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A Dynamic Efficiency Model for Local Exchange Carriers

Abstract

We analyze a dataset containing costs and outputs of 67 American local ex-

change carriers in a period of 11 years. This data has been used to examine the

efficiency of British Telecom and KPN (Dutch telecom) using static stochastic

frontier models. We show that these models are dynamically misspecified. As

an alternative we provide an efficiency correction model. This model makes

it possible to distinguish between unmeasured firm heterogeneity, firm ineffi-

ciency and measurement error, by assuming time invariant unmeasured firm

heterogeneity and firm efficiency, which evolves over time.

Keywords: Error Correction; Panel Data; Random Effects; Stochastic

Frontier.

1 Introduction

In this paper we introduce a stochastic frontier model for panel data that combines

unobserved heterogeneity and firm specific stochastic dynamic efficiency changes.

An essential aspect of the model is that it contains time independent random firm

effects. We show empirically that specifying these effects as fixed disregards cross

section evidence that is needed to provide a good specification of the frontier. Simple

regressions on the means and deviations from the means separately illustrate this.

They also make clear that static models are misspecified: the two sources of infor-

mation give contradictory evidence. A dynamic version, similar to error correction

models, appears to give a huge improvement in the likelihood. In this model the

changes in efficiency depend on the distance from the frontier, which led to the name

efficiency correction model (EFCOM). The model is suited to identify the efficiency

of a firm over time as well as unobserved heterogeneity.
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A survey of stochastic frontier models is given by Greene (2005). Farsi et al.

(2006) show that the choice to include unobserved heterogeneity is crucial for the

estimates of efficiency. Stochastic dynamics in efficiencies, not treated in Greene,

are used in Ahn, Good and Sickles (2000) (henceforth AGS), but in their models

they don’t include unobserved heterogeneity in the efficiency frontier and use fixed

firm effects. Wang and Ho (2010) use fixed effects for unobserved heterogeneity and

dynamics somewhat different from AGS and ours.

We apply EFCOM on two sets of panel data to estimate cost efficiencies. Both

datasets consist of cost and output variables per year for several firms and have

previously been analyzed in the literature with a static model.

The main dataset relates to 67 U.S. local exchange carriers (LEC’s) over the

years 1996 to 2006. The data has been analyzed by NERA Economic Consulting

(2005, 2006) to examine the cost efficiency of the British BT and the Dutch KPN

respectively, using the static model.

To investigate whether our model also applies in another context we analyzed

a second dataset. This dataset concerns 382 U.S. nonteaching hospitals over the

years 1987 to 1991, and has previously been analyzed in Koop et al. (1997), using

Bayesian tools for inference in the static model.

For both datasets we show that the models without firm specific efficiency dy-

namics are clearly misspecified and that the efficiency correction model provides a

much better fit to the data. Moreover there is a striking similarity in outcomes for

both datasets.

Following Griffin and Steel (2007) the main estimation results are obtained by

the Bayesian package WinBUGS, using Markov Chain Monte Carlo (MCMC) tech-

niques. However, we start our analysis with a classical explanation and estimation

procedure of the main dynamic features. We show that maximum likelihood esti-

mates and MCMC inference give very similar results in a simple dynamic model.

In order to obtain estimates for all stochastic components in the efficiency correc-
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tion model – the unobserved heterogeneities and efficiencies – MCMC methods are

required. We obtain robust estimates of the efficiencies per year, insensitive to

variations in model specification.

The setup of this article is as follows. In Section 2 we discuss the efficiency

correction model in relation to the literature on stochastic frontier models. Section

3 provides a brief description of the LEC data. Section 4 provides a preliminary

classical analysis and a comparison between maximum likelihood and MCMC out-

comes for the LEC data from a simple dynamic stochastic frontier model. Sections

5 and 6 provide estimation results from the efficiency correction model for the local

exchange carriers and hospitals, respectively. Section 7 concludes.

2 Model specifications

2.1 A general stochastic frontier model for panel data

We consider a general stochastic frontier model for panel data given by

yit = EFit + uit + εit, (1)

EFit = µ+ x′itβ + γt + vi, (2)

where EFit denotes the efficiency frontier. for i = 1, . . . , N, t = 1, . . . , T , where N

is the number of firms, T is the number of time periods, and xit is a (k × 1) vector

of explanatory variables. uit, vi and εit are respectively inefficiency, unobserved

heterogeneity and measurement error, and efficiency is defined as exp(−uit). It

is assumed that uit, vi, and εit are distributed independently of each other, and

Cov(εit, εjs) = 0 for s 6= t. γt is either a deterministic function of time or a stochastic

process, being independent of uit, vi, and εit. In our applications yit denotes the

logarithm of total cost and xit is a vector of output components and environmental

variables. The same model can be used for output or profit. In the latter case it is
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assumed that uit ≤ 0.

It is important to understand how we identify the stochastic components within

the model. Questions that need to be addressed are whether it makes sense to distin-

guish between unobserved heterogeneity and measurement errors, whether γt can be

attributed to inefficiency, and whether the inefficiency term uit can be distinguished

from other terms.

Unobserved heterogeneity and measurement errors have the plausible structure

vi + εit. The fact that we call vi unobserved heterogeneity is partly arbitrary; we

could also include a part of εit in the unobserved heterogeneity. For the identification

of inefficiency uit – the goal of our analysis – this is of little importance. What is

important is that we assume that εit has no autocorrelation structure.

The firm independent time term, γt, is well identified in our applications with

many firms and short time periods in the form of time dummies. Whether these time

effects must be attributed to general efficiency changes or other shifts in the cost

function cannot be based on the available information. One may say that absolute

inefficiency is only well identified in deviation of the yearly means.

This still leaves the problem of how to distinguish between vi (or vi + εit) and

uit. There are two statistical sources of information to identify vi and uit. The first

is that uit is positive and skewed to the right, while the other terms are symmetrical.

The second source is the autocorrelation structure of uit.

We haven chosen for a model where vi is the symmetrically distributed unob-

served heterogeneity, while uit is a first order autoregressive process with positive

innovations. We will argue that these assumptions are plausible. This model appears

to be well identified.

We might as well include time invariant inefficiencies. However, this component

is very hard to distinguish from vi statistically. With noninformative priors it is

even theoretically difficult to make this distinction, as is shown by Fernández et al.

(1997). Strong informative priors will give a result, but the posteriors will hardly
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differ from the priors.

Because it is impossible to specify a unique and complete model for cost compo-

nents, we think that unobserved heterogeneity vi should be included in the efficiency

frontier. A detailed discussion on unmeasured heterogeneity in stochastic frontier

models is provided by Greene (2005). Farsi et al. (2006) show in a static context the

impact of the inclusion of unobserved heterogeneity vi on the estimates of efficiency.

They show that models including vi underestimate efficiency and models without vi

overestimate efficiency, providing lower and upper bounds for companies’ efficiency

scores. In a specific example they show that the correlation between the efficiencies

scores and ranks in both models is approximately zero.

In the remainder of this paper we shall concentrate on model (1)–(2). We do

not consider the case where xit is stochastic and β is allowed to vary over time

and clusters. For these extensions, see Tsionas (2002) and Kumbhakar and Tsionas

(2005), who distinguish between technical and allocative efficiency, allowing β to

vary over clusters. In Tsionas and Kumbhakar (2004), β is allowed to vary over time

and clusters in a Markov switching stochastic frontier model. We will investigate

dynamics of the form uit = uiωt, which assumes a common (deterministic) function

for the evolution of inefficiency over time, see for instance Cornwell et al. (1990),

Battesse and Coelli (1992), and Griffin and Steel (2007). We use this deterministic

model as a benchmark.

Examples of models in the literature, which include stochastic dynamics without

unobserved heterogeneity in the efficiency frontier are: AGS, who use the generalized

method of moments for estimation; Desli et al. (2003), who use maximum likelihood

estimation; Tsionas (2006), using Gibbs sampling for inference, and Park et al.

(2003, 2007), who use nonparametric estimation methods.

In this paper, we do include unobserved heterogeneity. Following Farsi et al.

(2006) we assume that the unobserved heterogeneity is time independent, while

inefficiency is time dependent.
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2.2 Autocorrelation and efficiency correction

We assume that the inefficiency uit follows a first order autoregressive process

[AR(1)], given by

uit = (1− δ1)ui,t−1 + ηit, (3)

where the ηit’s are identical and independently distributed. This is a plausible

assumption, also made by AGS: firms adapt partly to inefficiencies. Note that this

is not a standard AR(1) process as uit > 0. The distributional assumptions of ηit

will be specified later on.

By rewriting model (1)–(3) in an ‘error correction’ format it will be shown that

it has some implausible consequence. This formulation is in terms of levels and first

differences, where the first difference in yit depends on the deviation between the

cost and the efficiency frontier in the preceding period, yi,t−1 − EFi,t−1, given by

yi1 = EFi1 + ui1 + εi,1, (4)

∆yit = −δ1(yi,t−1 − EFi,t−1) + ∆EFit + ηit + εit − (1− δ1)εi,t−1, (5)

where ∆ is the first difference operator and ∆zt = zt − zt−1. For δ1 = 1 Eqs.

(4)–(5) are equivalent to Eqs. (1)–(2). The efficiency correction formulation shows

the implication that firms adjust their cost level to the inefficiency in the preceding

period for a fraction δ1, and fully to the change in the efficiency level, ∆EFit. For

economical and technical reasons this seems to be impossible. Adjustment to ∆EFit

will also be partial.

We introduce partial adjustment to ∆EFit by redefining Eq. (1), leading to

yit = EFit − (1− δ2)∆EFit + uit + εit, (6)

EFit = µ+ x′itβ + γt + vi, (7)

uit = (1− δ1)ui,t−1 + ηit. (8)
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Note that the definition of inefficiency uit has been changed to

uit = yit − (δ2EFit + (1− δ2)EFi,t−1)− εit, (9)

so the actual attainable efficiency is based on weighted average of the efficiency

frontier of the current and preceding period. When the model for the efficiency

frontier contains stock variables (capacity) and yit is a flow variable this structure is

compelling (the stock changes through the period). More in general the impossibility

to react immediately on changes gives a motivation. The model (6)–(8) can be

expressed in ‘error correction’ format,

yi1 = EFi1 − (1− δ2)∆EFit + ui1 + εi1, (10)

∆yit = −δ1(yi,t−1 − EFi,t−1) + δ2∆EFit + (1− δ1)(1− δ2)∆EFi,t−1

+ ηit + εit − (1− δ1)εi,t−1. (11)

On the basis of this representation we call the model (6)–(8) the efficiency correction

model (EFCOM).

Additional assumptions have to be made about the initial inefficiencies and the

distributions of the innovations ηit. We assume covariance stationarity, implying

that the unconditional moments are provided by

E(uit) = E(ηit)/δ1, (12)

Var(uit) = Var(ηit)/(1− (1− δ1)2). (13)

In general the unconditional distribution is not the same as the distribution of the

innovations. In the case that ηit has a gamma distribution, denoted by ηit ∼ G(φ, λ),

where E(ηit) = φ/λ and Var(ηit) = φ/λ2, the unconditional distribution can be

approximated by a gamma distribution, uit ∼ G(λ(2−δ1), φ(2−δ1)/δ1). This follows

from the moment conditions (12)–(13) and can be demonstrated by simulation. In
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our applications we assume that the innovations ηit have a gamma distribution.

An alternative to the AR(1) with gamma innovations as defined in (8), is pro-

vided by Tsionas (2006). He assumes that the log of inefficiency follows a first order

autoregressive process, i.e. lnuit = z′itγ + (1− δ) lnui,t−1 + ηit, where ηit ∼ N(0, σ2
η)

and zit is a vector of additional explanatory variables.

Another option for the AR(1)-process would be to use a conditional Gamma

model for the inefficiency process, replacing Eq. (8) by uit|ui,t−1 ∼ G(φ, φ/m(ui,t−1)),

where m(ui,t−1) = E(uit|ui,t−1) = (1 − δ1)ui,t−1 + µiδ1 and µi is the unconditional

expectation of uit. The unconditional variance is provided by

Var(uit) =
µ2
i /φ

1− (1− δ1)2(φ+ 1)/φ
, for 0 ≤ 1− δ1 <

(
φ

φ+ 1

)1/2

< 1,

see Grunwald et al. (2000) for more details.

The EFCOM model (6)–(8) has most resemblance with that of AGS. In both

models it is assumed that inefficiencies follow a first order autoregressive process,

however AGS do not specify the distribution of ηit. The main differences are:

- AGS do not adjust the efficiency frontier for the implausible implication of full

immediate response in changes in the efficiency frontier.

- AGS do not include unobserved heterogeneity vi in the efficiency frontier.

They assume fixed effects (denoted by λi), which they attribute completely

to inefficiencies. Empirically, the difference is that between a random effects

model with standard error σv and a fixed effects estimator. Our estimates of σv

will appear to be reasonable and certainly finite. Very large estimates would

mean that approximation by a fixed effects model is justified. As will be shown

in Section 4 the random effects model is essential to retain the information on

the regression coefficients (β).

Whether differences on the firm level must be attributed to unobserved het-

erogeneity or inefficiencies is a matter that in our view cannot be decided on
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statistical grounds alone. In our opinion at least part of the effects must be

attributed to unobserved heterogeneity.

- There are some differences in the treatment of time effects γt. Both models

have in common that they concern relative (no absolute) inefficiencies.

- We use MCMC methods for model inference, which allows us to estimate all

unobserved components. AGS use the generalized method of moments which

has very limited possibilities to do so.

3 Data

Stochastic frontier models have been used in practice to compare cost efficiency for

fixed line telecommunication operators. Two recent examples of these benchmark

studies are performed by NERA (2005, 2006) under the authority of Ofcom (Office of

Communication) and OPTA (Independent Post and Telecommunications Authority)

to examine the cost efficiency of the British BT and the Dutch KPN respectively.

These studies are based on the costs and outputs of American local exchange carriers

(LEC), for which data is freely available.

In this article we use yearly data from 67 LEC’s over a period of 11 years from

1996 until 2006. The costs are the sum of operating costs, depreciation and cost

of capital. Output is measured by the number of switched and leased lines, switch

minutes, and the length of cable sheath. Environmental explanatory variables are

the proportion of business to residential lines and the population density. All vari-

ables are measured in natural logs. The variables and their abbreviations are given

in Table 1. Detailed information on the different variables can be found in the re-

port by NERA (2006). Table 2 contains averages of the variables over the LEC’s

per year. The averages of cost, leased lines, sheath, business to residential ratio

and population density increase over time, while the averages of switched lines and

switch minutes decrease over time. There are large differences between LEC’s with
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respect to cost and output variables; the difference between minimum and maximum

cost is a factor 15. Some values of switch minutes and depreciation cost are missing

for some LEC’s in the years 2005 and 2006. The missing values are replaced by

estimates, based on an interpolation or extrapolation of the specific series. In our

applications the leased lines, switch minutes and sheath are specified in deviation

from switched lines, indicated by asterisks, meaning that the coefficient of switched

lines refers to the economies of scale.

4 Preliminary model exploration

The purpose of this Section is threefold. First, we show that a simple informal

ordinary least squares (OLS) test reveals that a random effects model (REM) with-

out autocorrelation is misspecified. Next an error correction random effects model

(ECREM) is introduced, reflecting the basic dynamic structure of the efficiency cor-

rection model (6)–(8). Finally it is shown that for (error correction) random effects

models there is a close correspondence between the estimation results obtained by

maximum likelihood and WinBUGS. The latter is the program for Bayesian infer-

ence that will be used for the efficiency correction model in the next Section.

The random effects model without autocorrelation is provided by

yit = µ+ x′itβ + γt + θi + αit, θi ∼ N(0, σ2
θ) and αit ∼ N(0, σ2

α), (14)

where it is assumed that θ and α are uncorrelated. To prevent confusion we use

the symbols θ and α to indicate that in this Section no distinction is made between

inefficiency, unobserved heterogeneity and measurement error.

The data can be split in two independent parts, in means and deviation from
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means,

yi. = µ∗ + x′i.β + θi + αi., (15)

ỹit = x̃′itβ + γ̃t + α̃it, (16)

where zi. = T−1
∑T

t=1 zit, and z̃it = zit − zi. for z = y, x, γ, and α, and µ∗ =

µ + γ̄.. The two sources of information, means and deviations from the means, are

independent and should reinforce each other. The assumption that β is the same

in (15) and (16) can be informally checked by comparing the OLS estimates of β in

both equations. The estimate of β in the random effects model (14) is a weighted

average of the estimates of β in (15) and (16), with weights depending on σ2
θ and

σ2
α.

Estimates of the variances σ2
α and σ2

θ may be obtained from regression on the

means (15) and deviations (16) from the means: σ̂2
α = RSSD/(N(T − 1)− k), and

σ̂2
θ = RSSM/(N − k) − σ̂2

α/T, where RSSM and RSSD are the residual sum of

squares from (15) and (16), respectively.

The first three panels in Table 4 present estimation results for the REM (14)

and the model in means (15), and deviations (16) for the LEC data. The models in

means and deviations from the means are estimated by OLS. The REM parameter

qθ = σ2
θ/σ

2
α is estimated by maximizing the concentrated loglikelihood with respect

to µ, β, γ, and σα, see the column REM (ML) in Table 4.

The estimation results for β are very different from each other. We focus on the

most important variable ln(SL), reflecting the economies of scale. The economies

of scale parameter in the means model is, as expected, 0.98, approximately one,

with a low standard error (0.019), while in the deviations model this parameter is

only 0.59, with a larger standard error (0.048). The information from the means

is dominant. This is due to the fact that the explanatory variable, the scale, has

a large variance over companies. Fixed effects models disregards this important
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cross-sectional information on β. In the REM the estimate of the economies of scale

parameter is almost 1, illustrating the dominance of the information from the means.

When σθ and σα are estimated from the model in means (15) and deviations (16)

separately, one obtains σ̂α = 0.057 and σ̂θ = 0.120. The estimate σ̂θ contrasts to

the maximum likelihood estimate from REM, being 0.271, another indication that

REM is misspecified.

The fourth panel of Table 4 presents the Bayesian estimation results for the

random effects model (14). Noninformative normal distributed priors are assumed

for the place parameters µ, β, and γt and noninformative gamma distributed priors

for σ−2
θ and σ−2

α . The Bayesian estimation results are almost the same as the re-

sults from maximum likelihood. Table 4 also provides the model selection criterion

DIC, see Spiegelhalter et al. (2002). DIC is minus two times the loglikelihood in

the posterior means plus two times a penalty for model complexity, measuring the

“effective number of parameters” and denoted by pD.

It is clear from Table 4 that the random effects model (14) is misspecified. As

mentioned in Subsection 2.2 this might be the result of the unrealistic assumption

in the random effects model that firms fully adjust their cost to output.

This assumption is relaxed in the error correction random effects model (ECREM),

defined as

yi1 = µ+ x′i1β + γ1 + θi + αi1, (17)

∆yit = −δ1(yi,t−1 − µ− x′i,t−1β − γt−1 − θi) + δ2∆(x′itβ + γt) + ηit, (18)

where θi ∼ N(0, σ2
θ), ηit ∼ N(0, σ2

η) and θ and η are uncorrelated. Further we

assume covariance stationarity for αit, so

αi1 ∼ N(0, σ2
η/(1− (1− δ1)2)). (19)

For δ1 = δ2 = 1 the error correction random effects model (17)–(19) coincides with
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the random effects model (14).

The first three panels of Table 5 contain the estimation results from ECREM for

three different cases, namely δ2 = 1, δ1 = δ2, and the general case 0 < δ1, δ2 < 1.

The parameters qθ = σ2
θ/σ

2
η, δ1 and δ2 are estimated by maximizing the concentrated

loglikelihood with respect to µ, β, γ and ση. By introducing only 2 variables the

loglikelihood increases by more than 228 points compared to the random effects

model (14). The difference in loglikelihood between the most and least restrictive

model is more than 30 points at the cost of only 1 parameter. The estimates of δ1 in

all three cases are far from 1, the value that is assumed in the random effects model.

It can be concluded that the REM is dynamically misspecified. The fourth panel

of Table 5 contains the Bayesian estimation results for the case δ2 = 1. Similar to

the random effects model noninformative priors for place and scale parameters are

assumed. For δ1 a uniform prior between 0 and 1 is assumed. The results almost

coincide with the estimation results by maximum likelihood in the first panel. The

DIC decreases by 151 points compared to the random effects model, being consistent

with the increase in loglikelihood.

5 Efficiency correction model

In this Section the estimation results from the efficiency correction model (6)–(8) are

presented. Compared to the error correction random effects model in the previous

Section, the essential new element is the inclusion of measurement errors and the

interpretation of the different error components.

We choose to omit the first year in the evaluation of the likelihood because

xi0 in ∆xi1 is unknown. An alternative would have been to include the first year

and replace ∆x′i,1β by a stochastic variable, with moments determined by those of

∆x′i,tβ in later years, so assuming a model for ∆x′i,t. This approach complicates the

estimation procedure and has little effect on the results as the first observation gets
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little weight in the evaluation.

We make the following distributional assumptions for the efficiency correction

model, given by Eq. (6)–(8). The measurement errors εit have a student t-distribution

to account for possible outliers. The unobserved heterogeneity vi have a normal dis-

tribution, while the initial inefficiencies ui2 and the innovations ηit have a gamma

distribution. For γt we simply use dummy variables. This can be summarized by

εit ∼ tν(0, σ
2
ε), vi ∼ N(0, σ2

v),
ui2 ∼ Gamma(φ1, λ1), ηit ∼ Gamma(φ, λ).

From the covariance stationarity assumptions (12)–(13) it follows that

φ =
δ1

2− δ1

φ1, and λ =
1

2− δ1

λ1.

The parameters to be estimated are µ, β, κ, δ1, δ2, φ1, λ1, σv, σζ , σε, and ν. Before

specifying priors for these parameters it is useful to examine how well the parameters

are identified. Because the place parameters are well identified, we compute the first

and the second moments for the efficiency correction model without β, δ2 and γt,

given by

yit = µ+ vi + uit + εit, uit = (1− δ1)ui,t−1 + ηit,

which may be rewritten as

yi2 = µ+ vi + ui2 + εi2, ∆yit = −δ1ui,t−1 + ηit + εit − εi,t−1.

This model contains 7 parameters: µ, δ1, φ1, λ1, σv, σε, and ν. The first and second

moments of yi2 are provided by

E(yi2) = µ+ φ1/λ1, Var(yi2) = σ2
v + φ1/λ

2
1 + ν/(ν − 2)σ2

ε .

The other relevant moments follow from the ARMA(1,1) structure of ∆yit, and are
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given by

Var(∆yit) = 2(δ1φ1/λ
2
1 + ν/(ν − 2)σ2

ε),

Cov(∆yit,∆yi,t−1) = −δ3
1φ1/λ

2
1 − ν/(ν − 2)σ2

ε ,

Cov(∆yit,∆yi,t−2) = −δ3
1(1− δ1)φ1/λ

2
1.

Note that E(∆yit) = 0 due to the stationarity requirement.

Identification of the degrees of freedom ν follows from the fourth moments. In

case of outliers, ν will be low. Given ν the parameters φ1/λ
2
1, δ1, σ

2
ε and σv can

be identified from the variances and covariances equations. The first and second

moments are not sufficient to distinguish between between µ and the mean of the

inefficiency φ1/λ1. Only the sum is given as the expectation of yi2. The essential

additional information must come from the third moment of ui2, which has skewness

2/
√
φ1.

For the remaining parameters practically noninformative priors are specified:

σ−2
ε ∼ Gamma(0.1, 0.1), ν ∼ Exp(1/3),

δ1 ∼ Uniform(0.5, 0.95), δ2 ∼ Uniform(0.5, 0.95),

σ−2
v ∼ Gamma(0.1, 0.1), µ ∼ N(0, 100),

φ−1
1 ∼ Gamma(3, 4), β ∼ N(0, 100I),

λ1 ∼ Gamma(φ1,− ln(0.875)).

The prior for φ1 and λ1 is equal to the one used by Griffin and Steel (2007).

The efficiency correction model is estimated by WinBUGS. The inclusion of the

measurement errors εit offers the possibility to generate the unobserved heterogeneity

vi and the efficiencies uit as “parameters” in the MCMC process. This enables us

to use the distribution of the measurement errors εit for the computation of the

likelihood. Other setups are possible but more complex, because the efficiencies

have to be positive.
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Table 6 contains estimation results from a benchmark model and the efficiency

correction model for 67 local exchange carriers from 1997 until 2006. In the bench-

mark model the inefficiency follows a deterministic function over time. Moreover,

firms fully adjust their cost level to the change in the efficiency level. The benchmark

model is provided by

yit = EFit + uit + εit, (20)

EFit = µ+ x′itβ + γt + vi, (21)

uit = ui1 × exp ((t− 2)κ), (22)

where the prior for κ is given by κ ∼ N(0, 1). Table 6 contains a restricted version

(vi = 0) of the benchmark model (Benchmark 1) and a unrestricted one (Benchmark

2). For the efficiency correction model 3 versions are provided: δ = 1 (ECM 1),

vi = 0 (ECM 2), and a unrestricted one (ECM 3).

We will first discuss the results for the unrestricted efficiency correction model

(ECM 3). The measurement errors are low (σε = 0.040), and the degrees of freedom

ν are approximately 17. Inspection of the data shows that rather dramatic changes

took place during the sample period. Mergers and takeovers took place after the

liberalization of the market for LEC ’s in 1996 and huge technological shifts occurred.

The estimates of β reveal that only a simple model remains: economies of scale

are hardly above 1, and only two additional significant coefficients. The unobserved

heterogeneity has a standard deviation σv = 0.175. Given the huge technological

shifts and differences in circumstances in the various states of the USA this standard

deviation seems reasonable.

The estimate of γt show a decrease in cost level during the first two years followed

by a steady increase. Evidently, many changes occurred in the sample period, which

can be seen from large and irregular yearly changes.

The estimates of δ1 = 1 − ρ and δ2 are clearly different from 1 and have small
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standard deviations. It is difficult to explain intuitively why δ2 is so much larger

than δ1.

The covariance stationarity restrictions make sure that the results for (φ, λ)

follow directly from those for (φ1, λ1). The expectation of ui2, φ1/λ1, is very well

identified: 0.214 with a standard deviation of 0.041. The standard deviation,
√
φ1/λ1

is also well identified: 0.071 with a standard deviation of 0.008.

The DIC criterion cannot be compared directly to that of the error correction

random effects model (17)–(19) in Table 4, because the latter results are based on

the whole sample. Estimation of ECREM on the dataset without the first year

gives a DIC of -1911.2. The efficiency correction model leads to a gain in DIC of

268 points.

Table 7 gives the posterior means of the inefficiency levels uit and the unobserved

heterogeneity vi for all local exchange carriers. The autocorrelations of the uit are

as expected: the correlation between ui2 and uit is around (1 − δ1)t−2. Further the

means of the inefficiencies over time ūi. and the unobserved heterogeneity vi are

almost uncorrelated (0.173). Note that the average inefficiency is almost constant

over time.

If we compare in Table 6 the estimation results for the unrestricted efficiency

correction model we can conclude the following:

1. Within the efficiency correction model the difference between assuming δ = 1

versus estimating δ is not large in terms of DIC, only 2 points. Moreover,

the correlation in the average efficiency ūi. between the 2 models is 0.995, see

Table 8.

2. The difference between assuming vi = 0 and allowing for unobserved hetero-

geneity is large in terms of DIC, almost 100 points. However, the correlation

in the average efficiency ūi. between the 2 models is 0.898, see Table 8.

3. The difference in DIC between the benchmark and the efficiency correction
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models is substantial (inefficiency over time: deterministic function versus first

order autoregressive model), more than 150 points. Moreover, the correlation

in the average efficiencies ūi. between the benchmark and efficiency correction

model are quite low, apart from the correlation between Benchmark 1 and

ECM 2.

4. If the efficiency should be measured as uit + vi the efficiency results change

enormously. The correlation between ūi. + vi and ūi. is quite low: for Bench-

mark 2: 0.181, for ECM 1: 0.382 and for ECM 3: 0.375.

6 Application to hospital data

NEEDS TO BE UPDATED

In this Section the same analysis as done for the LEC’s is applied to the dataset of

382 hospitals over a time period of 5 years as analyzed in Koop et al. (1997), Griffin

and Steel (2004, 2007) and Atkinson and Dorfman (2005). These studies do not use

firm specific stochastic dynamic efficiency changes. The specification in Griffin and

Steel (2004) assumes time invariant inefficiency ui, unobserved heterogeneity is not

included, while measurement errors are. A vague prior is used for the distribution

of ui, a Bayesian nonparametric method is used for estimation of ui. Atkinson and

Dorfman (2005) use a model with a deterministic specification for firm specific time

varying inefficiency. For estimation they apply the Bayesian method of moments in

a Gibbs sampling framework.

We only show the results from a simplified model without interaction effects1.

The variables are provided in Table 3. The variable D is a scaling variable, so it’s

coefficient is the economy of scale parameter.

Table 9 provides the estimation results from the preliminary analysis as in Sec-

1Of course the interaction effects can be added to the efficiency correction model, but they
are not important for our conclusion with respect to the misspecification of the static stochastic
frontier model.
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tion 4. The results are comparable to those for the LEC’s: the economy of scale

parameter D is 0.99 for the model in means (15), and 0.74 for the model in devia-

tions (16). The results from REM (14) are thus based on a hypothesis that should

be refuted.

Table 10 contains the estimation results from the error correction random effects

models (17)–(19). They clearly perform better than the standard random effects

model in Table 9. The loglikelihood gain due to the introduction of δ1 and δ2 is 235

points. In the model without restrictions (the third panel of Table 9) both δ1 and δ2

significantly differ from 1: the estimates of δ1 and δ2 are respectively 0.30 and 0.59,

both with standard deviations that are relatively small.

The Bayesian estimation results from the error correction random effects models

by WinBUGS are almost a copy of the maximum likelihood results. For the case

δ2 = 1 the DIC outcome is -4381 and the effective number of parameters pD equals

267. This result can be compared to the “best” model in Griffin and Steel (2007),

who also use WinBUGS for inference on the efficiency of hospitals. In a model

with deterministic time varying inefficiency and no unobserved heterogeneity they

obtain a DIC of 4834 with an effective number of parameters of 398. They use 28

additional explanatory variables (cross products) which clearly improves the fit. For

convenience we stick to our simple model. When the observations from the first year

are excluded in ECREM with δ2 = 1, the DIC and effective number of parameters

pD equal -3200 and 141, respectively. These results can be used to compare the

outcomes from the efficiency correction model.

Note that the high values of pD are due to the random effects. The penalty is

a fraction of the number of firms N , where the fraction depends on σv. In case σv

is large, the random effects model approaches a fixed effects model, resulting in a

penalty N .

Table 11 provides the estimation results from the efficiency correction model

(6)–(8). As the number of time periods is only 4, the time dependence is simply
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modeled by dummy variables instead of a random walk with drift. The estimates of

the time dummy variables reflect a steady cost increase.

The crucial parameters δ1 (0.358) and δ2 (0.617) have very low standard devi-

ations and are clearly different from 1 and from each other. They are quite close

to the estimates from the error correction random effects model. The DIC gain is

more than 2500 points. However the pD is extremely large, 1376, corresponding to

95% of the number of observations.

The economies of scale parameter D is, as expected, approximately 1. All regres-

sion coefficients are very significant. The estimate of σε is only 0.014, but the very

low value of the degrees of freedom for the student t-distribution, ν = 2.2, suggests

that there are some severe outliers. The estimate of σv (0.11) is very acceptable,

and could even be lower when more explanatory variables were used.

The inefficiencies have an expectation of 0.135 and a standard deviation of 0.059.

Both values are slightly lower than in the LEC’s example. The similarity is of course

mainly the result of the imposed restriction.

7 Conclusions

In this paper we introduced the efficiency correction model and estimated it using

MCMC methods. The model performs well for local exchange carriers as well as

hospitals. It is a clear improvement over existing models in terms of plausibility

as well as statistical fit. The similarity of the outcomes for two sectors that are so

different from one another, suggests general applicability.

The model provides rich information to judge the inefficiency of companies. Some

aspects that might be improved, are the basic model – a loglinear model might be too

simple – and the explanation of the mean efficiency shifts between the years. This

holds in specific in a turbulent changing market as that for the local exchange carri-

ers. The assumption we made that unobserved heterogeneity is time invariant and
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that there are no time invariant inefficiencies might be questioned, but that raises

difficult identification issues. Additional information is needed to decide whether a

part of what we classified as unobserved heterogeneity should be attributed to fixed

inefficiencies.
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A Tables

Table 1: Definition of LEC variables.
Variable Description

C Costs
SL Switched lines
LL Leased Lines
SM Switch Minutes
SH Sheath
PD Population Density
BR Business-to-residential ratio
Dt Dummy variable for year t

Table 2: Averages of the cost, output and environmental variables for the LEC’s.
Year C (x 1,000) SL (x 1,000) LL (x 1,000) SM (x 1,000) SH (x 1,000) BR PD

1996 884.7 2,106.2 523.1 40,327.5 77.9 0.41 65.8
1997 900.9 2,213.6 663.0 42,900.5 79.1 0.43 66.4
1998 911.2 2,303.4 917.2 47,072.7 80.6 0.45 67.1
1999 955.2 2,379.2 1,375.1 47,806.6 81.8 0.46 67.7
2000 986.6 2,377.8 1,770.7 47,606.1 81.9 0.47 68.4
2001 1,007.2 2,265.1 2,122.3 43,875.1 83.1 0.45 69.0
2002 1,035.5 2,149.1 2,463.9 36,635.8 84.5 0.48 69.6
2003 1,076.1 2,006.0 2,758.4 31,863.7 85.3 0.47 70.2
2004 1,052.6 1,904.3 3,029.5 30,008.3 86.6 0.48 70.7
2005 1,116.7 1,824.5 4,419.2 26,412.4 89.1 0.49 71.0
2006 1,138.1 1,723.5 5,128.7 23,160.0 90.4 0.52 71.4

Table 3: Definition of hospital variables.
Variable Description

D Number of inpatient days
C Number of cases
B Number of beds
O Number of outpatient visits
CMI Case mix Index
AWI Aggregate wage index
CS Capital stock
Dt Dummy variable for year t
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Table 6: Estimation results from the efficiency correction model (6)–(8)) for the LEC data.
Benchmark 1 Benchmark 2 ECM 1 ECM 2 ECM 3

Variable mean sd mean sd mean sd mean sd mean sd

Const -0.247 0.203 -0.550 0.302 -0.537 0.259 -1.175 0.191 -0.554 0.260
ln(SL) 1.010 0.019 1.026 0.023 1.022 0.020 1.022 0.015 1.026 0.020
ln(LL)∗ 0.024 0.010 0.016 0.010 0.035 0.010 0.057 0.012 0.037 0.011
ln(SM)∗ 0.026 0.014 0.031 0.018 0.002 0.016 -0.006 0.016 0.007 0.018
ln(SH)∗ 0.373 0.047 0.371 0.050 0.307 0.051 0.144 0.035 0.315 0.056
ln(PD)∗ -0.023 0.017 0.043 0.026 0.024 0.023 -0.009 0.012 0.025 0.023
ln(BR)∗ 0.112 0.034 0.055 0.035 -0.028 0.040 -0.031 0.046 -0.011 0.044
D98 -0.034 0.012 0.026 0.015 -0.023 0.009 -0.053 0.017 -0.038 0.015
D99 -0.072 0.013 0.042 0.022 -0.054 0.012 -0.093 0.017 -0.067 0.016
D00 -0.068 0.015 0.092 0.029 -0.033 0.015 -0.073 0.020 -0.041 0.019
D01 -0.046 0.016 0.151 0.034 -0.001 0.016 -0.047 0.021 -0.017 0.020
D02 -0.016 0.019 0.218 0.039 0.049 0.019 0.021 0.024 0.044 0.023
D03 0.060 0.021 0.325 0.044 0.137 0.021 0.119 0.025 0.136 0.025
D04 0.054 0.024 0.347 0.048 0.148 0.024 0.092 0.031 0.107 0.032
D05 0.122 0.028 0.443 0.052 0.232 0.028 0.258 0.037 0.255 0.036
D06 0.139 0.031 0.491 0.056 0.278 0.032 0.236 0.043 0.232 0.044
ū.. 0.503 0.084 0.268 0.054 0.213 0.041 0.561 0.050 0.215 0.041
φ1/λ1 0.499 0.087 0.267 0.057 0.212 0.041 0.555 0.051 0.214 0.041√
φ1/λ1 0.219 0.037 0.153 0.024 0.072 0.008 0.130 0.009 0.071 0.008

φ1 5.38 1.57 3.25 1.32 8.88 3.10 18.43 2.94 9.34 3.31
λ1 10.85 2.82 11.98 3.41 41.11 8.70 33.15 3.83 42.77 9.46
φ/λ 0.034 0.006 0.033 0.004 0.034 0.006√
φ/λ 0.039 0.003 0.044 0.003 0.039 0.003

φ 0.774 0.2736 0.5642 0.1165 0.8182 0.3042
λ 22.39 4.76 17.09 1.99 23.30 5.21
δ 0.644 0.080 0.664 0.082
ρ 0.837 0.030 0.940 0.009 0.837 0.030
κ 0.022 0.006 -0.205 0.041
σε 0.058 0.002 0.048 0.002 0.040 0.002 0.041 0.002 0.040 0.002
ν 12.64 3.59 14.09 4.25 17.47 5.37 14.78 4.45 16.73 5.20
σv 0.213 0.025 0.174 0.022 0.175 0.023
D̄ -1866.5 -2155.1 -2478.3 -2399.3 -2481.7

D̂ -1945.1 -2287.1 -2779.1 -2718.6 -2784.0
pD 78.6 132.0 300.8 319.3 302.3
DIC -1788.0 -2023.0 -2177.5 -2080.0 -2179.4

Benchmark model: yit = EFit + uit + εit, EFit = µ+ x′itβ + γt + vi, uit = ui2 × exp ((t− 2)κ).
Benchmark 1: vi = 0, Benchmark 2: unrestricted.

Efficiency correction model: yit = EFit − (1− δ)∆EFit + uit, EFit = µ+ x′itβ + γt + vi, uit = ρui,t−1 + ηit.
ECM 1: δ = 1,ECM 2: vi = 0 and ECM 3: unrestricted.
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Table 7: Inefficiencies of the LEC’s per year in the efficiency correction model (6)–(8).
LEC ui,97 ui,98 ui,99 ui,00 ui,01 ui,02 ui,03 ui,04 ui,05 ui,06 ūi,. vi

1 0.2072 0.2077 0.2176 0.2199 0.2067 0.2026 0.1936 0.1773 0.1668 0.1638 0.1963 0.0367
2 0.1993 0.2254 0.2222 0.2093 0.2131 0.2163 0.2030 0.2024 0.2376 0.2145 0.2143 0.1723
3 0.2154 0.2395 0.2305 0.2095 0.2100 0.2230 0.2117 0.2010 0.1865 0.1717 0.2099 0.0139
4 0.1988 0.2014 0.2037 0.2010 0.2046 0.1945 0.1819 0.1718 0.1710 0.1729 0.1902 0.1050
5 0.2236 0.2257 0.2144 0.2007 0.1866 0.1837 0.1919 0.1865 0.1743 0.1627 0.1950 0.0253
6 0.1585 0.1665 0.2084 0.2169 0.2037 0.1878 0.1829 0.1986 0.2177 0.2302 0.1971 -0.0109
7 0.2081 0.1924 0.1708 0.1572 0.1496 0.1497 0.2032 0.2043 0.1970 0.1894 0.1822 -0.3904
8 0.5244 0.4549 0.3906 0.3367 0.2954 0.2930 0.2754 0.2689 0.3769 0.3338 0.3550 0.0281
9 0.3038 0.2739 0.2404 0.2141 0.2003 0.1882 0.1886 0.1881 0.1977 0.1908 0.2186 0.0379
10 0.1636 0.1794 0.1815 0.1835 0.1765 0.1814 0.1984 0.1955 0.2078 0.2286 0.1896 0.1156
11 0.3124 0.2913 0.2588 0.2302 0.2163 0.2131 0.2108 0.1982 0.1837 0.1698 0.2285 0.0405
12 0.2118 0.1975 0.1751 0.1578 0.1510 0.1570 0.1855 0.1930 0.1928 0.1837 0.1805 -0.3806
13 0.2534 0.2272 0.2024 0.1812 0.1704 0.1665 0.1765 0.1843 0.1921 0.1856 0.1940 -0.1530
14 0.3228 0.3190 0.2885 0.2584 0.2418 0.2227 0.2036 0.1816 0.1622 0.1490 0.2349 -0.3494
15 0.2733 0.2554 0.2426 0.2337 0.2171 0.2098 0.2364 0.2141 0.1944 0.1777 0.2255 0.1007
16 0.2314 0.2310 0.2062 0.1871 0.1751 0.1666 0.1626 0.1559 0.1488 0.1446 0.1809 -0.3373
17 0.1701 0.1646 0.1590 0.1586 0.1777 0.2222 0.2311 0.2197 0.2339 0.2401 0.1977 0.0862
18 0.1998 0.2055 0.1924 0.1781 0.1681 0.1690 0.1861 0.1768 0.1642 0.1544 0.1795 -0.2541
19 0.2167 0.1964 0.1766 0.1683 0.1583 0.1706 0.2101 0.2310 0.2277 0.2510 0.2007 0.0128
20 0.1554 0.1512 0.1518 0.1667 0.1963 0.2093 0.2367 0.2436 0.2583 0.2579 0.2027 0.0838
21 0.3755 0.3576 0.3644 0.3396 0.2982 0.2607 0.2302 0.2036 0.1843 0.1732 0.2787 -0.2358
22 0.2581 0.2361 0.2154 0.2021 0.1928 0.1995 0.1964 0.1868 0.1779 0.1704 0.2035 0.1286
23 0.1915 0.1996 0.1846 0.1735 0.1870 0.1819 0.1837 0.1758 0.1626 0.1530 0.1793 -0.2713
24 0.1612 0.1563 0.1734 0.2102 0.2359 0.2932 0.2921 0.2713 0.2459 0.2328 0.2272 0.0208
25 0.1417 0.1391 0.1421 0.1542 0.1766 0.2734 0.2968 0.3067 0.2900 0.2866 0.2207 -0.0863
26 0.1702 0.1784 0.2352 0.2724 0.2547 0.2352 0.2365 0.2530 0.2404 0.2281 0.2304 0.1516
27 0.2208 0.2318 0.3301 0.3467 0.3112 0.2778 0.2557 0.2385 0.2259 0.2107 0.2649 0.2136
28 0.2587 0.2430 0.2295 0.2141 0.1971 0.1877 0.1723 0.1575 0.1487 0.1457 0.1954 -0.1938
29 0.3627 0.3243 0.2862 0.2542 0.2249 0.1996 0.1839 0.1822 0.1754 0.1739 0.2367 -0.2172
30 0.2743 0.2757 0.2609 0.2414 0.2168 0.1951 0.1796 0.1736 0.1682 0.1656 0.2151 0.0300
31 0.1679 0.1749 0.2091 0.2298 0.2363 0.2418 0.2298 0.2251 0.2223 0.2123 0.2149 0.1951
32 0.3220 0.3030 0.2774 0.2549 0.2307 0.2095 0.1939 0.1802 0.1668 0.1634 0.2302 0.0589
33 0.1457 0.1394 0.1486 0.1653 0.1662 0.2030 0.2337 0.2509 0.2475 0.2410 0.1941 -0.1112
34 0.1944 0.1952 0.1890 0.1862 0.1887 0.2192 0.2536 0.2397 0.2223 0.2213 0.2110 0.2701
35 0.2647 0.3188 0.2865 0.2559 0.2290 0.2061 0.1932 0.1865 0.1813 0.1785 0.2301 -0.0425
36 0.1766 0.1969 0.1902 0.1828 0.1947 0.1969 0.1908 0.1821 0.2026 0.2074 0.1921 0.1123
37 0.1503 0.1662 0.1707 0.1810 0.1862 0.1764 0.2175 0.2404 0.2758 0.2929 0.2057 0.0561
38 0.3687 0.3827 0.3732 0.3552 0.3201 0.2789 0.2423 0.2135 0.1993 0.2031 0.2937 -0.0678
39 0.2251 0.2366 0.2546 0.2495 0.2357 0.2249 0.2160 0.1936 0.1769 0.1683 0.2181 0.0612
40 0.1876 0.1808 0.1794 0.1795 0.1743 0.1648 0.1559 0.1576 0.1530 0.1590 0.1692 -0.1571
41 0.1453 0.1460 0.1690 0.2311 0.2265 0.2198 0.2304 0.2445 0.2430 0.2428 0.2098 -0.0326
42 0.1998 0.1809 0.1627 0.1560 0.1649 0.1592 0.1854 0.2373 0.2693 0.2808 0.1996 -0.0625
43 0.2049 0.2041 0.2059 0.1901 0.1756 0.1663 0.2499 0.3037 0.3686 0.3473 0.2416 0.2204
44 0.1525 0.1499 0.1624 0.1947 0.1907 0.1875 0.1877 0.2583 0.2905 0.2852 0.2059 0.0039
45 0.2010 0.2188 0.2725 0.2667 0.2691 0.2688 0.2736 0.2552 0.2312 0.2206 0.2478 0.3901
46 0.1516 0.1440 0.1504 0.1823 0.1896 0.2345 0.2785 0.2696 0.2510 0.2435 0.2095 -0.0649
47 0.2012 0.2108 0.2278 0.2291 0.2128 0.1956 0.1972 0.1855 0.1738 0.1720 0.2006 0.0505
48 0.1998 0.1931 0.1963 0.1922 0.1822 0.1781 0.1855 0.1981 0.1927 0.1847 0.1903 0.1580
49 0.2438 0.2429 0.2592 0.2524 0.2303 0.2074 0.1956 0.1869 0.1753 0.1695 0.2163 0.1133
50 0.2047 0.1939 0.2293 0.2317 0.2376 0.2262 0.2053 0.1915 0.1833 0.1769 0.2080 0.0707
51 0.3644 0.3923 0.4255 0.4293 0.4008 0.3633 0.3136 0.2716 0.2384 0.2161 0.3415 -0.0355
52 0.1921 0.1770 0.1704 0.1690 0.1927 0.1910 0.1806 0.2062 0.2129 0.2076 0.1900 0.0534
53 0.1586 0.1493 0.1546 0.1936 0.2560 0.3060 0.2940 0.3154 0.3187 0.2962 0.2442 0.1125
54 0.1900 0.1790 0.1787 0.1893 0.1971 0.1852 0.1730 0.1765 0.1896 0.1933 0.1852 0.0397
55 0.1949 0.1791 0.1699 0.1675 0.1662 0.1689 0.1616 0.1777 0.1927 0.1971 0.1776 -0.0113
56 0.2228 0.2051 0.1892 0.1768 0.1665 0.1624 0.1569 0.1879 0.2188 0.2155 0.1902 0.0283
57 0.1932 0.1789 0.1714 0.1685 0.1611 0.1612 0.1635 0.1947 0.1992 0.1961 0.1788 -0.0136
58 0.1926 0.1767 0.1693 0.1649 0.1633 0.1621 0.1580 0.1976 0.3147 0.3028 0.2002 -0.0025
59 0.1886 0.1721 0.1620 0.1642 0.1651 0.1684 0.1615 0.1989 0.3065 0.2898 0.1977 -0.0444
60 0.1867 0.1747 0.1725 0.1664 0.1759 0.1729 0.1664 0.1734 0.1753 0.1743 0.1739 -0.0580
61 0.2635 0.2673 0.2715 0.2832 0.2622 0.2390 0.2118 0.1915 0.1789 0.1840 0.2353 0.1217
62 0.2132 0.2230 0.2840 0.3273 0.3053 0.2717 0.2485 0.2288 0.2043 0.1897 0.2496 -0.0267
63 0.2136 0.2033 0.2077 0.1896 0.1833 0.2040 0.1978 0.1864 0.1775 0.1723 0.1935 0.0330
64 0.2317 0.2262 0.2201 0.2078 0.2098 0.2092 0.1910 0.1768 0.1681 0.1645 0.2005 0.0971
65 0.2492 0.2672 0.2931 0.2706 0.2484 0.2293 0.2043 0.1829 0.1721 0.1662 0.2283 -0.0789
66 0.1932 0.1923 0.2608 0.2752 0.3046 0.2929 0.2645 0.2429 0.2225 0.2081 0.2457 0.1613
67 0.1283 0.1269 0.1702 0.1833 0.2143 0.2814 0.2993 0.3054 0.3145 0.3244 0.2348 -0.1216
ū.,t 0.2216 0.2182 0.2200 0.2175 0.2124 0.2114 0.2113 0.2113 0.2141 0.2087 0.2146
γt 0 -0.0379 -0.0674 -0.0408 -0.0172 0.0439 0.1357 0.1072 0.2549 0.2320
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Table 8: Correlations in inefficiencies between different models.
Correlation between ūi. Correlation between ūi. + vi

Benchmark ECM Benchmark ECM
1 2 1 2 1 2 1 2

Benchmark 2 -0.329 1 0.764 1
ECM 1 0.214 0.443 1 0.888 0.923 1
ECM 2 0.725 -0.063 0.423 1 0.725 0.822 0.893 1
ECM 3 0.201 0.473 0.995 0.898 0.887 0.932 0.998 0.898

Table 9: Estimation results from the model in means (15), deviations (16), and the random
effects model (REM) (14) for the hospital data.

Means (OLS) Deviations (OLS) REM (ML)
Coef Sd T-val Coef Sd T-val Coef Sd T-val

Const 7.242 0.191 37.83 8.773 0.268 32.77 6.705 0.131 51.31
D 0.991 0.017 58.82 0.740 0.029 25.27 0.981 0.013 76.13
C∗ 0.292 0.033 8.85 0.186 0.018 10.37 0.232 0.016 14.34
B∗ 0.166 0.040 4.16 0.001 0.024 0.03 0.114 0.020 5.68
O∗ 0.037 0.014 2.71 0.037 0.007 5.48 0.038 0.006 6.18
CMI 0.943 0.091 10.34 0.032 0.050 0.63 0.353 0.044 7.94
AWI 0.701 0.039 17.86 0.221 0.064 3.46 0.614 0.035 17.78
CS∗ 0.100 0.013 7.43 0.103 0.010 10.60 0.126 0.008 15.61
D88 0.100 0.006 16.69 0.113 0.005 20.91
D89 0.199 0.007 30.47 0.206 0.006 35.01
D90 0.296 0.007 43.39 0.298 0.006 48.30
D91 0.390 0.007 52.36 0.386 0.007 57.17√

σ2
α

T
+ σ2

θ 0.118

σα 0.062 0.065
σθ 0.115
LL 1975.9
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Table 10: Estimation results from the error correction model (ECREM) (17)–(19) for the
hospital data.

δ2 = 1 δ1 = δ2 No restriction on δ
Coef Sd T-val Coef Sd T-val Coef Sd T-val

Const 6.715 0.136 49.45 6.240 0.154 40.40 6.198 0.154 40.20
D 0.977 0.013 74.76 1.002 0.014 70.81 1,000 0.014 71.02
C∗ 0.199 0.016 12.79 0.287 0.023 12.37 0.267 0.022 12.29
B∗ 0.126 0.020 6.25 0.056 0.027 2.06 0.057 0.026 2.15
O∗ 0.027 0.006 4.34 0.029 0.009 3.36 0.024 0.008 2.84
CMI 0.305 0.046 6.61 0.457 0.063 7.22 0.412 0.062 6.65
AWI 0.578 0.035 16.61 0.665 0.038 17.67 0.641 0.037 17.20
CS∗ 0.133 0.008 15.83 0.128 0.010 12.28 0.135 0.010 13.11
D88 0.113 0.005 24.33 0.212 0.008 25.69 0.179 0.007 26.03
D89 0.208 0.006 34.04 0.315 0.009 35.32 0.311 0.008 36.63
D90 0.301 0.007 43.76 0.414 0.009 44.67 0.427 0.009 46.46
D91 0.390 0.008 50.47 0.479 0.010 47.76 0.512 0.010 50.86
δ1 1 0.490 0.023 21.08 0.301 0.035 8.56
δ2 0.329 0.042 7.89 0.490 0.023 21.08 0.592 0.028 21.30
ση 0.067 0.063 0.064
σθ 0.098 0.105 0.093
LL 2118.3 2185.6 2210.2
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Table 11: Estimation results from the efficiency correction model (6)–(8) for the hospital data,
where P (ui1 < .05) = .02.

Variable Mean Sd 2.5% 97.5%

Const 6.576 0.148 6.286 6.866
D 0.987 0.014 0.960 1.015
C∗ 0.205 0.022 0.163 0.246
B∗ 0.118 0.024 0.071 0.164
O∗ 0.041 0.007 0.027 0.055
CMI 0.494 0.054 0.389 0.600
AWI 0.579 0.036 0.509 0.649
CS∗ 0.121 0.010 0.101 0.141
D89 0.107 0.003 0.101 0.114
D90 0.200 0.004 0.192 0.209
D91 0.284 0.005 0.274 0.295
δ1 0.358 0.033 0.295 0.422
δ2 0.617 0.024 0.571 0.663
σε 0.014 0.002 0.011 0.017
ν 2.162 0.242 1.745 2.688
σv 0.111 0.005 0.101 0.121
φ1 5.222 0.188 4.863 5.592
φ 1.144 0.153 0.864 1.462
λ1 38.68 2.966 33.18 44.67
λ 23.59 2.098 19.77 27.83
φ1/λ1 0.135 0.005 0.125 0.147
φ/λ 0.048 0.004 0.041 0.056√
φ1/λ1 0.059 0.003 0.053 0.066√
φ/λ 0.045 0.002 0.041 0.050

pD 1375.8
DIC -5794.0
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