unconditional of ω∗
j is given by

p(ωj | τ
2
j ) = Φ

(
−
µj
τj

)
1(ωj = 0) + φ(ωj ;µj, τ

2
j )1(ωj > 0), (8)

where φ(·;µ, σ2) denotes the normal density with mean µ and variance σ2 while Φ (·) denotes
the standard normal distribution. Additionally, we assume τ2j has the prior as in (6)-(7) to
incorporate the Lasso structure.

This proposed prior specification has several appealing features. First, it incorporates the
essential elements of both the priors in FSW and BKK. To see the connection to FSW, let

π0j = Φ
(
−

µj

τj

)
and rewrite the proposed prior in (8) as

p(ωj | τ
2
j ) = π0j1(ωj = 0) + (1− π0j)φ(0,∞)(ωj ;µj, τ

2
j ).

Therefore, it allows for both a non-trivial probability of a certain parameter to be time-invariant
and simultaneously the hierarchical shrinking that BKK so strongly argue for in forecasting
applications.

Second, the proposed specification imposes a very sensible relationship between the probabil-
ity of time-invariance π0j and the distribution of ωj in the time-varying case. Specifically, the
farther the mean (normalized by standard deviation) is away from zero, the lower the proba-
bility that ωj is zero, and vice-versa. This is desirable because it means that for values of µj
that are close to zero, the prior shrinks the model towards a time-invariant specification. For
example, setting µj = 0 implies that π0j is constant and equal to 0.5. Consequently, tuning the
hyper-parameters λ01, λ02 such that τ2j is “large” with probability ≈ 1 leads to the FSW spec-
ification where dj is zero with probability 0.5 and ω̃j follows a half-normal, weakly-informative
distribution.

Lastly, this prior leads to a straightforward Gibbs sampler. Importantly, in contrast to the
MCMC sampler in FSW that becomes computationally intensive in high-dimensional state
space models, this Gibbs sampler is fast and is applicable to such settings.
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3 Priors and Posterior Computation

To complete the model specification, we assume the following standard independent priors for
α and Σ:

α ∼ N (α0,A
−1
0 ), Σ ∼ IW(ν0,Σ0),

where IW denotes the inverse Wishart distribution. In what follows, we outline the posterior
computation using MCMC, and we give the details in Appendix B. First, define the m × 1
vectors ω∗ = (ω∗

1 , . . . , ω
∗
m)′, ω = (ω1, . . . , ωm)′ and τ = (τ1, . . . , τm)′, and stack

y =



y1
...
yT


 , X =



X1
...
XT


 , γ =



γ1
...
γT


 , ε =



ε1
...
εT


 .

Then, posterior draws are obtained by sequentially sampling from:

1. p(α |y,γ,ω∗,Σ, τ , λ);

2. p(γ |y,α,ω∗,Σ, τ , λ);

3. p(Σ |y,α,γ,ω∗, τ , λ);

4. p(ω∗ |y,α,γ,Σ, τ , λ);

5. p(τ |y,α,γ,ω∗,Σ, λ);

6. p(λ |y,α,γ,ω∗,Σ, τ ).

We note that ωj is completely determined by ω∗
j . In fact, under the Tobit prior discussed in

Section 2.2, we have ωj = 0 if ω∗
j ≤ 0 and ωj = ω∗

j otherwise. Now, given ω, the model in
(3)–(4) is a conventional TVP-VAR. Hence, Steps 1-3 are standard, and we leave the details
to Appendix B. Here we discuss the implementations of Steps 4-6.

One feasible approach to sample ω∗ from its full conditional distribution is to simulate each
element ω∗

j at a time. To that end, first recall that X t = In⊗x
′
t, and xt = (x1,t, . . . , xk,t)

′ is a
k × 1 vector of deterministic terms and lagged observations. Now, defining Gt =Xt diag(γt),
let

G =



G1
...
GT


 .

Stack (3) over t and rewrite the measurement equation as

y =Xα+Gω + ε. (9)

Further, let gj denote the j-th column of G, and accordingly, let G\j be the Tn × (m − 1)
matrix obtained by deleting the j-th column in G. Similarly, let ω\j represent ω with the j-th
row removed. Then,

vj ≡ y −Xα−G\jω\j = gjωj + ε.
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Compute further the following posterior quantities:

τ̂2j =
(
τ−2
j + g′j(IT ⊗Σ−1)gj

)−1

µ̂j = τ̂2j
(
µj/τ

2
j + g′j(IT ⊗Σ−1)vj

)

ψ̂j =
Φ(µ̂j/τ̂j)

Φ (−µj/τj)

τ̂j
τj

exp

{
1

2

(
µ̂2j
τ̂2j

−
µ2j
τ2j

)}

π̂j = (1 + ψ̂j)
−1.

Then, the conditional density of ω∗
j is the following 2-component mixture of truncated normals

p(ω∗
j |y,α,γ,ω

∗
\j ,Σ, τ , λ) = π̂jφ(−∞,0)

(
ω∗
j | µj, τ

2
j

)
+ (1− π̂j)φ(0,∞)

(
ω∗
j | µ̂j, τ̂

2
j

)
.

The derivations can be found in Appendix B. A draw from the above mixture distribution can
be obtained as follows. First, get a Bernoulli draw Z with success probability π̂j . If Z = 0,
sample ω∗

j from the truncated N (ω∗
j ;µj , τ

2
j ) distribution with support (−∞, 0); if Z = 1,

sample ω∗
j instead from the truncated N (ω∗

j ; µ̂j , τ̂
2
j ) distribution with support (0,∞).

Finally, τ2j and λ conditional on ω∗
j may be sampled exactly as discussed in BKK:

(τ−2
j |λ, ω∗

j ) ∼ IG

(√
λ2

(ω∗
j − µj)2

, λ2

)

(λ2 | τ ) ∼ G


λ01 +m,λ02 +

1

2

m∑

j=1

τ2j




where IG( · ) denotes the inverse Gaussian distribution.

4 Application

In this section we investigate the effects of a fiscal shock on growth, taxes and government
spending. We estimate the impulse responses of these variables to a shock to government
spending. Perotti (2005) and Gaĺı, Vallés and López-Salido (2007) point out that models based
upon different theories — neoclassical, Keynesian or neo-Keynesian — can make conflicting
predictions about the responses of macro variables to fiscal shocks. When the empirical evi-
dence is imprecise little can be learned about the support for alternative theories and therefore
the likely effects of fiscal policy. The results from this section provide improved inference by
producing more precise estimates of impulse responses of growth and government spending and
receipts to a spending shock. We estimate a VAR for the vector of US variables yt = (tt, gt, yt)
where tt is a measure of government revenue, gt is government expenditures, and yt is output.
All variables are in logs of real per capita values. Government expenditure consists of gov-
ernment consumption and investment while government revenue is less government transfers.
Following Blanchard and Perotti (2002), we use real per capita figures and deflate the variables
using the GDP deflator.

As all of these variables display strong trending behaviors, and any test for a unit root will
support this conclusion, the temptation is to model them in differences. However differencing
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removes information on the relationships among the levels of the variables. It is reasonable to
conclude that government expenditure should not exceed GDP nor be negative. We can say
something more than this as, in the US at least, government expenditure tends to remain fairly
stable as a proportion of GDP. There is also reason to believe that government expenditures
cannot wander too far from government receipts for too long. We therefore respecify the VAR
into a VECM in which we impose stationarity of the difference tt − gt and gt − yt. Imposing
the first of these relations expresses a prior belief in Ricardian equivalence. This seems to be
a reasonable restriction as evidence on these constraints suggests they are I (0) , although the
exact form of the process may have structural breaks (see discussion in, for example, Martin,
2009).

Setting zt = (tt − gt, gt − yt)
′ , and assuming four autoregressive lags (following Blanchard and

Perotti, 2002), the VECM has the form

∆yt = β0,t + β1,tzt−1 +
4∑

l=1

β1+l,t∆yt−l + εt. (10)

In terms of the model in (1), we have

yt =



∆tt
∆gt
∆yt


 , xt =




1
zt−1

∆yt−1


 , βt = vec



β′
0,t
...
β′
5,t


 .

This setup is further motivated by the well documented importance of allowing parameters
to vary over time when analyzing macroeconomic data (see for example the survey in Koop
and Korobilis, 2010). Indeed, Blanchard and Perotti (2002) allow for limited time-variation
in the transmission mechanism through various trending specifications along with a quarterly
dependence of the parameters. Nevertheless, while they acknowledge that allowing for more
general time variation would be appropriate, they conclude that doing so “would have quickly
exhausted all degrees of freedom.”

Accordingly, we utilize this framework to compare the inference obtained from the SMSS
specification proposed in this article to the benchmark TVP-VAR. In particular, we seek to
ascertain whether the Tobit prior can provide the necessary degree of parsimony such as to
yield sufficiently precise inference when the parameter-rich TVP-VAR fails to do so, while
allowing for certain parameters to vary over time with some (nonzero) probability. To this
end, we complete the SMSS specification of the VECM outlined above by setting the following
hyper-parameters on the priors discussed in Section 3:

a0 = 0, A0 =
1

100
Im,

ν0 = n+ 3, Σ0 = In,

λ01 = 1 +
1

100
, λ02 =

1

100
.

To estimate the standard TVP-VAR, we employ the algorithm given in Chan and Jeliazkov
(2009), with the priors chosen to match as closely as possible the SMSS prior specification
above. Finally, our data essentially coincides with that used by Blanchard and Perotti (2002)
but is extended to cover the sample period 1958Q3 to 2011Q4.

9



4.1 Identification Restrictions

Eliciting impulse response functions necessitates the estimation of structural shocks. Blanchard
and Perotti (2002) provide the restrictions needed to identify the structural shocks in the VAR
framework. It turns out that under these restrictions, structural parameters can be readily
recovered from the reduced form covariance matrix. Consequently, we follow this strategy in
simulating the posterior of the VECM given in (10) directly, then recovering draws of the
necessary structural parameters by solving a system of nonlinear equations for each draw. We
briefly discuss the utilized approach in this section, with the details provided in Appendix A.

Specifically, equations (2)-(4) in Blanchard and Perotti (2002) may be represented as




1 0 −a1
0 1 −b1

−c1 −c2 1





εtt
εgt
εyt


 =




1 a2 0
b2 1 0
0 0 1





s1 0 0
0 s2 0
0 0 s3





utt
ugt
uyt


 , (11)

where ujt
iid
∼ N (0, 1) for j = t, g, y. and εt =

(
εtt, εgt , εyt

)′
∼ N (0,Σ) is the reduced form

residual in (10). Given a draw of Σ, therefore, it is possible to recover draws of the parameters
in (11) by solving an appropriate system of equations. There are two key components in the
identification strategy set forth by Blanchard and Perotti (2002) that make solving this system
relatively straightforward:

1. a1 and b1 are given;

2. either (i) a2 = 0, b2 6= 0, or (ii) a2 6= 0, b2 = 0.

Blanchard and Perotti (2002) set by assumption b1 = 0 and compute a value for a1 = 2.08
(as the average within-quarter elasticity of net taxes with respect to output). Because we
consider our data to be sufficiently similar, and since our central concern is to compare the
precision in inferences obtained from the SMSS and TVP-VAR specifications, these values
are retained for the purpose of the impulse response analysis reported below. Alternatively,
one could specify non-degenerate distributions over a1 and b1, to reflect less dogmatic prior
information. Combining samples of a1, b1 from such distributions with posterior draws of
the model parameters (in simulating impulse response functions) would essentially lead to an
exercise in averaging over prior beliefs.

4.2 Results

We implement the Gibbs algorithm described in Section 3 to obtain 25,000 posterior draws
(after a 2,500 burn-in) of the parameters in the VECM model (10). In doing so, we re-scale
and re-center the three “first-differenced” series (i.e., ∆yt) to match the naive priors. The
two integration relations in zt are left untouched. Accordingly, all impulse response functions
reported below are appropriately adjusted such as to reverse these transformations and match
the original series.1 Our implementation of the algorithm also utilizes the three Generalized

1A similar approach to “standardizing” the series is undertaken by BKK and affects only the prior specifica-
tion, as long as the transformations are appropriately accounted for in posterior computations. Alternatively,
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Gibbs steps (Liu and Sabatti, 2000) discussed in Appendix B. The stability of the algorithm
was verified by tracking the inefficiency factors of all sampled variables and replicating the
simulation run several times.

Table 1: Estimated Time-Invariance Probabilities under the SMSS Specification

Tax Spend GDP

Intercept 0.592 0.332 0.528
tt−1 − gt−1 0.523 0.503 0.491
gt−1 − yt−1 0.542 0.235 0.506

1s
t
la
g Tax 0.332 0.559 0.565

Spend 0.769 0.690 0.699
GDP 0.339 0.192 0.676

2n
d
la
g Tax 0.717 0.734 0.606

Spend 0.537 0.668 0.685
GDP 0.553 0.565 0.695

3r
d
la
g Tax 0.405 0.721 0.697

Spend 0.727 0.715 0.669
GDP 0.643 0.719 0.752

4t
h
la
g Tax 0.730 0.513 0.738

Spend 0.578 0.613 0.616
GDP 0.657 0.630 0.740

To demonstrate the effect of the Tobit prior in controlling the time variation of the parameters,
we report two types of posterior quantities: (i) the time-invariance probability (TIP), which
represents the estimated probability that a particular βi,j,t is constant — e.g., Pr(ωj,t = 0 |y)
— and (ii) the maximum time variation (MTV) in posterior means, which is computed as
the difference max{E(βi,j,t |y)}

T
t=1 −min{E(βi,j,t |y)}

T
t=1. As illustrated in Table 1, estimated

TIPs under the SMSS specification vary from 0.192 (effect of first lag in GDP on spending) to
0.769 (effect of first lag in spending on taxes). Consequently, both the height and variation in
the probabilities of time invariance give strong support to this approach over the highly pa-
rameterised TVP-VAR. This is further reinforced by comparing the MTVs reported in Table 2,
across the two specification. Note that these in general follow the same pattern for both SMSS
and TVP-VAR in the sense that parameter estimates that exhibit relatively more time varia-
tion under the TVP-VAR also vary relatively more under the SMSS. Nevertheless, the SMSS
specification evidently leads to an overall reduction in time variation across the parameters.

There is likewise a strong link between the TIPs and MTVs (under SMSS): as expected,
higher TIPs generally correspond to lower MTVs. More interestingly, higher TIPs appear to
be associated with more substantial reductions in MTVs. However, at the lower end of the
TIPs, time variation actually increases. For example, the TIP related to the effect of the co-
integration term gt−1 − yt−1 on spending is estimated at 0.235, and its posterior mean varies
from -6.47 to -5.33 (a difference of 1.14) while under the TVP-VAR the maximum variation is
less than half that at 0.503.

Synthesizing the above suggests that the Tobit prior not only produces the effect of reducing

one may work with the original series and employ a training sample to specify the priors (for example, as in
Primiceri, 2005), although this is operationally more involved. It is likewise worthwhile noting that we apply
the same standardization in both the SMSS and the TVP-VAR specifications.
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Table 2: Comparison of Maximum Time Variation in Posterior Means under the SMSS and
the TVP-VAR Specifications

SMSS TVP-VAR
Tax Spend GDP Tax Spend GDP

Intercept 0.232 0.780 0.176 0.372 0.478 0.270
tt−1 − gt−1 0.064 0.062 0.241 0.157 0.077 0.215
gt−1 − yt−1 0.254 1.140 0.261 0.390 0.503 0.325

1s
t
la
g Tax 0.304 0.130 0.113 0.440 0.311 0.367

Spend 0.016 0.040 0.030 0.365 0.226 0.202
GDP 0.428 0.512 0.049 0.546 0.575 0.157

2n
d
la
g Tax 0.024 0.014 0.085 0.141 0.159 0.441

Spend 0.102 0.048 0.036 0.418 0.238 0.190
GDP 0.145 0.118 0.026 0.484 0.312 0.174

3r
d
la
g Tax 0.172 0.028 0.040 0.590 0.206 0.451

Spend 0.028 0.034 0.048 0.243 0.228 0.305
GDP 0.072 0.015 0.012 0.670 0.129 0.367

4t
h
la
g Tax 0.022 0.153 0.022 0.232 0.433 0.202

Spend 0.088 0.069 0.083 0.297 0.276 0.345
GDP 0.043 0.086 0.022 0.277 0.298 0.209

“unnecessary” time variation, but in fact, reallocates time variation across the model param-
eters by reducing such variation in some parameters, while increasing it in others. As made
evident in Tables 1 and 2, the SMSS specification (relative to the standard TVP-VAR) tends
to remove time variation from a majority of the model parameters and concentrate it on a
select few. Indeed, this highlights the mechanism by which the Tobit prior induces parsimony
in a time-varying parameter model.

To further illustrate the effectiveness of the SMSS approach, we compute impulse responses to
spending shocks for taxes, spending and GDP, in the spirit of Blanchard and Perotti (2002).
In particular, we employ the identification restrictions discussed in Section 4.1, along with the
procedure outlined in Appendix A, to decompose the reduced form covariance matrix Σ. We
then use the the resulting posterior draws of the structural parameters (together with draws
of β) to compute the percent changes in taxes, spending and GDP to a one percent increase
in spending. Therefore, in contrast to Blanchard and Perotti (2002), the impulse responses
are expressed in terms of elasticities rather than absolute levels. Moreover, because we are
working in a time-varying parameter context, we choose a specific (within-sample) time period
— 2000Q1 to 2010Q4 (10 years) — to conduct the analysis.

The resulting impulse response functions are summarized in Figure 1, where the the HPD
intervals (dotted lines) are constructed as [16%, 84%] while the estimated impulse responses
(solid lines) are posterior medians. In the figure, the top row contains the impulse responses
generated by the SMSS specification, while in the bottom row are those corresponding to the
standard TVP-VAR. It is clear that that the TVP-VAR generally yields wider HPD intervals
relative to SMSS. This is particularly evident for taxes and GDP (where incidentally SMSS
tends to assign higher probabilities of time-invariance). The more accurate inference delivered
by SMSS is important since, as pointed out by Perotti (2005), the effects of fiscal policy have
become weaker over time and so it is important to have a method that can distinguish when

12



the effect is different from zero.

The TVP-VAR yields somewhat peculiar (median) impulse responses for taxes and GDP, in
contrast to SMSS. For example, the TVP-VAR predicts that both taxes and GDP responses are
initially negative and require about two years to cross into positive territory, where they remain
in the long run. This is counter-intuitive and appears to be an artifact of the imprecision with
which the TVP-VAR estimates the impulse responses. The reported HPD intervals contain zero
for all of this initial period. Under the SMSS specification, on the other hand, the estimated
responses of taxes and GDP are estimated to be positive for the entire period in examination
— a much more plausible result and one consistent with the conclusions drawn in Blanchard
and Perotti (2002).

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

S
M

S
S

Taxes

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2
Spending

0 10 20 30 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
GDP

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

T
V

P
−

V
A

R

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 1: Comparison of IRFs generated by the SMSS and TVP-VAR for 40 quarters following
a 1% Shock in Spending in 2000Q1

Another interesting feature of the results is the clear effect of imposing of Ricardian equivalence
in the responses. This feature is imposed upon both models and the long run effect is obviously
present in both models, but the SMSS gives much nicer bounds. To highlight the comparison,
Figure 2 plots the median responses for taxes and spending (without the HPD limits), as
generated by the SMSS and standard TVP-VAR specifications. Indeed, it seems that taxes are
always chasing spending with a delayed response, until spending stabilizes and they converge.
This is very clear in the SMSS, but noticeably more distorted with the TVP-VAR, where taxes
dip into the negative over the first two years. Based on the TVP-VAR results alone, therefore,
distinguishing this effect is made difficult by the imprecision of the estimates related to the
parameter proliferation present in this specification. In contrast, employing the Tobit prior
leads to a much clearer representation and greatly facilitates economic interpretation of the
simulation results.
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Figure 2: Median Impulse Response of Taxes and Spending to a 1% Shock in Spending in
2000Q1

5 Concluding Remarks

Time-varying VARs are widely used for studying the dynamic effects of structural shocks on
key economic variables through the estimation of impulse response functions. However, since
these models are highly parameterized, inference is typically imprecise and conclusions are
often difficult to draw. In this paper we present a new method that allows the data to decide
whether parameters are time varying or time invariant in a VAR, thus allowing the model
to automatically switch to a more parsimonious specification when the time-variation of the
coefficient is small. By introducing a Tobit prior on the variances in the state equations, the
task of computing the many indicators is greatly simplified.

We apply the new methodology and the computation scheme to a brief study of responses in
US government receipts, government expenditure and GDP to a fiscal policy shock. Compared
to those results obtained under an unrestricted TVP-VAR, we find some differences in the
median response paths but the most significant improvement is in the precision of estimation
of the responses. This is an important result since these effects have become weaker over time
(Perotti, 2005) so greater precision in estimation is necessary for accurate inference.

14



Appendix A: Recovering Structural Parameters from the Preci-

sion Matrix

In terms of (11), define ψ = −

(
a1
b1

)
, γ = −

(
c1 c2

)
, ∆ =

(
1 a2
b2 1

)
, Ξ

1

2 =

(
s1 0
0 s2

)
and

rewrite the system as
(
I ψ

γ 1

)
εt =

(
∆

1

)(
Ξ

1

2

s3

)
ut, ut

iid
∼ N (0, I3).

Hence,

εt
iid
∼ N

(
0,
(
K ′K

)−1
)
,

where

K =

(
Ξ− 1

2

1
s3

)(
∆−1

1

)(
I ψ

γ 1

)
.

If we estimate a reduced-form covariance matrix Σ, therefore, posterior draws of the structural
parameters and variances (e.g. the six free parameters in K) can be obtained by solving
K ′K = Q ≡ Σ−1. More precisely, partitioning

Q =

(
Q11 q12
q′12 q3

)
,

and denoting Θ = (∆Ξ∆′)
−1

leads to the system of nonlinear equations:

Θ+
1

s23
γ′γ = Q11 (12)

Θψ +
1

s23
γ′ = q12 (13)

ψ′Θψ +
1

s23
= q3 (14)

As discussed in the text, the following two conditions make this system easy to solve:

1. a1 and b1 are given (more specifically, b1 = 0), and therefore, ψ is known

2. either (i) a2 = 0, b2 6= 0, which implies that∆ is lower triangular with 1’s on the diagonal,
or (ii) a2 6= 0, b2 = 0, which implies that ∆ is upper triangular with 1’s on the diagonal.

Given this, γ, ∆, Ξ
1

2 , and s3 can be solved for in three steps:

1. Solve for s3:

ψ′Θψ +
1

s23
ψ′γ′γψ = ψ′Q11ψ

ψ′Θψ +
1

s23
ψ′γ′ = ψ′q12

ψ′Θψ +
1

s23
= q3,
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implies that

q3 −
1

s23
+

1

s23

[
s23
(
ψ′q12 − q3

)
− 1
]2

= ψ′Q11ψ,

and therefore,

s3 =

√
ψ′Q11ψ − 2ψ′q12 + q3

ψ′q12 − q3
. (15)

2. Solve for γ, given s3:

Substituting (12) into (13) leads to

γ′γψ − γ ′ + s23 (q12 −Q11ψ) = 0. (16)

It can be readily verified that the solution to (16) is of the form

γ′ =
1±

√
1− 4s23ψ

′ (q12 −Q11ψ)

2ψ′ (q12 −Q11ψ)
(q12 −Q11ψ) . (17)

3. Solve for s1, s2 and either a2 or b2, given s3, γ:

From (12), we have

∆Ξ∆′ =

(
Q11 −

1

s23
γ′γ

)−1

. (18)

Therefore,

(a) a2 = 0, b2 6= 0: s1, s2, b2 are found by the LDL decomposition of the 2 × 2 matrix(
Q11 −

1
s2
3

γ′γ
)−1

.

(b) a2 6= 0, b2 = 0: s1, s2, a2 are found by the UDL decomposition of the 2× 2 matrix(
Q11 −

1
s2
3

γ′γ
)−1

.

Of course, one caveat here is that the ± in (17) generates two possible values for γ. Indeed,
there are two solutions to (16). However, only one of these solutions leads to a correct decom-

position of
(
Q11 −

1
s2
3

γ′γ
)−1

in Step 3. To solve this problem, we write a script that computes

both solutions from (17) and checks which one leads to a correct solution of the entire system.

Appendix B: MCMC Sampler

In this appendix we provide the details of the MCMC sampler outlined in Section 3. First, we
derive the expression for ψ̂j . Note that the joint conditional density for (ω∗

j , ωj) is given by

p
(
ω∗
j , ωj |y,α,γ,ω

∗
\j ,Σ, τ , λ

)
∝ φ

(
v;gjωj, IT ⊗Σ

)
φ
(
ω∗
j ;µj , τ

2
j

)
1(ω∗

j ≤ 0)1(ωj = 0)

+ φ
(
v;gjωj, IT ⊗Σ

)
φ
(
ω∗
j ;µj , τ

2
j

)
1(ω∗

j > 0)1(ωj = ω∗
j ).
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Hence, marginalizing over ωj yields

p
(
ω∗
j |y,α,γ,ω

∗
\j,Σ, τ , λ

)
∝ φ (vj;0, IT ⊗Σ)φ

(
ω∗
j ;µj , τ

2
j

)
1(ω∗

j ≤ 0)

+ φ
(
vj ;gjω

∗
j , IT ⊗Σ

)
φ
(
ω∗
j ;µj , τ

2
j

)
1(ω∗

j > 0)

∝ Φ

(
−
µj
τj

)
φ (vj;0, IT ⊗Σ)φ(−∞,0)

(
ω∗
j ;µj, τ

2
j

)

+Φ

(
µ̂j
τ̂j

) φ
(
vj;gjω

∗
j , IT ⊗Σ

)
φ
(
ω∗
j ;µj , τ

2
j

)

φ
(
ω∗
j ; µ̂j , τ̂

2
j

) φ(0,∞)

(
ω∗
j ; µ̂j, τ̂

2
j

)

∝ φ(−∞,0)

(
ω∗
j ;µj , τ

2
j

)
+ ψ̂jφ(0,∞)

(
ω∗
j ; µ̂j, τ̂

2
j

)
,

where

ψ̂j =
Φ(µ̂j/τ̂j)

Φ (−µj/τj)
×
φ
(
vj;gjω

∗
j , IT ⊗Σ

)
φ
(
ω∗
j ;µj , τ

2
j

)

φ (vj;0, IT ⊗Σ)φ
(
ω∗
j ; µ̂j , τ̂

2
j

)

=
Φ(µ̂j/τ̂j)

Φ (−µj/τj)
×
τ̂j
τj

× exp

{
−
1

2

((
vj − gjω

∗
j

)′ (
IT ⊗Σ−1

) (
vj − gjω

∗
j

)

−v′j
(
IT ⊗Σ−1

)
vj +

1

τ2j

(
ω∗
j − µj

)2
−

1

τ̂2j

(
ω∗
j − µ̂j

)2
)}

.

(19)

However, since

µ̂j
τ̂2j

−
µj
τ2j

= g′j
(
IT ⊗Σ−1

)
vj

1

τ̂2j
−

1

τ2j
= g′j

(
IT ⊗Σ−1

)
gj ,

(19) simplifies to

ψ̂j =
Φ(µ̂j/τ̂j)

Φ (−µj/τj)

τ̂j
τj

exp

{
1

2

(
µ̂2j
τ̂2j

−
µ2j
τ2j

)}
.

Next, we provide the details of Steps 1-3 in the MCMC sampler. For Step 1, sample

(α |y,γ,ω∗,Σ, τ , λ) ∼ N
(
α̂, Â

−1
)
,

where

Â = A0 +X
′(IT ⊗Σ−1)X, α̂ = Â

−1 (
A0α0 +X

′(IT ⊗Σ−1)(y −Wγ)
)
,

and W is obtained by defining W t =XΩ
1

2 and stacking

W =



W 1
...

W T


 .
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For Step 2, we first define

H =




Im
−Im Im

. . .
. . .

−Im Im


 .

Then, sample

(γ |y,α,ω∗,Σ, τ , λ) ∼ N
(
γ̂, Γ̂

−1
)

using the precision-based sampler in Chan and Jeliazkov (2009), where

Γ̂ =H ′H +W ′(IT ⊗Σ−1)W , γ̂ = Γ̂
−1
W ′(IT ⊗Σ−1)(y −Xα).

Finally, obtain

(Σ |y,α,γ,ω∗, τ , λ) ∼ IW
(
ν0 + T, Σ̂

)
,

where

Σ̂ = Σ0 +

T∑

t=1

(
yt −Xt

(
α+Ω

1

2γt

))(
yt −X t

(
α+Ω

1

2γt

))′
.

Recall that the details related to the conditional sampling of ω∗, τ , and λ (Steps 4-6) are
provided in Section 3.

A few remarks regarding this algorithm are in order. First, one may readily observe that α
and γ have an analytically tractable joint distribution of the form

(α,γ |y,ω∗,Σ, τ , λ) ∼ N
(
δ̂, ∆̂

−1
)
, (20)

where

∆̂ =

(
A0

H ′H

)
+

(
X ′

W ′

)(
IT ⊗Σ−1

) (
X W

)

δ̂ = ∆̂
−1
((
A0a0
0

)
+

(
X ′

W ′

)(
IT ⊗Σ−1

)
y

)
.

However, themT×mT matrix ∆̂ presents a number of computational difficulties. In particular,
while ∆̂ is indeed a sparse matrix, it does not inherit a very convenient sparsity structure;
operations such as inversion and Cholesky decomposition (both crucial to sampling from (20))
are computationally intensive, and in fact, quite inhibitive in large dimensional settings.

On the other hand, sampling α and β sequentially — i.e., drawing (α |γ, · ) followed by
(γ |α, · ) — does not appear to generate significant autocorrelation in the MCMC chain, to
the extent that it would justify the additional computational burden necessary to sample α
and β in a single block. In fact, a battery of tests applied under various settings and with
various data consistently found that the computation time required to achieve the same level of
efficiency was much lower under the sequential sampling scheme, in comparison to the blocking
approach.

Moreover, the efficiency of the proposed algorithm may be improved by augmenting the six
steps outlined in Section 3 with one or more Generalized Gibbs (GG) steps, as proposed in Liu
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and Sabatti (2000). The basic idea of such an augmentation is to transform the draws obtained
by recursive, conditional sampling within a typical Gibbs loop in such a way as to preserve
the invariant target distribution of the Markov chain. Because the transformation involves
additional randomly sampled quantities, this has the potential to introduce randomness into
otherwise highly autocorrelated MCMC chains, and hence, boost sampling efficiency.

To this end, we identify three potentially beneficial GG moves in our context. We present
these transformations assuming that µj = 0 — an assumption maintained in all practical im-
plementations of the algorithm outlined in Section 3. Generalizing to cases with non-zero µj is
conceptually straightforward, but requires more involved sampling procedures, as subsequently
discussed. In particular, a combination of one or more of the following GG steps have been
found to improve the mixing of the MCMC chain generated by the proposed Gibbs algorithm:

1. Given the current draws of γ, τ 2, λ2, sample for each j = 1, . . . ,m

(ϑj |γj, τ
2
j , λ

2) ∼ GIG

(
T − 3

2
, τ2j λ

2,γ′
jH̃

′
H̃γj

)
, (21)

and apply the transformations

τ
2(new)
j = τ2j /ϑj

ω
∗(new)
j = ω∗/

√
ϑj , ω

(new)
j = ω

∗(new)
j 1

(
ω
∗(new)
j > 0

)

γ
(new)
j = γj

√
ϑj ,

where γj is a T × 1 vector of the elements in γ that correspond to the jth covariate, and

H̃ =




1
−1 1

. . .
. . .

−1 1


 .

Likewise, GIG( · ) denotes the Generalized Inverse Gamma distribution and may be
efficiently sampled from using the rejection method of Dagpunar (1989).

2. Given the current draws of ω∗, τ 2
2, λ

2, sample

(ϑ |ω∗, τ 2
2, λ

2) ∼ G


λ01 +

m

2
, λ02λ

2 +
1

2

m∑

j=1

ω∗2
j

τ2j


 , (22)

and apply the transformations

λ2(new) = λ2ϑ, τ 2(new) = τ 2/ϑ.

3. Given the current draws of α,γ1,ω, and defining

Θ̂ = InT +Ω
1

2A0Ω
1

2 , ϑ̂ = Θ̂
−1
(
γ1 −Ω

1

2A0(α−α0)
)
,
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where γ1 a m×1 vector of the elements in γ that correspond to the period t = 1, sample

(ϑ |α,γ1,ω) ∼ N
(
ϑ̂,Θ−1

)
,

and apply the transformations

α(new) = α+ ω ⊙ ϑ, γ(new) = γ − ϑ,

where ⊙ represents element-by-element multiplication.

It is worthwhile to note that transformations 1 and 2 incorporate a straightforward extension
of the scale group explicitly discussed in Liu and Sabatti (2000). The 3rd GG move presented
above is based on an extension of the translation group, and in fact, is nearly identical to the
transformation applied in the context of state-space models in example 4.1 of Liu and Sabatti
(2000). Therefore, their Theorem 1 guarantees that the target posterior is preserved under
all three types of moves, given that µj = 0 holds. To that end, GG move 1 can be similarly
implemented in the case that µj = 0, but the distributions (21) from which the scales {ϑj} are
sampled would no longer be valid. On the other hand, the resulting distributions that ensure
the invariance of the target posterior (with µj 6= 0) are of nonstandard from, and hence, would
require alternative implementations of the sampling algorithms. Moves 2 and 3, however, are
not materially affected by the µj = 0 assumption (one would only require replacing ω∗

j with
ω∗
j − µj in (22)).

In our experience, implementing all three moves into the Gibbs sampler of section 3 tends to
increase execution time by approximately 10%. In exchange, we have observed a reduction in
inefficiency factors — in particularly favorable cases — of up to 15 times. In other scenarios,
however, the improvement in sampling efficiency is much less pronounced. Therefore, the
decision regarding whether or not to include the GG moves into the sampler generally relies
on trial and error. In the application of section 4, we incorporate all three moves outlined
above; doing so leads to reductions in inefficiency factors of up to four times (depending in the
variable) and noticeably more stable posterior estimates (given the same number of retained
and discarded simulation draws).

As a final remark, we emphasize that a certain amount of care should be taken in handling
the large matrices W (nT ×mT ) and G (nT ×m). In particular, it should be noted that it
is unnecessary — and impractical — to reconstruct these matrices entirely at each iteration
of the Gibbs sampler. Rather, observing that both matrices are primarily sparse in nature, a
reasonable algorithm would proceed by pre-allocating space prior to the commencement of the
Gibbs loop and only updating the necessary elements in the course of execution.

Specifically, a prototype W can be preconstructed (say, by letting W = InT ⊗ ι′m, where ιm
denotes a m × 1 vector of ones), with the indices of the mT nonzero elements stored in wnz.
Then, at each iteration, it is only required to update the nonzero elements as

W (wnz) = vec
(
X ⊙

(
ω · · · ω

))
, (23)

where it is assumed that W (wnz) represents the mT × 1 vector of the nonzero elements in W
(e.g. this notation is consistent with the syntax of a variety of popular scripting software, such
as Matlab).
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A similar approach provides an efficient procedure for handlingG as well, except in this case it
is operationally easier to work directly with its transpose G′. Accordingly, one may initialize
the sampler by setting G′ =X ′. Storing the indices of the mT nonzero elements in g′nz, these
elements are updated at each iterations as

G′(g′nz) = vec(X)⊙ γ. (24)
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J. Gaĺı, J. Vallés and J. D. López-Salido. Understanding the effects of government spending
on consumption. Journal of the European Economic Association March 5(1):227–270, 2007.

E. I. George and R. McCulloch. Variable Selection via Gibbs Sampling. Journal of the Amer-
ican Statistical Association, 88: 881-889, 1993.

E. I. George and R. McCulloch. Approaches for Bayesian variable selection. Statistica Sinica,
7:339–373, 1997.

21



G. Koop. Forecasting with medium and large Bayesian VARs. Journal of Applied Economet-
rics, 2011. DOI: 10.1002/jae.1270.

G. Koop and D. Korobilis. Bayesian Multivariate Time Series Methods for Empirical Macroe-
conomics. Foundations and Trends in Econometrics, 3(4): 267–358, 2010.

G. Koop and D. Korobilis. Large time-varying parameter VARs. SIRE Discussion Papers
2012-14, 2012.

G. Koop and S. M. Potter. Time varying VARs with inequality restrictions. Journal of
Economic Dynamics and Control, 35:1126–1138, 2011.

G. Koop, R. Leon-Gonzalez, and R.W. Strachan. On the evolution of the monetary policy
transmission mechanism. Journal of Economic Dynamics and Control, 33(4):997–1017, 2011.

D. Korobilis. VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 2011. DOI: 10.1002/jae.1271.

J. S. Liu and C. Sabatti. Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian
computation. Biometrika, 87(2):353–369, 2000.

J. Nakajima and M. West. Bayesian analysis of latent threshold dynamic models. Department
of Statistical Science Discussion Papers, Duke University, 2010.

R. Perotti. Estimating the effects of fiscal policy in OECD countries. Proceedings, Federal
Reserve Bank of San Francisco, 2005.

G. E. Primiceri. Time varying structural vector autoregressions and monetary policy. Review
of Economic Studies, 72(3):821–852, 2005.

22


