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Abstract

In this article we propose an approximate Bayesian approach to estimate the

joint distribution of the response variable Y and the set of covariates X based on

the notion of quantile distribution. We focus on cases where the quantile regression

framework is necessary, but the unknown form of the regression function and the

large number of quantiles let be more convenient to estimate directly the conditional

distribution. In this cases the use of very flexibly-shaped distributions is of interest.

In this context we propose to estimate directly the joint distribution using the

multivariate g-and-h distribution, a member of the quantile distribution family.

Such family of distribution provide simple and flexible distribution when quantiles

are of principal interest. Due to the lack of the likelihood function, the estimation

proceed via an Approximate Bayesian Computation (ABC) algorithm that allows

us to easily estimate all the parameters. The performance of the proposed approach

is evaluated with simulated data sets.
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1 Introduction

The usual assumptions of the standard linear model imply that the conditional distri-

bution of the response variable is, at least approximately, Gaussian. In practice, this

assumption is rarely acceptable. In many observational studies, the conditional distribu-

tion is far from being symmetric and, even worse, its shape depends on the value of the

covariates (Yu et al. (2003)). For these situations, methods based on quantile regression

are nowadays valid and common alternatives (Koenker & Bassett (1978), Koenker (2005)).

Nevertheless when influence concerns more than one quantile and the relationship between

quantiles and covariates is not easy to model, it may be convenient to take a more general

perspective and to consider the problem of directly estimating the conditional distribution

of the response variable given the explanatory variables (Peracchi (2002), Foresi & Per-

acchi (1995)). Standard methods for this problem rely upon relatively complex models,

like mixture models and non-parametric approaches, which may be difficult to implement

and interpret. In this context quantile distributions, due to their flexibility and the small

number of parameters, may represent a good alternative to the existing methods. Field

& Genton (2006) have proposed a generalization of the univariate g-and-h distribution to

the multivariate case, so providing a flexible family of multivariate distributions that are

characterized by only four parameters related to location, scale, skewness and kurtosis.

In this paper we exploit the use of the multivariate g-and-h distribution for the esti-

mation of the joint distribution of the response variable Y given a vector of covariates

X = (X1, . . . , XK).

A drawback of quantile distributions, which has represented an obstacle to their use, is

the lack of a closed form expression of the likelihood function. On the other hand, the

way in which quantile distributions are defined, makes the problem of generating random

values from them, an easy task. The last two issues, namely the lack of explicit likelihood

function and the case of random generation, strongly suggest the use of Approximate

Bayesian Computation (ABC) approach.

ABC is a Monte Carlo base algorithm for parameter estimation which has been devel-

oped in population genetics studies (Allingham et al. (2009), Tavar et al. (1997)). In a

few words, ABC allows to produce a sample from an approximate version of the posterior
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distribution. No likelihood evaluation is required, only a way to sample from the model

distribution.

Section 2 gives an overview of the quantile regression method. Section 3 describes the

notion of quantile distribution. Section 4 illustrates the notions of multivariate quantile

and recall the definition of multivariate g-and-h distribution. Section 5 illustrates the

ABC approach. In Section 6 we detail a specific ABC algorithm for the estimation of the

parameters of the multivariate g-and-h distribution. Section 7 presents the results for

two simulations studies.

2 The Quantile Regression and the Conditional Dis-

tribution Function

2.1 The Distribution function and The Quantile Function

The probability distribution function P of a real random variable Z can be described

either by its distribution function or by its quantile function. If Z has a continuous

distribution with strictly positive density, the distribution function F is given by

F (z) = P{Z ≤ z}, ∀z ∈ R

whereas the quantile function Q is a continuous and strictly increasing function defined

on the interval [0, 1] and values in R given by

Q(τ) = {z ∈ R : F (z) = τ}.

Clearly Q and F are the inverse of each other, that is,

Q(F (z)) = z and F (Q(τ)) = τ.

It can be show that Q(τ) can be characterized as the solution of the following minimization

problem

min
z∈R

E[ρτ (Z − z)] (1)
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where ρτ is the asymmetric absolute loss function

ρτ (ν) = ν(τ − I(ν ≤ 0)) ν ∈ R

with I(·) is the indicator function. For a motivation and illustration of this particular loss

in quantile estimation see Peracchi (2002).

When τ = 1
2
, Q(τ) is the median of the random variable Z. The generalization to

conditional distributions is straightforward. Given the vector (X, Y ) ∈ RK+1, where Y is

a real random variable with strictly positive density, the conditional distribution Px of Y

given X = x can be described either by the conditional distribution function (c.d.f.) or

by the conditional quantile function (c.q.f.). The c.d.f. is defined on R×RK and is given

by

F (y|x) = P (Y ≤ y|X = x)

whereas the c.q.f. is defined on (0, 1)× RK and is given by

Q(τ |x) = {y ∈ R : F (y|x) = τ}.

Obviously, also in the conditional case, one has that

Q(τ |x) = F−1(τ |x) and F (y|x) = Q−1(y|x)

and, for any fixed x, F (y|x) and Q(τ |x) must satisfy all the properties of a distribution

function and a quantile function, respectively. In particular, one can see that, for example,

different quantile functions cannot cross. This amounts to say that for τ < τ ′, Q(τ ′|x) <

Q(τ |x) for all x ∈ X (Peracchi (2002)).

2.2 The Quantile Regression

Given the sample (yi,x
′
i), for i = 1, . . . , n, where yi’s are independent and continuous

random variables distributed according to FY , and x′i’s are K-vector of predictors, the

quantile regression (QR) problem consists on the estimation of the c.q.f. Q(τ |x) using the

information provided by the sample. The usual approach considers Q(τ |x) as a function

of x given τ , then, it can interpreted as the solution of the minimization problem

min
h∈Ξ

E[ρτ (Yi − h(Xi))] 0 < τ < 1, (2)
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where Ξ is the set of real-valued functions in RK .

In practical applications, one usually select a specific subclass of Ξ, say H, for h(·) and

solve the sample analogue of (2)

min
h∈H

n∑
i=1

ρτ (yi − h(xi)).

In the usual approach, introduced by Koenker & Bassett (1978), H is the family of linear

functions of x, that is Q(τ |x′) = x′iβ(τ), and the problem (2) reduces to estimate the

τ -dependent K-dimensional parameter β(τ) through the solution β̂(τ) of

min
β∈RK

n∑
i=1

ρτ (yi − x′iβ). (3)

Obviously, the estimate of Q(τ |x) will be given by Q̂(τ |x) = x′iβ̂(τ). A nice features of

this approach is that a fraction τ of yi’s lies on or below the estimated quantile regression

hyperplane Q̂(τ |x). Since Q(τ |x) can be viewed as a function of both τ and x, it is

common to select L different probability values 0 < τ1 < . . . < τl < . . . < τL < 1 and

then estimate L different c.q.f. Ql(x) = Q(τl|x), l = 1, . . . , L. By suitably choosing their

number and position, one may get a reasonable estimate of the c.d.f. F (y|x). Hence,

given the estimated c.q.f. Q̂(τ |x) the corresponding estimate of the c.d.f is simply given

by

F̂ (y|x) = sup{τ ∈ (0, 1) : Q̂(τ |x) ≤ y}

The estimated c.d.f will be a proper c.d.f. if and only if Q̂(τ |x) is a proper c.q.f.

The standard Bayesian approach to the estimation of the linear Quantile Regression

is based on the notion of the Asymmetric Laplace Distribution (ALD) (Yu & Moyeed

(2001),Yu et al. (2005)).

Just like the Normal distribution in standard regression problems, the ALD is the paramet-

ric distributional link between the previous minimization problem (3) and the maximum

likelihood theory for quantile regression. The ALD (Koenker & Machado (1999), Yu &

Moyeed (2001)) is a skewed distribution with three parameters: a skewness parameter

0 < τ < 1, a scale parameter σ > 0 and a location parameter µ ∈ R. A random variable
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Y ∈ R, is distributed according to an ALD(µ, σ, τ) if its density is given by:

f(y|µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µ
σ

)}
.

Yu & Zhang (2005) gave properties and generalization of this distribution. In particular

one can easily see that F (µ|µ, σ, τ) = τ for any suitable combination of the parameter

values. Hence setting µi = x′iβ, and assuming that yi ∼ ALD(µi, σ, τ), the likelihood

associated to n independent observations, y = (y1, . . . , yn), can be written as

L(β, σ; y, τ) = σ−n exp

{
−

n∑
i=1

ρτ

(
yi − x′iβ

σ

)}
τn(1− τ)n. (4)

When σ is considered a nuisance parameter, the maximization of the likelihood in (4)

with respect to β is equivalent to the minimization of (3). The introduction of a proper

likelihood function in the problem, allows to use the likelihood and Bayesian tools for para-

metric inference (Koenker & Machado (1999), Yu & Moyeed (2001), Yu et al. (2003)).

Although the linear quantile regression models are usually adopted in the empirical stud-

ies, they present several drawbacks. The most significant issues are, in general:

1. The validity of the linearity assumption

2. The choice of the function h(·)

3. The number and the positions of the L different probability values τl

4. The defined model needs to be separately fitted for each corresponding value τl

5. The non-crossing condition among the c.q.f.’s might be not satisfied

Following Peracchi (2002), the trouble arising from the first issue can be illustrated as

follows: let X be a scalar random variable and let the c.d.f. of Y depend on x only

through the location parameter µ(x), that is,

F (y|x) = F (y − µ(x)).

By definition,

τ = F (Q(τ |x)− µ(x))
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and

Q(τ |x) = Q(τ) + µ(x). (5)

Hence

Q(τ ′|x)−Q(τ |x) = Q(τ ′)−Q(τ) ∀x ∈ X ,

that is the distance between any pair of conditional quantiles is independent of x and it

will depend just on (τ, τ ′). In particular, for location models, where µ(x) = α + xβ the

(5) becomes

Q(τ |x) = Q(τ) + α + xβ

and the set of conditional quantiles of Y is the class of parallel lines with slope equal to

β.

Furthermore, if the conditional distribution of Y depends on x both through the location

parameter µ(x) = α + xβ and the scale parameter σ(x), (5) becomes

Q(τ |x) = σ(x)Q(τ) + α + xβ

and the linear assumption for the conditional quantiles of Y fails when σ(x) is not linear

in x.

This implies that the linear quantile regression model can be a bad approximation when

data present some degree of heteroskedasticity and the conditional standard deviation is

not linear in x. When σ(x) is linear in x, the conditional quantiles are linear in x but

with possibly different slopes.

In the general case of location models where µ(x) is a general function, (5) becomes

Q(τ |x) = µ(x) + σ(x)Q(τ)

and the nonlinearity of Q(τ |x) may be due to the nonlinearity of µ(x), to heteroskedas-

ticity or both.

The presence of heteroskedasticity implies that the estimated linear models may cross

each other, violating one of the main properties of quantiles, so invalidating the estima-

tion results.

The linearity assumption can be relaxed using nonparametric estimators which leave H
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unrestricted. These estimators are essentially based on kernel or nearest neighbour meth-

ods - in the classical literature - and on Dirichlet process in the Bayesian approach. Also

these approaches show some potential drawbacks: Bayesian non-parametric methods are

computational demanding, and it is challenging to make comparison among them. Also

it may be difficult to generalize them to cases in which the number of covariates is large.

A possible solution to some of these problems is offered by the use of approximate like-

lihoods. Dunson & Taylor (2005) proposed a Bayesian approach to quantile regression

using the Substitution Likelihood, an approximate likelihood based on the notion of quan-

tile, introduced by Jeffreys (1961) and later developed by Lavine (1995). This likelihood

allows to simultaneously estimate all the L different quantiles and to impose the non-

crossing condition among them. We have discussed this approach in the first chapter. As

already said, mainly because it is difficult to deal with the non crossing condition for large

L, it may be convenient to directly estimate the joint distribution of (Y,X).

To avoid to specify the form of the c.d.f F (Y |x), much attention has been devoted in the

literature to the non parametric methods. Unfortunately most of these methods tend to

do rather poorly when data are sparse, which is the case with more than two covariates,

or, as in a Bayesian framework, are quite computationally demanding.

For all these reasons, we explore in this paper a flexible and easy to interpret family of

distributions that encompasses a considerable variety of distributional shapes, providing

accurate results, and that can be implemented in a Bayesian framework with little com-

putational effort. Summarizing, since the interest concern the conditional quantile of Y

given X, we propose the use of the multivariate g-and-h distribution, a family of multi-

variate distribution defined in terms of quantiles, introduced by Field & Genton (2006),

to estimate the joint distribution F (Y,X).

3 Quantile Distributions

Distributional families tend to fall into two broad classes:

1. Those defined in terms of the probability density function (PDF).

2. Those defined in terms of a transformation of a base distribution.
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Most common distributions fall into the first category, whereas a quantile distribution

defined by a quantile function fall into the second one. Some distributional families

defined by their q.f. are the Johnson system, the Tukey lambda distribution and its

generalization, the g-and-k distribution and finally the g-and-h distribution (Rayner &

MacGillivray (2002a)). Except for the Johnson system, which can be written also in terms

of its density, all the other quantile distributions, defined by their quantile functions, have

not a closed form expression for their PDFs and an explicit likelihood function is not

available. Quantile distributions admit great flexibility in shape and have a small number

of parameters which can very well describe distributional characteristics like skewness and

kurtosis.

Due to the lack of a closed expression for the likelihood function, fitting methods used

in the literature have been essentially focused on moments, on some form of quantile

matching (Rayner & MacGillivray (2002b)), on numerical maximization of the likelihood

in the frequentist paradigm (Rayner & MacGillivray (2002b), Su (2007)) or the Bayesian

one (Haynes & Mengersen (2005)). More recently the potentially of ABC approach has

been extensively explored in Allingham et al. (2009), McVinish (2010) and Drovandi &

Pettitt (2011).

3.1 Definition

The q.f. for a continuous random variable Y is defined as the inverse of its distribution

function F (·), when F depends on an unknown parameter vector ϑ, then

y = Q(τ |ϑ) = F−1(τ |ϑ).

Then to each realization yi is associated a probability value τi = F (yi|ϑ) representing the

depth corresponding to yi.

The usual way of constructing quantile distributions is based on a transformation, say

Rψ(·), of quantiles of a given distribution, for example the Gaussian one. Location and

scale parameters can then be added, and so one gets

y = Q(τ |ϑ) = A+B ·Rψ(zτ ) (6)
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where A and B are respectively the location and scale parameters, ψ is a shape param-

eter, Rψ(·) is a known function depending on ψ, and zτ is the τ -th quantile of a given

distribution.

The corresponding density is given by:

fY (yi|ϑ) =

 1
Q′Y (Q−1

Y (yi|ϑ)|ϑ)
inf{y|y ∈ Y} < yi < sup{y|y ∈ Y};

0 otherwise.

where Y is the support of the random variable Y . This density integrate to one whenever

the quantile function is a non decreasing function of the base random variable (Rayner &

MacGillivray (2002a)).

Depending on the choice of the function Rψ(·) one has different quantile distributions.

1. The g-and-h distribution

The g-and-h distributional family has been introduced by Tukey (1977) by trans-

forming the standard normal distribution using a skewness parameter g and a kur-

tosis parameter h, through the following function:

Rψ(zτ ) = Rg,h(zτ ) =

(
exp(gzτ )− 1

g

)
exp

(
hz2

τ

2

)
, (7)

The quantile representation of a g-and-h distribution is then

Qg,h(τ ;A,B, g, h) = A+B ·
(

exp(gzτ )− 1

g

)
exp

(
hz2

τ

2

)
. (8)

Here, g ∈ R is a measure of skewness: g < 0 indicates that the distribution is

skewed to the left, g > 0 indicates skewness to the right. Also, h ∈ R+
0 is a measure

of kurtosis. The value h = 0 corresponds to no extra kurtosis compared with the

normal (base) distribution, which shows the minimum amount of kurtosis for this

family of quantile distributions.

This family of distributions is quite useful because it encompasses a considerable

variety of distribution shapes and it has only four parameters, that are easy to

interpret. In particular:
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- for g = 0 and h = 0 one gets the normal distribution

- for g = 0 and h > 0 one gets tails heavier than the normal ones.

- g 6= 0 and h = 0 coincides with the log-normal distribution.

The g-and-h family only produces leptokurtotic distributions.

2. The generalized g-and-h distribution

The generalized g-and-h distribution quantile function is given by:

QGg,h(τ ;A,B, g, h) = A+B ·
(

1 + c
1− exp(−gzτ )
1 + exp(−gzτ )

)
exp

(
hz2

τ

2

)
zτ

where:

- c measures the “overall asymmetry” and it is usually fixed approximately at 0.8

(MacGillivray (1986), Rayner & MacGillivray (2002a))

3. The g-and-k distribution

The g-and-k distribution is given by the following quantile function:

Qg,k(τ ;A,B, g, k) = A+B ·
(

1 + c
1− exp(−gzτ )
1 + exp(−gzτ )

)
(1 + z2

τ )
kzτ

Here again, A and B are respectively the location and the scale parameter, g ∈ R
is a measure of skewness: g < 0 indicates the distribution is skewed to the left,

g > 0 indicates skewness to the right, k ∈ (−1
2
,+∞) is a measure of kurtosis. The k

parameter plays a role similar to that of h in the previous class; the main difference

is that, for negative values of k, the g-and-k distributions are platykurtotic. Finally,

c measures the “overall asymmetry” and it is usually fixed approximately at 0.8,

and zτ is the τ -th standardized normal quantile.
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3.2 Estimation Methods

Given a random sample y = (y1, . . . , yn) taken from a quantile distribution, the likelihood

function is given by:

L(θ|y) =
n∏
i=1

fY (yi|ϑ) =
n∏
i=1

∂

∂yi
Q−1
Y (yi|ϑ) =

(
n∏
i=1

Q′Y (Q−1
Y (yi|ϑ)|ϑ)

)−1

and, if the base distribution is the standard normal one, zτ = Φ−1(τ), and one obtains

Q′Y (τ |ϑ) =
∂QY

∂τ
=
∂QY

∂zτ

dzτ
dτ

,

where
dzτ
dτ

=
√

2π exp

(
z2
τ

2

)
,

and a closed form expression for Q−1
Y (yi|ϑ) doesn’t exist. For this reason parameter esti-

mation methods have focused on different approaches which do not require the likelihood

evaluation. Rayner & MacGillivray (2002a) and Su (2007) have proposed a maximum

likelihood estimator (MLE) using numerical approximations to the likelihood function in

a frequentist framework, whereas Haynes & Mengersen (2005) proposeed a Bayesian ver-

sion of it. Rayner & MacGillivray (2002b) proposed also a parameter estimation based on

quantile-matching for the g-and-k distribution. Finally Allingham et al. (2009), McVinish

(2010), Drovandi & Pettitt (2011) have proposed ABC methods for the parameter esti-

mation of quantile distributions.

Briefly ABC is a parameter estimation scheme which utilizes simulated data to assess

proposed parameter values, without requiring likelihoods, but only a way to sample from

the distribution chosen to fit the data. We refer to section 5 for a complete description

of the algorithm.
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4 The Multivariate Quantile and the Multivariate g-

and-h Distribution

In this section, following Chaudhuri (1996) and Field & Genton (2006), we extend the

notions of quantile and g-and-h distribution to the multivariate framework.

In §2.1 we have defined the univariate quantile as the solution of the minimization problem

(1). That minimization problem can be reformulated by considering, for each τ ∈ [0, 1],

the quantity u = 2τ−1. Given the sample (y1, . . . , yn) the τ -th quantile q can be obtained

as the

arg min
q∈R

n∑
i=1

|yi − q| − nuq (9)

This formulation can be easily extended in the multivariate setting. The multivariate

quantile q in RK+1 for the multivariate sample w1, . . . ,wn must be specified in terms of

the direction we are interested in. For each vector u ∈ RK+1, such that ‖u‖p < 1, we

define the multivariate quantile q, along the direction u and depth ‖u‖p, as

arg min
q∈RK+1

n∑
i=1

‖wi − q‖p − n
K+1∑
j=1

ujqj (10)

where ‖.‖p denotes the lp-norm for 1 ≤ p <∞.

Depending on the chosen lp-norm we obtain different multivariate quantiles. By taking

p = 1, (10) can be written as

arg min
q∈RK+1

K+1∑
j=1

(
n∑
i=1

|wij − qj| − nujqj

)
,

giving the result that the multivariate quantile is computed componentwise, since the

minimization can be done separately for each dimension, so that qj is the τ = (uj + 1)/2-

th quantile for the j-th component.

Unlike the l1-norm, that gives the usual univariate quantiles for each component, the

l2-norm incorporate the dependence among the variables wj, ∀j = 1, . . . , K + 1, and

produces less common quantiles in one dimension. For this reason we essentially focus on

l2-norm.
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Given the definition of the multivariate quantile we can define the multivariate g-and-

h distribution. A random vector W ∈ RK+1 is said to have a multivariate g-and-h

distribution if it can be represented as

W = Σ1/2Rg,h(Z) + µ (11)

where:

- µ ∈ RK+1 is the location parameter vector

- Σ is the covariance matrix

- g = (g1, g2, . . . , gK+1) ∈ RK+1 controls for the skewness

- h = (h1, h2, . . . , hK+1) ∈ R+
K+1 controls for the kurtosis

- Z ∼ NK+1(0, I) is the standard normal random variable

- Rg,h(Z) = (Rg1,h1(Z1), Rg2,h2(Z2), . . . , RgK+1,hK+1
(ZK+1))T where Rg,h is given by (7).

The componentwise application of the function Rg,h allows to maintain the property

that, for small g, the transformation is approximately linear.

Since the g-and-h distribution is a quantile distribution, it is worth to define the quantile

function in the multivariate case corresponding to (8).

Given the direction u ∈ {u|u ∈ RK+1, ‖u‖p < 1} the quantile function for the multivariate

g-and-h distribution, based on the lp-norm, is given by

QY(u) = Σ1/2Rg,h(QZ(ũ)) + µ

where ũ = Σ−1/2u‖u‖r/‖Σ−1/2u‖r with 1
p

+ 1
r

= 1, if p = 1 (r = ∞) we have the sup

norm. This definition is consistent with the univariate case given by (8).

To estimate the multivariate g-and-h distribution, Field & Genton (2006) proposed a

quantile matching technique based on a transformation of the original data that give

affine-equivariant quantiles (Chakraborty (2001)). In what follows, we illustrate an ABC

algorithm to estimate the parameter vector (g,h,µ,Σ).
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5 Likelihood-free Markov Chain Monte Carlo: the

Approximate Bayesian Computation (ABC) method

Many Bayesian estimation methods rely on stochastic simulation approaches for gener-

ating observation from the posterior distribution. These approaches, as Markov Chain

Monte Carlo methods, require the knowledge of the likelihood function, and become ei-

ther computational prohibitive for complex probability models or even impossible for

those models, such as the quantile distributions, which don’t have an explicit likelihood

function. In these case ABC methods are recommendable.

ABC methods are parameter estimation schemes that utilize simulated data to assess

proposed parameter values; unlike MCMC methods, they do not require likelihoods but

only a way to sample from the model chosen to describe the data.

Marjoram et al. (2003) details several Monte Carlo parameters estimation methods and

present MCMC Without Likelihoods algorithms establishing its theoretical properties,

Sisson & Fan (2010) give an exhaustive description of the algorithm.

Briefly, the ABC algorithm proceeds by proposing a parameter value θ′ by a transition

kernel based on current parameter value θ. A random sample D′ is then drawn from the

model M, chosen to describe the data D, using the proposed parameter θ′. Summary

statistics for the observed data D and for the simulated data D′ are computed and com-

pared through a distance metric ρ. Then the proposed parameter is accepted or rejected

assessing the computed distance.

In detail, following Allingham et al. (2009), consider the sample D with n observations

generated from the model M with parameter θ, let ρ(·) a distance metric and S(·) a

summary statistics. The proposed ABC algorithm proceed as follows:

A1. Being at θ, propose a move to θ′ according to a transition kernel q(θ → θ′)

A2. Generate D′ using model M with parameters θ′

A3. If ρ(S(D), S(D′)) < ε go to A4 otherwise stay at θ and return to A1

A4. Calculate α = min(1, π(θ′)q(θ′→θ)
π(θ)q(θ→θ′) )
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A5. Accept θ′ with probability α, otherwise stay at θ; then return to A1,

where S(·) is a summary statistics, ρ(·) is a distance metric and ε is an acceptance thresh-

old. The length of D′ could be different from n, although we always consider in the

following the same sample size for D and D′. All the accepted values of θ′ are used for

estimating the parameter θ.

The initial value of θ is obtained in a similar way using the prior distribution π(θ), thus:

(I) Sample a parameter θ from π(θ)

(II) Draw a random sample, D′ from M(θ)

(III) Accept θ if ρ(S(D), S(D′)) < ε0 otherwise return to (I)

where ε0 may be different from ε.

If S(·) is a sufficient statistics for θ then in the limit as ε → 0, accepted values of θ are

samples from the true posterior distribution; otherwise the accepted parameters become

a sample from an approximation of the posterior; for this reason the algorithm is named

“Approximate”.

An equivalent and more efficient algorithm can be obtained by introducing a standard

smoothing kernel density, K(·), on the distance metric ρ(·), centered at the point S(D′) =

S(D) with scale given by ε (Sisson & Fan (2010)). In this manner, introducing the kernel

density

Kε (ρ(S(D), S(D′))) (12)

we can weigh the proposed parameters θ′ with hight values when S(D) ≈ S(D′) and with

values close to zero otherwise. In this way one obtains the following ABC algorithm

B1. If we are at θt propose a move to θ′ according to a transition kernel q(θt → θ′)

B2. Generate D′ using model M with parameters θ′

B3. Calculate α = min
(

1, Kε(ρ(S(D),S(D′)))π(θ′)q(θ′→θt)
Kε(ρ(S(D),S(D′t)))π(θt)q(θt→θ′)

)
B4. Accept θ′ with probability α, otherwise stay at θt; then return to B1

16



by choosing a uniform kernel density, KU , where S(D) is uniformly distributed on the

sphere centered at S(D′) with radius ε, one reobtains the previous algorithm A. Alternative

kernel density of interest are the Epanechnikov kernel (Beaumont et al. (2002)) and the

Gaussian kernel density (Peters et al. (2008)).

Furthermore, since the interest concerns on targeting the posterior distribution of θ, the

algorithm B can be improved through a Monte Carlo integration by replacing the steps

B2 and B3 with

C2. Generate M samples, D′1, . . . ,D′M , using model M with parameters θ′

C3. Calculate α = min
(

1,
1
M

∑M
m=1Kε(ρ(S(D),S(D′m)))π(θ′)q(θ′→θt)

1
M

∑
m=1MKε(ρ(S(D),S(D′m;t)))π(θt)q(θt→θ′)

)
In all the above described ABC algorithms, the performance of the algorithm depends on:

• The easiness of simulating from M.

• The choice of the summary statistics, S(·), the distance metric, ρ(·), and the accep-

tance threshold ε.

For the algorithm C, Sisson & Fan (2010) showed that the choice of the kernel function,

Kε(·), has a larger impact on the sampler performance than the number of generated

datasets M , while the Gaussian kernel outperforms the Uniform kernel.

All the other components of the algorithm are identical to the most common MCMC

algorithm.

Priors distributions are chosen in such a way that they reflect either specific prior knowl-

edge of the problem or the degree at which the evidence should inform the conclusion.

Adopting quantile distributions prior knowledge about the mode, the expected shape, in

terms of skewness or asymmetry, can be easily incorporated into the prior.

With respect to the choice of the transition kernel, one has a trade-off. With the tran-

sition kernel, the algorithm should explore the entire parameter space, suggesting broad

kernel, and, at the same time, the acceptance rate of proposed parameters should not be

very small, suggesting narrow kernels. Looking at the algorithm’s structure, it is expected

that “valid” values (referred to the threshold ε) of θ′ have other “valid” parameters in the

neighbourhood, and this suggests narrow kernels.
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The choice of the summary statistics S(·) and of the distance metric ρ depends on the

empirical study of interest. In this context it is worth to remind that the ability of ABC

to estimate the parameter θ relies on the summary statistics chosen to describe the data

features, because the algorithm accepts only those parameters that reflect those features.

The use of sufficient statistics is a requirement to ensure that the accepted parameters

belongs to the true posterior distribution. If sufficient statistics are not available, the

choice must be driven by the characteristics of the model used to fit the data. Finally the

euclidean norm is usually chosen for ρ.

The choice of ε is made through a preliminary execution of the algorithm with large values

of ε. This preliminary execution give a posterior distribution close to the prior but give

the possibility of study the histogram of the ρ(D,D′)’s obtained and set the acceptance

threshold close to the left-hand end of this histogram.

6 The Model

Given the data,(D), wi = (yi,x
′
i)
′ ∈ RK+1 for i = 1, . . . , n, suppose that the interest

concerns the estimation of a large number L of conditional quantiles

QY (τl|x) = h(x) for l = 1, . . . , L

but the lack of prior informations about the function h(·) and about the conditional

distribution F (Y |X) make the standard Bayesian quantile regression methods and the

approximate ones, based on approximate likelihood (Dunson & Taylor (2005)), unfeasi-

ble.

Furthermore the large number of quantiles to be estimated make necessary to estimate

directly the conditional distribution F (Y |X). In this context, due to the lack of any in-

formation about its form, the only possible way to estimation is to apply non-parametric

methods. But Bayesian non-parametric methods are computational demanding and are

difficult to implement.

Our solution rely to the fact that some “rough” prior informations are instead available.

These informations concern the principal characteristics of any distribution like the loca-

tion, the dispersion, the asymmetry and the kurtosis.
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Since the interest concern the conditional quantiles of Y given X, we propose to use the

Multivariate g-and-h distribution in order to estimate the joint distribution F(Y,X). As we

saw in the section §4 this family of distribution is flexible, easy to interpret, encompasses

a considerable variety of distribution shapes providing accurate results, and finally can

be implemented in a Bayesian framework with little computational efforts.

Thus given the estimate F̂(Y,X) is straightforward to estimate the conditional distribution

function F(Y |X) and its quantiles

F̂(Y |X) =
F̂(Y,X)

F̂(X)

and

Q̂Y (τl|X) = F̂−1
(Y |X)(τl) l = 1, . . . , L.

where the distribution F̂(X) is estimated either in the same way of F̂(Y,X) or with the

standard Bayesian methods if prior information is available.

Given the data, (D), wi = (yi,x
′
i)
′ ∈ RK+1 for i = 1, . . . , n, we assume that the joint

distribution of the response variable Y ∈ R, and the set of covariates X ∈ RK is given by

the multivariate g-and-h distribution:

W = (Y,X′)′ = Σ1/2Rg,h(Z) + µ (13)

with

- g ∈ RK+1 is the skewness parameter

- h ∈ RK+1
+ is the kurtosis parameter

- Σ ∈
(
RK+1 × RK+1

)
is the variance covariance matrix

- µ ∈ RK+1 is the location parameter

and where Z is the standard multivariate normal distribution.

6.1 The estimation method

In order to estimate the statistical model given by (13) we propose the ABC algorithm C

as described in §5.

Prior distributions and transition kernels are chosen as in the standard Normal Symmetric
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Random Walk Metropolis (N-SRWM) methods. Thus, given the following independent

priors

π(g), π(h), π(Σ), π(µ)

and the following transition kernels

q(gt+1|gt) = gt + ξt+1, q(ht+1|ht) = ht + ξt+1,

q(Σt+1|Σt) = Σt + ξt+1, q(µt+1|µt) = µt + ξt+1

where ξt+1 is a multivariate normal distribution with zero mean, for the other components

of the algorithm, we propose

(i) A multivariate quantile-based summary statistic, S(·)

(ii) The Euclidean norm ρ(·) = ‖.‖2

(iii) A data driven choice for the multivariate threshold ε

(iv) A multivariate Gaussian kernel, Kε(·)

The choice of a multivariate quantile-based summary statistics S(·) has been made by

considering that, since the multivariate g-and-h distribution models the quantiles, the

distance of the multivariate quantiles of D from those of D′ seems a good method to

evaluate the proposed parameters.

Thus, at the beginning of the algorithm we define L different directions ul, l = 1, . . . , L,

and we calculate the corresponding multivariate quantiles qul
(D) as a summary statistics

of our sample wi = (yi,x
′
i)
′ ∈ RK+1

Sl(D) = qul
(D) for l = 1, . . . , L

using the l2-norm to incorporate in S(·) the dependence of the response variable Y on the

covariates X.

After that a parameter has been proposed and a corresponding sample D′ has been gener-

ated, to evaluate the distance between D and the proposed D′, we propose the Euclidean

norm between the quantiles Sl(D) and Sl(D′), for l = 1, . . . , L

ρl(Sl(D)− Sl(D′)) = ‖Sl(D)− Sl(D′)‖2 = ‖qul
(D)− qul

(D′)‖2 ∀l
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obtaining the vector of distances ρ = (ρ1, . . . , ρL)′ ∈ RL.

Then the proposed parameter is weighed by a multivariate Gaussian kernel on ρ,

Kε(ρ) ∼ N

(
0,

1

12
· diag((ε21, . . . , ε

2
L))

)
evaluated for M different draws of D′m, for m = 1, . . . ,M . The covariance matrix has

been chosen in order to have marginally the same variance of a uniform distribution on

(0, εl).

The multivariate acceptance threshold ε = (ε1, . . . , εL)′ ∈ RL, is selected as follows

(a) The ABC algorithm C is executed with very large values εl, ∀l, getting posterior

distributions close to the priors.

(b) The histograms of the values ρl, ∀l = 1, . . . , L are constructed

(c) Values of ρl, ∀l for the best performing parameters can be observed from the left-hand

tail of these histograms

(d) Good choices of εl, ∀l are taken to be values lying close to the left-hand end of these

histograms.

Finally, since step C3 integrates out the randomness due to sampling datasets D′m,

in order to leave the trade off describe in §5 for the variance of the normal transition

kernels q(·), and getting an acceptance probability of approximately 0.3 for each parameter

(Roberts et al. (1997)), we propose - inside the ABC algorithm C - an Adaptive MCMC

(AMCMC) scheme. AMCMC are special MCMC methods that allows to get the required

acceptance probability without specify apriori the variance of the proposal density, since

the chain, being self-learning, specifies this value at each iteration. Specifically, we use

the Algorithm 4 in Andrieu & Thoms (2008). In this context the adaptive structure must

be not confused with the adaptive ABC of Beaumont et al. (2009).

At the end, the inference is based on the accepted parameters that are samples from an

approximation of the posterior distribution. Modes and averages, as a point parameter

estimation, and the 95% credible intervals, as a interval estimation, are proposed in order

to estimate the multivariate g-and-h distribution’s parameters.
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7 Simulation studies

Two simulations studies are conducted in order to evaluate the performance of the pro-

posed method.

In the first simulation data have been generated from the linear model

yi = 2xi + εi i = 1, ..., 1000

with the xi’s and εi’s generated from the following distributions

X ∼ N(5, 4)

ε ∼ N(0, 9)

obtaining the following distribution for the generated dataset

w = [y,x] ∼ N2

((
10

5

)
;

[
25 8

8 4

])
.

To apply the proposed method we model the obtained dataset as it come from a multi-

variate g-and-h distribution

W = Σ1/2Rg,h(Z) + µ.

The following non-informative priors are chosen for each parameter:

g ∼ N2(0; I2 · 102) h ∼ N2(0; I2 · 102)

µ ∼ N2(0; I2 · 102) vec(C) ∼ N3(0; I3 · 102)

where C is the lower triangular matrix of the Cholesky decomposition of Σ.

The empirical l2-quantiles have been computed in the directions 2π/j, j = 1, . . . , 16 for

the levels 15%, 25%, 50%, 75%, 90%, 95%, and ε has been set equal to the median of the

distances obtained in a previous run of the algorithm using informative priors centered

on the true values , large ε and a uniform kernel on the support of ρ.

Chains of 100.000 iterations have been run with optimal acceptance rate fixed to 0.3 taking

one draw every 40, considering M = 2 generations of D′m for the proposed parameters

in each iteration. The obtained chains and the related approximate posterior densities
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Mean Mode 95% HPD True value

g1 -0.03 -0.02 [−0.41, 0.33] 0

g2 -0.50 -0.54 [−1.59, 0.56] 0

h1 0.15 0.10 [0, 0.35] 0

h2 0.38 0.28 [0, 0.84] 0

µ1 10.37 10.39 [9.89, 10.97] 10

µ2 5.51 5.22 [4.85, 5.56] 5

σ2
1 20.14 20.27 [13.66, 26.80] 25

σ2
12 5.47 5.34 [1.98, 9.00] 8

σ2
2 2.95 2.38 [0.39, 5.90] 4

Table 1: Estimated parameters (First simulation)

are shown in Figure 1 and in Figure 2, the Figure 3 depict the mean of the acceptance

probabilities across the iterations for each parameter.

As can be seen from Table 1, Figure 1 and Figure 2, our proposed method estimate

quite accurately all the parameters without any prior informations, but just setting the

multivariate tolerance ε, reaching quite quickly the fixed optimal acceptance probability

in the M-H step (Figure 3).
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Figure 1: Chains of the parameters and the true parameters (red lines) (First simulation)

Figure 2: Approximate posterior densities with 95% HPD (green lines) and the true parameters

(red lines) (First simulation)

In the second simulation data have been generated from a multivariate g-and-h dis-

tribution

W = Σ1/2Rg,h(Z) + µ.
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Figure 3: Acceptance probabilities and the optimal ones (red lines)(First simulation)

with parameters:

g =

(
1

0

)
h =

(
0

0.3

)
µ =

(
−5

2

)
Σ =

[
4 1

1 4

]
The following informative priors are chosen for each parameter:

g ∼ N

((
1

0

)
;

[
0.0625 0

0 0.0625

])

h ∼ N

((
0

0.3

)
;

[
0.005 0

0 0.005

])

µ ∼ N

((
−5

2

)
;

[
0.5 0

0 0.5

])

vec(C) ∼ N




2

0.5

1.936

 ;


0.5 0 0

0 0.5 0

0 0 0.5




where C is the lower triangular matrix of the Cholesky decomposition of Σ.

The empirical l2-quantiles have been computed in the directions 2π/j, j = 1, . . . , 8 for the

levels 15%, 25%, 50%, 75%, 90% and ε has been set equal to the median of the distances
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obtained in a previous run of the algorithm with a large value of ε and a uniform kernel

on the support of ρ.

Chains of 100.000 iterations have been run with optimal acceptance rate fixed to 0.3 taking

one draw every 40, considering M = 2 generations of D′m for the proposed parameters

in each iteration. The obtained chains and the related approximate posterior densities

are shown in Figure 4 and in Figure 5, the Figure 6 depict the mean of the acceptance

probabilities across the iterations for each parameter.

As can be seen from Figure 5, our proposed method estimate accurately all the parameters

improving the priors and reaching quite quickly the fixed optimal acceptance probability

in the M-H step (Figure 6).

Figure 4: Chains of the parameters and the true parameters (red lines) (Second simulation)
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Figure 5: Approximate posterior densities with 95% HPD (green lines), the true parameters

(red lines) and the prior distributions (dotted blue lines) (Second simulation)

Figure 6: Acceptance probabilities and the optimal ones (red lines) (Second simulation)
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