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Abstract

This article proposes a new treatment effect model and applies it to analyze the

effect of a rapid railroad network on the population density. When we evaluate a large

infrastructure, such as a rapid railroad network, by using the typical treatment effect

model, the construction is considered as the treatment, and it usually takes time until the

construction has finished. To address such an issue, this article extends the Roy model,

which is usually used for the treatment effect model, and, to the model, incorporates

individuals who are treated but their treatment has not finished. Proposed model is

applied to evaluate the impact of the Shinkansen network on the population density.
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1 Introduction

A treatment, such as a medical experiment and an economic policy, is generally evaluated by

the Rubin causal model (see, e.g., Rubin (1978) for its Bayesian approach). In this model,

each individual is assigned two potential outcomes and one of them is observed according

to its treatment status, that is, in the treatment arm or in the control arm. When a treatment

takes time to be complete, we observe individuals who are treated but their treatment is

not complete. Such individuals are neither in the treatment arm nor in the control arm. In

this situation, the typical treatment effect model is not simply applicable because of these

individuals. Such a situation occurs when we evaluate a large infrastructure, such as a rapid

railroad network.

To address the situation, this article extends the so-called Roy model to allow for such

individuals who are neither in the treatment arm nor in the control arm. The Roy model is a

flexible and typical treatment effect model and its Bayesian estimation method is proposed

by Chib and Hamilton (2000). (See also Poirier and Tobias (2003) for the identification of

the variance covariance matrix of this model.) The original Roy model includes individuals

who are treated and those who are not treated. In addition to these kinds of individuals, we

introduce individuals who are treated but their treatment is not complete under a reasonable

assumption. Because the estimation of model parameters requires high dimensional integra-

tion, we take the Bayesian approach and apply the Markov chain Monte Carlo method to

conduct inferences on model parameters.

Proposed model is applied to evaluate the impact of the rapid railroad network (the

Shinkansen network) on the population density. The rapid railroad network is one of large

infrastructures and its construction usually take long time, which implies that our framework

is applicable. The economic impact of the infrastructure is recently discussed by, for ex-

ample, Baum-Snow (2007), Donaldson (2010), and Faber (2012). In this article, we focus

on the population density as an economic impact. It is often observed that the population

density decays as the distance to the business district becomes longer. Such a relationship
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is modeled as the population density function (see, e.g., McDonald (1989) for a survey of

the estimation of the population density function). This article analyzes how the population

density function is influenced by the introduction of the rapid railroad network.

This article is organized as follows. Section 2 describes the Roy model extended to

individuals who are treated but their treatment has not finished. The estimation method of

this model is presented in Section 3. Then, we apply the proposed model and its estimation

method to evaluate the rapid railroad network in Section 4. Section 5 concludes this article.

2 Extended Roy model

There aren individuals. Letyi andxi be the observed response and treatment status of the

individual i, respectively (i = 1, . . . ,n). If the individual i is in the treatment arm,xi = 1. If

it is in the control arm,xi = 0. Potential outcomes foryi arey∗0i andy∗1i . The treatment is

assigned by the sign of the latent variablex∗i , that is,xi = 1 if x∗i > 0 andxi = 0 otherwise.

Further, we introduce another variableci to indicate whether the treatment of the individual

i is complete or not. If it is complete,ci = 1. If it is not, ci = 0. Thisci is observable. If we

assume that the effect of the treatment appears monotonically, we have the following model,

which is given by

yi ∈



{y∗0i}, if xi = 0,

(y∗Li ,y
∗
Ui), if xi = 1,ci = 0,

{y∗1i}, if xi = 1,ci = 1,

(1)

wherey∗Li =min(y∗0i ,y
∗
1i) andy∗Ui =max(y∗0i ,y

∗
1i).

The unobserved variables (y∗0i ,y
∗
1i , x
∗
i ) are modeled by the linear regression. More pre-

cisely,

y∗ji = www′jiβββ j + ϵ ji , ( j = 0,1), (2)

3



x∗i = vvv′iγγγ+ηi , (3)

wherewww ji and vvvi are thekb and kg dimensional vectors of explanatory variables, respec-

tively with βββ and γγγ their respective coefficients vectors. The (ϵ0i , ϵ1i ,ηi) are error terms

that jointly follow the multivariate normal distribution with mean 000 and variance covariance

matrix κ−1
i ΩΩΩ, that is,N(000, κ−1

i ΩΩΩ). The mixing termκi is introduced to relax the normality as-

sumption and is distributed as the gamma distribution with both shape and scale parameters

v/2 (v> 0), that is,G(v/2,v/2).

Then, thei-th individuals likelihood function augmented byyyy∗i = (y∗0i ,y
∗
1i , x
∗
i )
′ is given by

p
(
yi ,yyy

∗
i , xi = 0 | XXXi ,βββ,κi ,ΩΩΩ

)
= p∗
(
yyy∗i ,y

∗
0i = yi | XXXi ,βββ,κi ,ΩΩΩ

)
I
(
x∗i ≤ 0

)
, (4)

p
(
yi ,yyy

∗
i , xi = 1 | XXXi ,βββ,κi ,ΩΩΩ

)
=


p∗
(
yyy∗i | XXXi ,βββ,κi ,ΩΩΩ

)
I
(
x∗i > 0

)
I
(
y∗Li < yi < y∗Ui

)
, if ci = 0,

p∗
(
yyy∗i ,y

∗
1i = yi | XXXi ,βββ,κi ,ΩΩΩ

)
I
(
x∗i > 0

)
, if ci = 1,

(5)

where

XXXi =


www′0i OOO

www′1i

OOO vvv′i

 , βββ =

βββ0

βββ1

γγγ

 , (6)

and p∗(yyy∗i | XXXi ,βββ,ΩΩΩ, κi) is the density function of the multivariate normal distribution with

meanXXXiβββ and variance covariance matrixκ−1
i ΩΩΩ.

For the identification, we set the (3,3) element ofΩΩΩ to one. Thus,

ΩΩΩ =

ΩΩΩ11 ωωω

ωωω′ 1

 . (7)

Such a restriction is often applied in the multinomial probit models. We use the typical
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decomposition to incorporate this restriction, proposed by McCulloch, Polson, and Rossi

(2000), which is given by

ΩΩΩ =

ΦΦΦ+ωωωωωω
′ ωωω

ωωω′ 1

 , (8)

whereΦΦΦ = ΩΩΩ11−ωωωωωω′.

3 Bayesian approach and Gibbs sampler

To conduct inferences on model parameters, we take the Bayesian approach. First, we as-

sume the following proper prior distributions onβββ, ΦΦΦ, andωωω, which are given by

βββ ∼ N (bbb0,BBB0) , ΦΦΦ ∼ IW (n0,DDD0) , ωωω ∼ N (mmm0,MMM0) , (9)

whereIW(n,DDD) denote the inverse Wishart distribution withn degrees of freedom and pos-

itive definite matrixDDD. Let π(βββ,ΦΦΦ,ωωω) be the prior density function as the product of the

densities of Equation (9).

Then, the posterior density function is given by

π
(
βββ,ΦΦΦ,ωωω,κκκ,yyy∗ | yyy,XXX,ccc) ∝ π (βββ,ΦΦΦ,ωωω)

n∏
i=1

κv/2−1
i exp

(
−v

2
κi

)
×
∏
i∈I0

p∗
(
yyy∗i ,y

∗
0i = yi | XXXi ,βββ,κi ,ΩΩΩ

)
I
(
x∗i ≤ 0

)
×
∏
i∈I10

p∗
(
yyy∗i | XXXi ,βββ,κi ,ΩΩΩ

)
I
(
x∗i > 0

)
I
(
y∗Li < yi < y∗Ui

)
×
∏
i∈I11

p∗
(
yyy∗i ,y

∗
1i = yi | XXXi ,βββ,κi ,ΩΩΩ

)
I
(
x∗i > 0

)
,

(10)

whereI0 = {i | x∗i = 0}, I1l = {i | x∗i = 1,ci = l} (l = 0,1), κκκ = {κi}ni=1, yyy∗ = {yyy∗i }ni=1, yyy = {yyyi}ni=1,

XXX = {XXXi}ni=1, andccc= {ci}ni=1.
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To obtain samples from this posterior density function, we apply the Gibbs sampler,

which is implemented in six steps.

Step 1. Initializeβββ, ΦΦΦ, ωωω, κκκ, andyyy∗.

Step 2. Generateβββ conditioned onΦΦΦ,ωωω,κκκ,yyy∗ from the multivariate normal distribution.

Step 3. GenerateΦΦΦ conditioned onβββ,ωωω,κκκ,yyy∗ from the inverse Wishart distribution.

Step 4. Generateωωω conditioned onβββ,ΦΦΦ, κκκ,yyy∗ from the multivariate normal distribution.

Step 5. Generate (κi ,yyy∗i ) for i = 1, . . . ,n.

Step 5-a. Generateyyy∗i conditioned onβββ,ΦΦΦ,ωωω from the truncated multivariatet dis-

tribution.

Step 5-b. Generateκi conditioned onβββ,ΦΦΦ,ωωω,yyy∗i from the gamma distribution.

Step 6. Go to Step 2.

Exact expressions of the parameters of these full conditional distributions are presented in

Appendix A

4 Rapid railroad network and population density function

This section applies the above treatment effect model to analyze the impact of the rapid

railroad network in Japan on the population density. We focus on Kyushu area (the south-

west island of Japan) where the latest Shinkansen, which is called Kyushu Shinkansen, runs

through from the south (Kagoshima city) to the north (Fukuoka city). Partly because of the

fiscal problem, its construction was divided into two parts. That is, the south part (from

Kagoshima-Chuo to Shin-Yatsushiro) was opened since 2004, and, after that, the north part

(from Shin-Yatsushiro to Fukuoka) followed since 2011. Thus, in the period between 2004

and 2011, there are three types of cities: (1) cities where a Shinkansen station had been
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opened, (2) cities where a Shinkansen station is under construction, and (3) cities where

no Shinkansen station is planned. When we evaluate the economic influence of Kyushu

Shinkansen on the population density by using the typical treatment effect model, it is dif-

ficult to decide whether the second type is categorized to the first type or the last type. Our

framework, however, is able to include such cities as ones which are treated but their treat-

ment is not complete, that is,xi = 1 andci = 0.

To analyze the impact, we use the city-level data, which consists of 247 cities in Kyushu

area. In 2005, there are five cities where a Shinkansen station had been opened and seven

cities where a Shinkansen station is under construction. In remaining 235 cities, no Shinkansen

station is planned. The dependent variableyi is the logarithm of the population density in

2005 calculated as the ratio of the population (in thousand) to the habitable area (in square

kilometer) subtracting the farming area (in square kilometer). To explain thisyi , we use the

distance (in kilometer) to the nearest business districts as well as the constant. According to

Kanemoto and Tokuoka (2001), there are 18 business districts in Kyushu area. Thus, for each

city, we calculate 18 great-circle distances to these business districts and pick the minimum

distance as the explanatory variable. Because the distance is invariant to the treatment status,

we simply use it as the common explanatory variable towww0i andwww1i . As the explanatory

variables forx∗i , we use four variables: the constant, the distance to the nearest business dis-

trict, the debt expenditure ratio of the city budget in 2001 (in thousand yen), and the absolute

value of the population difference between day and night in 2000 (in person). The last two

variables are standardized.

As the prior distributions, we use

βββ ∼ N (000,10III ) , ΦΦΦ ∼ IW (10,10III ) , ωωω ∼ N (000,10III ) . (11)

After deleting 5×104 samples, we draw 5×105 Markov chain Monte Carlo samples from

the posterior distribution. To conduct inferences, we reduce them to 104 samples by picking
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Table 1: Population density function

Parameter Mean SD 95%interval INEF

β01 (constant, untreated)−4.89 .093 [−5.08 −4.71 ] 1
β02 (distance, untreated)− .010 .003 [− .016 − .005] 1

β11 (constant, treated) .93 1.74 [−1.91 4.95 ] 23
β12 (distance, treated) − .043 .062 [− .15 .090] 26

γ1 (constant) −1.84 .35 [−2.54 −1.15 ] 2
γ2 (distance) − .022 .021 [− .073 .007] 5
γ3 (debt-ex. ratio) .18 .23 [− .26 .65 ] 1
γ4 (population diff.) .97 .44 [ .21 1.90 ] 5

∗ “INEF” denotes the estimated inefficiency factors.

up every 50-th sample.

Results for regression coefficients are summarized in Table 1. From this table, we found

that one kilometer away from the nearest business district is associated with the 4.3% and

1% decrease of the population density evaluated at the posterior mean when the city has a

Shinkansen station or not, respectively. Thus, this result suggests that, by the introduction of

the Shinkansen network in Kyushu area, business districts become more valuable, so that the

population agglomerates around them. Among explanatory variables for the assignment of

the treatment (x∗i ), it is credible that the absolute value of the population difference between

day and night has a positive effect on this assignment because its 95% credible interval does

not include zero.

Next, we estimate the posterior means of the average treatment effect (ATE), that is,

E(y∗1i)−E(y∗0i), for the selected two cities. Fukuoka (city id is 2) is one of the business dis-

tricts in Kyushu area and a Shinkansen station was under construction in 2005. Its ATE is es-

timated to be 3.85 and its 95% credible interval does not include zero. Thus, the Shinkansen

network has a positive impact concerning the population density on this city. On the other

hand, Kagoshima (city id is 203) is also one of the business districts and already has a

Shinkansen station. Its ATE is estimated to be 1.15 with 95% credible interval including

zero. This suggests that the Shinkansen network has a different effect on the population
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Table 2: Correlation matrix

Parameter Mean SD95%interval INEF

Corr(y∗0i ,y
∗
1i) .004 .19 [−.36 .38] 6

Corr(y∗0i , x
∗
i ) −.17 .19 [−.51 .24] 2

Corr(y∗1i , x
∗
i ) −.28 .44 [−.89 .69] 38

∗ “INEF” denotes the estimated inefficiency factors.

density depending on the characteristics of business districts.

We also estimate the ratio defined as

r i =
yi −min(y∗0i ,y

∗
1i)

max(y∗0i ,y
∗
1i)−min(y∗0i ,y

∗
1i)
, (12)

for cities where a Shinkansen station is under construction. The posterior means of this ratio

are estimated to be (r2, r3, r4, r10, r69, r110, r115) = (.54, .47, .49, .48, .41, .47, .39). These ratios

suggest that half of the treatment effect is already observed for such cities.

Finally, we present the estimation results of the correlation matrix, which are given in

Table 2. From this table, we found weak and negative correlations between the log of the

population density and the assignment of the treatment.

5 Concluding remarks

In this article, we proposed a new treatment effect model that includes individuals who are

treated but their treatment is not complete. Such a modeling allows us to address the evalu-

ation of the large infrastructure, such as the rapid railroad network, because the construction

of such a large infrastructure usually takes long time. To evaluate the treatment effect of this

kind, it is necessary to include in the treatment effect model the individual who are treated

but their treatment has not finished. We addressed this issue by extending the Roy model. By

using the proposed model, we conducted the empirical analysis of the Shinkansen network

and found that the Shinkansen network causes the agglomeration of the population around

9



the business districts.

A Full conditional distributions

Step 2. Generateβββ conditioned onΦΦΦ,ωωω,κκκ,yyy∗ from the multivariate normal distribution.

The full conditional distribution forβββ is given byN(bbb1,BBB1), where

BBB−1
1 = BBB−1

0 +

n∑
i=1

κiXXX
′
iΩΩΩ
−1XXXi , bbb1 = BBB1

BBB−1
0 bbb0+

n∑
i=1

κiXXX
′
iΩΩΩ
−1yyy∗i

 . (13)

Step 3. GenerateΦΦΦ conditioned onβββ,ωωω,κκκ,yyy∗ from the inverse Wishart distribution.

Let eeei = yyy∗i −XXXiβββ andeeei = (eee′1i ,e2i)′. The full conditional distribution forΦΦΦ is given by

IW(n1,DDD1), wheren1 = n0+n and

DDD1 = DDD0+

n∑
i=1

κi (eee1i −e2iωωω) (eee1i −e2iωωω)′ . (14)

Step 4. Generateωωω conditioned onβββ,ΦΦΦ, κκκ,yyy∗ from the multivariate normal distribution.

The full conditional distribution forωωω is given byN(mmm1,MMM1), where

MMM−1
1 = MMM−1

0 +

n∑
i=1

e2
2iκiΦΦΦ

−1, mmm1 = MMM1

MMM−1
0 mmm0+

n∑
i=1

e2iκiΦΦΦ
−1eee1i

 . (15)

Step 5-a. Generate yyy∗i conditioned onβββ,ΦΦΦ,ωωω from the truncated multivariate t distribution.

We first specify elements inΩΩΩ, which are given by

ΩΩΩ =


υ2

0 ξ01 ω0

ξ01 υ2
1 ω1

ω0 ω1 1

 . (16)
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Let ϕ2
j = υ

2
j −ω2

j , ζ01= ξ01−ω0ω1, σσσ1− j = (ζ01+ω0ω1,ω1− j)′, and

ΦΦΦ j =

ϕ
2
j +ω

2
j ω j

ω j 1

 , XXX ji =

www
′
0i × (1− j) www′1i × j 0

000′ 000′ vvv′i

 . (17)

Further, let

SSS j = ΦΦΦ j −σσσ1− jσσσ
′
1− j

(
ϕ2

j +ω
2
j

)−1
, (18)

µµµ ji = XXX jiβββ+σσσ1− j

(
yi −www′1− j,iβββ1− j

) (
ϕ2

j +ω
2
j

)−1
, (19)

h ji = ν (ν+1)−1
{
1+
(
yi −www′jiβββ j

)2 (
ϕ2

j +ω
2
j

)−1
/ν
}
. (20)

Then, we have the full conditional distribution foryyy∗i depending on (xi ,ci).

Case 1: xi = 0⇔ i ∈ I0.

Sety∗0i = yi and draw

(
y∗1i , x

∗
i

)′ | y∗0i = yi ∼ t2
(
µµµ1i ,h0iSSS1, ν+1

)
I
(
x∗i ≤ 0

)
, (21)

wheretp(µµµ,ΣΣΣ, ν) denotes thep-variatet distribution with meanµµµ, variance covariance matrix

ΣΣΣ, andν degreees of freedom.

Case 2: xi = 1 and ci = 0⇔ i ∈ I10.

Draw

yyy∗i ∼ t3 (XXXiβββ,ΩΩΩ, ν) I
(
x∗i > 0

)
I (y∗Li < yi < y∗Ui). (22)

Case 3: xi = 1 and ci = 1⇔ i ∈ I11.

Sety∗1i = yi and draw

(
y∗0i , x

∗
i

)′ | y∗1i = yi ∼ t2
(
µµµ0i ,h1iSSS0, ν+1

)
I
(
x∗i > 0

)
. (23)
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Step 5-b. Generateκi conditioned onβββ,ΦΦΦ,ωωω,yyy∗i from the gamma distribution.

The full conditional distribution forκi is given by

G

ν+3
2
,
ν+eee′iΩΩΩ

−1eeei

2

 . (24)
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