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Abstract

This article investigates problems arising with near unit root behavior for affine term structure models.
We show that with increasing serial correlation the Fisher information matrix approaches a singularity.
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1 Introduction

Term structure data usually exhibit a high degree of serial correlation. For these data, standard tests on
a unit root often do not reject the null hypothesis of a unit root for usual significance levels. On the other
side, from economic intuition and models used in mathematical finance, stationary time series for term
structure data should be observed. This article sticks to the assumption of stationary interest rates and
contributes to literature by highlighting pitfalls arising with parameter estimation for affine term structure
models. The first innovative aspect of this paper is an analysis of the information matrix. Second, we
observe that parameter estimation for a latent diffusion process becomes a difficult problem when the
serial correlation is high (near unit root behavior). We observe that if the process approaches a unit root,
the sampler produces a ”wall”, such that the posterior need not be integrable. That is to say we need not

arrive at a proper posterior distribution. To enable Bayesian parameter estimation, we construct priors to

account for this problem. We follow the works of Schotman and van Dijk| [1991], Kleibergen and van Dijk|

[1994], Kleibergen and van Dijkl [1998], lJones| [2003], De Pooter et al|[2006], and De Pooter et al.|[2008]

to construct priors regularizing the posterior distribution of the parameters.

Affine term structure models describe yields by means of an affine function of an instantaneous affine
vector diffusion process. The focus of this article is on the risk-free term structure, where only interest
rate risk - and no other sources of risk like credit and liquidity risk - is investigated. The risk-free term
structure is the basic building block of any reduced form credit risk model. Although other sources of

risk can be described with more general models of the affine class, the mathematical structure of these

settings is equal or similar to the structure investigated in this article (see e.g. Duffie and Singleton

[1997], |Collin-Dufresne and Goldstein| [2001], Dai and Singleton, [2002], Duffee [2002], |Collin-Dufresne and,

\Goldstein| [2002], (Collin-Dufresne et al.|[2008], |Ang et al.| [2004], Collin-Dufresne et al.| [2009], Filipovid|

[2009], CDS pricing models, etc.). Therefore the results of the following analysis are also important for
more general settings.

We already observe one of the core problems with the instantaneous yields, which is a singularity in



the Fisher information matrix when the yields are highly persistent. Further sections of this article will
demonstrate that this problem neither disappears when non-instantaneous yields are considered nor arises
from the use of Bayesian methods.

This paper combines results from different strands of econometrics literature: Near unit root behavior
in discrete time models, continuous time financial econometrics and Bayesian techniques of prior selection
to regularize the posterior distribution. For discrete time autoregressive models problems with near unit

root behavior are known for a long time in classical econometrics: e.g. the bias in the OLS estimate of

the persistence parameter (see Kendall [1954], Campbell et al.| [1996][p. 273]), the Dickey Fuller example

(see e.g. |Davidson and MacKinnon| [1993][p. 702], [1997][p. 848] or Hamilton| [1994][p. 486]),

asymptotic distributions of the estimators (see e.g. Phillips [199§], Elliott and Stock| [2001], Rothenberg|

iand J. H.Stock! [1997], |Jansson and M. J. Moreira [2006]) and weak identification (see e.g. 12009],

\Canova and Sala [2009], [Dufour| [1997], Dufour| [2003], Ma and Nelson| [2009]). For financial econometrics

the reader is referred to [Ait-Sahalia [2007], Piazzesi [2010] and |[Lewellen [2004]). Regarding information

matrix issues, Ait-Sahalia and Jacod| [2008] recently derived the behavior of the information matrix for

Lévy processes; however, the processes investigated in their paper do not include mean reversion in the
drift, as done in this article. Here, we shall observe that the speed of mean reversion will play a central
role regarding weak identification issues

Econometric issues arising with parameter estimation for affine term structure models have been

investigated in |Ang and Piazzesi| [2003], |Chib and Ergashev| [2009], [Diebold et al.| [2006], [Duffee [2011],

\Att-Sahalia and Kimmel [2009], Egorov et al.| [2011], [Hamilton and Wu| [2010], Joslin et al.| [2010], etc.

Multi-factor Cox-Ingersoll-Ross models have been investigated in Fruhwirth-Schnatter and Geyer| [1996]

and [Sanford and Martin| [2005]. |(Chib and Ergashev| [2009] construct a Bayesian estimation procedure for

anAng et al. [2004] model with proposal densities based on mode and curvature of conditional distributions

to improve the efficiency of the MCMC sampler. In our estimation procedure we also follow these ideas.
[2003| finds out that rather strong priors are necessary to estimate the parameters of the diffusion

process. This paper also explains why this becomes necessary: When observing data with serial correlation



close to a unit root, at least some of the mean reversion parameters have to account for near unit root
behavior. The closer to a unit root, the more we approach to a singularity in the information matrix.
Almost recently Blais| [2009] investigated identification issues and the specification of the market micro
structure noise in a Bayesian setting. In some parts, it is closely related to the problems investigated in
this paper. While Blais [2009] discusses the problem of label switching and different labeling subspaces
in his paper, this paper sticks to one unique labeling subspace and contributes to literature by discussing
weak identification issues arising from near unit root behavior.

This paper is organized as follows: Section [2] introduces affine settings. Section [3] investigates the
likelihood of yields and the Fisher information matrix. In Section [d] we provide a Bayesian analysis
for instantaneous yields, while Section [5] investigates parameter estimation for non-instantaneous yields.

Section [6] applies our methodology to empirical data. Section [7] concludes.

2 Affine Term Structure Models

Assume a frictionless and arbitrage-free market in continuous time ¢ and a filtered probability space,
equipped with the empirical probability measure P and an equivalent martingale measure (risk-neutral
measure) Q. Throughout this paper we restrict to affine models of [Dai and Singleton| [2000] structure
(i.e. the diffusion matrix can be diagonalized, for more details see Appendix . I.e. we consider an affine

process (X(t)) following the stochastic differential equation:

dX(t) = k909 — X(1))dt + 2/S(t)dW®(t) where

S“(t) :a@-—I—biTX(t) and Sij =0 for i,j:1,...,m. (1)

X(t) € R™ and W?(t) is a m-dimensional Brownian motion under the equivalent martingale measure
with independent components. k% is a m x m matrix controlling the speed of mean reversion. ¥ is a
positive definite m x m matrix. S(t) is a diagonal matrix including the components S;;(t) = a; + b} X (¢),

a; is a scalar and b; a vector of dimension m. We get the vector A := (ay,...,a;,... ,am)T and the matrix



B by horizontally stacking the vectors b;, i.e. B = (b1]...|bn). Using this notation Bj; = b, with
i,j=1,...,m.

Market Prices of Risk and Dynamics in P: We employ extended affine market prices of risk A(t) =
[24/S(t)]? (1P (X1) — p@(Xy)) (see Cheridito et al|[2007]). The drift term p%(X;) = k209 — X (t)) in
and the extended affine specification results in an affine drift term in the empirical measure P, such

that u”(X;) = k(87 — X (t)). Thus by construction, (X (¢)) is an affine stochastic process with diagonal

diffusion term also under P, such that

dX(t) = w&P(0F — X(t))dt +2+/St)dw? (t), (2)

where £, 0 and W have a structure analogous to k9, 9 and W< with dW@(t) = dW¥(t) — A(t). By
estimating x° and " under both measures, P and Q, the market price of risk parameters are estimated
implicitly. This allows to study how the market compensates investors for bearing interest rate risk [see
e.g. Driessen), 2005, Piazzesi, [2010].

Dai and Singleton [2000]-canonical representation and A;(m) Models: Recent quantitative finance

literature favors A;(m) models (see e.g. Tang and Xial [2007]). They are described as follows:

Definition 1 (A;(m)-Term Structure Model). Suppose that the risk-free term structure is driven by an
affine process (X (¢)) (under Q) with diagonal diffusion matrix. X (t¢) is a vector of dimension m which
splits up into XZ € R, and XP € R™~!. The risk-free instantaneous discount rate y(t,0) = do + ' X(¢),
where 0 is a m dimensional vector and dp € R. In an A;(m) setting m is the number of Brownian motions
and [ is the number of different state variables that show up under the square root in (|1)); (see Dai and

Singleton| [2000]).

Regarding it is worth noting that different parameter constellations can result in the same term
structure, i.e. the model need not be identified. For example an unrestricted Aj(3) model has nineteen
parameters (under Q), while |Dai and Singleton| [2000] have shown that only fourteen parameters of

this model can be identified. In addition the term under the square-root in S(¢) has to be positive



(admissibility). Therefore, the authors have provided canonical representations where the parameters are

identified (under Q) and the terms under the square root are positive. For more details see

Singleton| [2000] and Appendix [A]l'

Stationarity of (X (¢)) under both measures requires positive definite matrices x” and x?. For the
square root components the modified Feller condition has to holdEl For independent square root com-

Q

ponents this reduces to x;; GZ.Q > 2121' /2. Since we have assumed equal structures in Q and P, all the

requirements on the parameters under Q carry over to the parameters under P. In this paper we assume:

Assumption 1. Consider a canonical representation of an A;(m) model, where the admissibility and the

Dai and Singleton| [2000]-identification restrictions are fulfilled. The structures of the affine model in P

and in Q are the same. (X(t)) is stationary under Q and P.

Model Yields and Empirical Yields: Under the above assumptions, the time ¢ yields y(¢,7 — t) for a

zero-coupon bond with maturity 7 =T — ¢ are given by

y(t.m) = — (A(r) — BEOTX() Q

T

where A(7) € R and B(7) € R™ are functions of the parameters (under Q). Generally, A(7) and B(T)

can be found as solutions to ordinary differential equations of Riccati type [see |[Duffie and Kan| 1996]:

dA(T) . QT QT 1 S T 2 . : —
o = —0% 'k~ 'B(1) + 5 ;[E B(7)|ia; — 6o with A(0) =0 and
B I

dB(r) _ kP TB(r) + = Y [ETB(7)]3b; + 6 with B(0) = Opx1 - (4)
dr 2 P

For extensions to jumps or more general transforms the reader is referred to Duffie et al|[2000], Chen and|

Joslin| [2009] and Keller-Ressel and Mayerhofer| [2011]. It is worth noting that the limits lim,_,o A(7)/7

Tt is also worth noting that different restrictions can be used to identify the parameters. Different opportunities to
represent an affine term structure model follow from the transformations discussed in [Dai and Singleton| [2000][especially
from Appendix A, C and E] and [2009][Chapter 10].

2 e f e p

See Duffie and Kan| [1996][Condition A], 2010} [also there denoted as Condition A] or (Glasserman and Kim| [2009).




and lim, ,o B(7)/T are —&y and §, providing us with the short rate y(t,0) = §y + d' X (t). The yields
defined by will be called model yields.

Although we have assumed a model in continuous time, the empirical /observed yields can only be measured
on a discrete grid with step-width A. The corresponding model yields and instantaneous yields at t = nA
and maturities 7;, ¢ = 1,...,k, are y,(7;). Consider the k-dimensional vector A, with elements given
by A(7;)/7; and the k x m matrix B, with rows derived by means of B(r;) /7, i = 1,...,k. For
the maturities 7 = (71,...,7,...,7)  the k dimensional vector of model yields y, is given by y, =

A — BX,,. We assume the following relationship between the model yields y,, and the empirical yields

W= (), ()

yn :(y

Assumption 2 (Empirical Yields). The observed data y;/* and the model yields y,, are related by

Y (1) = yn(m) +y/0ls(Ti)em , i=1,... k. (5)
e;n are 1itd standard normal variables for i =1,...,k. k> m.

Finance literature often motivates this noise term by market micro-structure noise arising from bid-ask
bounces, discreteness of the pricing scale, trades on different markets, etc. (see Campbell et al.| [1996]
and (Chen et al.| [2007]). From an econometric point of view is necessary to cope with the different
dimensions of the latent process and the yields observed. A parsimonious model demands for k& > m.
Since it is hardly possible that empirical interest rate data exactly follow the model assumed by for

all t and maturities 7;, the m factor setting cannot exactly match the corresponding yields y;/°.

Remark 1. By means of we have added noise to each maturity which eliminates this stochastic
singularity problem. Alternatively, e;, can be stochastic for i € {i|r; € 7\ 7/ @Yy while e; = 0 if
i € {i|r; € T/}, 7% C T are the maturities observed without noise. We call this particular noise, while
Assumption [2] describes common noise. Appendix [C] will demonstrate that the transformation between

X, and y,, can be ill conditioned. Therefore we stick to common noise.

Parameterization: In this article we stick to the parameterization ¥ = {v, 9P,/1Q,0Q,50,E2,0'§p8};



where £2 = X 7. § = 1,,x1, the non-zero elements of A are normalized to one. With independent square
root components - as performed in the applied part - B;; = 1. v := exp(—xFA) is the matrix exponential

of the matrix —xk A (we can get x© from v by means of the matrix logarithm (see |Culver| [1966], [Horn and

Johnson [1985]) E| o'epS is a k x k diagonal matrix with entries ogps( 7;). Finally, X = (Xo, X1,..., XnN),
X(l:N) = (X17 B XN)7 y = (Yh oo 7yN) while yP* (yipsv v )y]e\?s)'

In addition, we assume that the term structure model is of minimum dimension (an Ag(m) setting
exactly corresponds to a linear state space model as investigated in Brockwell and Davis [2006][p. 497];
for controllability in general see e.g. Meyn and Tweedie [2009][Chapter 7]). This implies that we cannot
reconstruct the model yields with a latent process X,, of dimension smaller than m. In more details,
following Karatzas and Shreve [1991][p. 354] and applying an Euler type approximation to the diffusion

term provides a proxy of the solution of the affine stochastic differential equation :

nA
X, = vXp1+ I, —v)0F + E/( exp (—(nA — ’LL)I{P) VS(X (w))dW (u)

n—1)A

~ vX,_ 1—|—( (9P—|-E\/ X 1 \/78,1. (6)

I,,, is the identity matrix of dimension m and ¢, is a vector of dimension m with éid N (0, 1) components.
Since S(X,—1) generally depends on X,,_; (e.g. some elements of B are non-zero), we only get a proxy by
equation @; in the following S,,_1 abbreviates S(X,,—1). By means of @ and Assumption [2| we get the

following state space representation of the yields observed:

vy =y, + epsen_A BX, + e,psen,
X, = vXp1+ Uy — I/)GP + 251V Ae,, . (7)

ey is of dimension k x 1. Appendix [B| shows that the model is of minimal dimension if ¥2, v and B have

full rank m. %2 and v satisfy this property by Assumptons [1| and [2| while for B we impose

3Since X and S(t) are diagonal matrices £.5()X" has to be equal to XX T S(t); ¥XT =: %2 can be derived by taking
the squares of the individual components. If S;; = a; + b;rX and a; = A; and b; = BZT are both non-zero, then a; can be
normalized to one but B; has to estimated. Appendix derives the information matrix with B as a free parameter.



Assumption 3. rank(B) = m.

As the following example demonstrates, Dai and Singleton [2000] identification need not result in a model

of minimal dimension.

Example 1. Consider an Ap(2) model with two independent Ornstein-Uhlenbeck processes with the
same parameters; i.e. k11 = ka2, ko1 = 0 by independence under P and Q, #* = 69 = 0 and 2%1 = 252.
X(t) = X1(t) + X(t) is an Ornstein-Uhlenbeck process with parameters i = k1 = &f}, 87 = 0 and
¥?2 = %2 452, With &9 = n% we get B(X1, X2) = [B] 1X ([B].1 is the first column of B; since Z9 = Ii?l
the columns are the same). In addition for the Vasicek model A is linear in volatility parameter such that
the sum of the components A; and Ay for the initial two factor setting add up to A. This implies that

we can reduce this two-dimensional model to a one-dimensional one yielding the same term structure.

In the applied part where the parameters will be estimated by means of Bayesian methods we shall put
a prior on the rank of B. Since rank(B) = rank(BT) = rank(B'B) this can easily done by putting a

prior on det(B'"B).

3 Likelihood Analysis and the Information Matrix

Based on the model assumptions, we first derive the density of the latent process f(X;W¥?), where the

corresponding parameters in the empirical measure UF = {v, 6r ,¥2}. For the yields y°P*

we already
know that the model yields y are an affine transformations of X as described by (3). A(r) and B(r) are
functions of the parameters under Q, which are U9 = {KQ, 69, 22} To derive the conditional distribution
f(y|X; W), we have to consider the distribution due to market micro-structure noise. By the relevant

parameters are in the matrix agps. Then the joint density of (y,X) will be given by

P X W) = X W) f(X W) = (X 92, a2, ) f(X:07) Q

eps

“Note that W¥' N W9 = {32} U {0, k0] = 07, k] =k}



The joint log-likelihood ¢(¥;yP*, X)) is log f(y“P*, X; V) evaluated at the data. Since an approximation
of f(X;WUF) will be used, we are going to derive a quasi likelihood.

In more details: By equation @, Xp|Xp—1 is approximately multivariate normal with mean pyx, =
vXpo1+ (I — V)GP and covariance ¥25,,_1A. Using the fact the ¥? is diagonal yields

1 & )?

m 1 " Xm
log f(Xp| X, 1;07) = —5 log2m — log(] [ =2Sn—1i) — 3 Z 22 . ”1 . (9)
i=1 i=1 n—1,i

With the N + 1 observations X and the initial distribution 7(Xo; V) we get the density of the latent

process (X,,) by means of

N
FX | Xo, ) = ] log f(Xn|Xpn1;¥")

N
F(X;07) = (Hlog f(Xn!Xn—l;‘I’P)> (X0, ¥) = f(X 1| Xo, ¥0)m(Xo; ¥) . (10)

log f(X; ¥P) evaluated at the data provides us with £(¥F; X). To get the density of the observed yields

yP?  equation tells us that y, = A — BX,,. Based on the model assumptions y;/° is normally

distributed with mean y,, and a diagonal covariance matrix o2,,. Le f(yi*|X,;¥% 62,) is a normal
density with mean vector y,, and covariance matrix aeps Since e;y, is itd we get
( ep5|X \Ij Ueps) - 1f<yep5|yn’ eps) HN (yzps‘x \II Ueps) : (11)

log f(yP*|X; %, o evaluated at the data yields ¢(¥9, o eps, ; yP51X), such that the joint log-likelihood

eps)

is given by

0Ty, X) = 00902, y7|X) + (I X) . (12)

Information Matrixz and Weak Identification: To investigate weak identification, we study the Fisher

information matrix. A positive definite information matrix guarantees at least local identification of the

10



model parameters (see [Bowden, [1973]). Parameter estimation becomes difficult if the parameters ¥ result

in an ill-conditioned information matrix. Following e.g. McLachlan and Krishnan| [1997] the empirical

2% X,y)

information matrix of the full data L.(¥, X,y) = — =535

. The Fisher information of the complete data
Z.(0) = E(I:(0; X,y)). Since the latent process X is not observed we have to consider the log-likelihood
((T;y) = log [ f(ys|X; ¥) f(X; ¥)dX and the restricted data information matrix I.(¥,y) = —a;é(;&jyr)
as well as the Fisher information Z,(0) = E (I,(0,y)). From Orchard and Woodbury| [1972] and Mislevy

and Sheehan| [1989] it is known that Z.(V) and Z,(V) are related as follows: Z.(V) = Z,. (V) + Z,,(V),
where the matrix Z,,(¥) is positive semi-definite matrix, measuring the loss in information when the
latent X is not observed. Since the matrix difference Z.(¥) —Z,(¥) is positive semi-definite, the difference
Z.(0)~! — Z.(¥) ! is positive semi-definite. That is to say, Z.(¥)~! provides us with a lower bound of
the Rao-Cramer lower bound when only y is observed. If this term becomes singular, then Z.(¥)~! has
to be singular as well. Since only parts of Z.(#) can be derived analytically we proceed as follows: First
we obtain some analytical results, for the remaining parts we use numerical tools.

T.(W) will consist of three building blocks: The block regarding ¥ will be denoted Z.(¥”). For the
remaining parameters we get the blocks Z.(¥?) and Zc(o2,,). With Z.(¥F), we already observe the main
problem: This block of the information matrix approaches a singularity if the speed of mean reversion
implied by v (or k") becomes low.

Due to its analytical traceability we start with the Vasicek [1977] model, where (X (t)) follows an

Ornstein-Uhlenbeck process, such that

X, = vXo1+0Q-0)0F +3VAe, . (13)

Although, 8 = 0 by Assumptions we treat O as a free parameter in the following paragraph. The

goal is to analytically demonstrate the problems arising with the parameter # if the serial correlation

becomes high. With x” > 0, the expected value E(X) = 0, the variance V(X) = 2~ 224 T (UP) s

2kP T 112

diagonal with the elements

11
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. (‘a:ﬂ) = Ao (‘awl’p) “ g N E <_3(22)2> TR

When the process approaches a unit root, i.e. v — 1, the second term in goes to zero. This implies
that the data provides poor information on the parameter . Since the inverse of Z.(¥”) is the Rao-
Cramer lower bound for the estimator ¥ the variance of the estimator of #” goes to infinity when we
approach a unit rootE|

Appendix approximates the information matrix Z.(¥*) for an affine model with diagonal diffusion

matrix. Here we observe that the expectation of the second derivatives with respect to 8, given by
N - (I, —v) " E(22S, 1 A) (I —v) (15)

becomes singular if (I, — v) is singular. This is the case if some eigenvalue of v is equal to one. With
eigenvalues of v close to one we arrive at a weakly identified problem. For the purely Gaussian case this
result has also been observed in [Hamilton and Wu| [2010]. A similar condition on the eigenvalues is also
used in |Chib and Ergashev] [2009].

Next we investigate the I(¥?) block: Some intuition can be obtained from the Gaussian settings:

24(9Q

Example 2. Assume that the term structure is described by the Vasicek model. Then E (—%),
Q

goes to zero if ¥2 — 0. That is to say even in the simplest one factor setting there is a region of the

parameter space where the model becomes weakly identified.

Example 3. Consider a two factor model with independent Ornstein-Uhlenbeck processes (e.g

g Q _O2W9) 14,252 92w,
Ap(2) model). Suppose that k% — 0, then E< or ol arlo?x,, E S
#5% (5 + 22 _PC) ) 1y L) | 1o .
6111 (”ﬁ T 211)’ E< orPox2 ) s> T and E onloss, ) 15257 For the partial

derivatives with respect to K§2 we get equivalent expressions. If ¥2, = Y2, then we observe that the

5 Applying the reparametrization 4 := 0(1 — v), the singularity in the information matrix does not disappear. In addition
in all the calculations we assume that the terms arising from 7(Xo; ¥) can be neglected.

12



rows/columns of Z.(¥) corresponding to 11 and k2o become almost colinear if x{; and k%, become large.

By these examples we observe that the matrix Z,(¥¥) can get close to a singularity. In general

PV, 08y IX) (A - BX,) 1 [0(A-BX,)]"
E(‘ oua(4)T ) ZEGQ} o [Fge] ) oo

d(A—BX,)
ov@

From || we expect weak identification issues if some terms in the gradient vector get close
to zero or if some rows or columns are almost the same. Since, in general, A and B are not available in

closed form, we can only estimate Z.(¥?) by means of numerical toolsﬁ

2 \I/Q eps| X
For the parameter §y € V¥, we get E( i d"g’;’y | ))

1 .
N Zl et The second partial
derivative with respect to dy neither depends on x9 nor on . Le. in contrast to the mean parameters
under P no problems should be expected with the estimation of this parameter.

The last block of the information matrix Z.(o is obtained by taking the expectation of the second

eps)
partial derivatives with respect to Ueps(n). While the off-diagonal elements are all zero, the diagonal

elements of Z.(oZ,,) are

02)
E <—82£(\PQ yepS\X)> - N (17)
0(02ps(7:))? Tepe? 2(02,s(7:))?

Z.(¥) is derived by putting together the corresponding blocks we have obtained above, the other
elements of the matrix are zero. Note that the blocks for (¥, ¥¥) and Ueps do not overlap. ¥? is an
clement of UF and ¥, depending on the market price of risk specifications further joint elements are
possibleﬂ Therefore the impact of these parameters on the information matrix is non-trivial.

In the following sections we perform parameter estimation for the following A;(3) model. N =

500 observations are considered for the k& = 10 maturities 7 = {1/12,1/4,1/2,1,2,3,5,7,10,20}.

92e(¥9 02 iy P Xn
VR (W) T

SSince szs is a k x k diagonal matrix E ( )) can be derived in closed form given the partial derivatives

of A and B. The elements of this part of the information matrix are functions of these partial derivatives, E (X, ) = 6F and

E (XanT) (see also Appendix .
"With completely affine market prices of risk 67 # 6’? and ki, # /sg Common elements of ¥¥ and ¥® are ¥? and off
diagonal elements of k. Otherwise UP and ¥° overlap for some further 0; and k;;.
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Time is measured in years, the step width is A = 7/365 accounting for weekly observations. The
parameters ngs(n) driving micro-structure noise are between 0.007 and 0.03E| We set A1 = 0,
Ay = A3 = 1 and By; = 1, all other elements of B are zero. x* = [0.700; 00.80; 00.10.9],
v = [0.9867 00; 00.9848 0;0 — 0.0019 0.9829 ] is the corresponding matrix exponential, x? =
[0500; 00.70; 00.11],6F = (1.5,0,0)T, 6% = (2,0,O)T, dp=2and ¥ =[0.2500; 00.40 0; 00 0.50 ]
resulting in X2 = X7 = [0.0625 0 0; 0 0.16 0; 0 0 0.25 ]. This results in nine parameters under Q. In
addition we have four additional parameters under P (6 and %, i = 1,...,3) and the three micro-
structure noise parameters agps. /1523 = /-;53 is assumed. Summing up, this results in 16 parameters. This
setting allows for a closed form solution of A(7) and B(7) and satisfies the stationarity, admissibility
and the Feller condition. With these parameters we derived Z, by means of the above calculations. We
observe: (i) A high standard deviation for the parameter #” as expected from the above calculations. A
modest degree of serial correlation sharply decreases the corresponding elements of Z7'. (ii) When x©
and v remain fixed as above but ¥? decreases then the diagonal elements of Z_ ! corresponding to v and
k9 increase; for small ¥ these elements become large. (iii) Given high values of 9 the derivatives with
respect to k% become small. This results in larger values for the elements corresponding to £% in Z; 1.

Intuitively, with larger k9 the paths of B rapidly move from values close to —1 to values close to zero

where the partial derivatives with respect to k¢ become small. (iv) As can be expected from an

2

increase in o,

also raises the terms in Z; ! corresponding to the parameters under Q.

4 Analysis of Instantaneous Yields

This paper applies the Bayesian approach to estimate the model parameters. As already discussed and

demonstrated in |Chib and Ergashev| [2009], the Bayesian approach can be motivated by the complex and

81n a prior version we work with the noise specification agps (13) = exp(aoeps + A1epsTi + aQEpSTf) (e.g. motivated by [Brandt
and He| [2002]). The afps (7:) used in this version are obtained by means of exp(aoeps + G1epsTi + azepsrf) setting aopeps = —H
a1eps = 0.25 and azeps = —0.04. When working with ageps, @1eps and agzeps we observed that these parameters are difficult to
estimate. When sticking to the Bayesian approach prs (7:) can be sampled by means of the Gibbs sampler when assuming
a conjugate (truncated) inverse Gamma prior. In addition by estimating O'Zps (73) for each maturity separately, we directly
observe - with simulated data - for which maturities the variance of the noise terms is difficult to estimate and - for empirical
data - how different maturities are affected by noise.
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possibly multi-modal structure of the log-likelihood function in multivariate settings.

4.1 Instantaneous Yields in the Vasicek and the CIR Setting

Let us we start with Vasicek| [1977] and the |Cox et al.| [1985] (CIR) model. For the latter the diffusion
term in has to be replaced by ¥/X,,_1A%%¢,. These models are non-linear in the parameters due
to the term 67 (1 —v). A standard three step Gibbs sampler can be constructed (see Appendix , where
natural conjugate priors are used for 87 and %2 which is a normal prior for ¥, 67 ~ N (ag o, Ag), and
an inverse gamma prior for X2, ¥2 ~ TG(ng, Sp). Since v should fulfill v € [0,1], we use a uniform prior
for this parameter ]

We draw 50,000 MCMC samples, including 20,000 burn-in steps, from simulated Ornstein-Uhlenbeck
and CIR paths. We set #” = 3 and ¥? = 1.22 and X2 = 0.72, for the [Vasicek| [1977] and the |Cox et al.
[1985] model, respectively. A = 7/365. v we set to 0.76, 0.9 and 0.99. The parameters of the priors are
ng =1, So =1, agp = 0 and Ay = 1000. Figure [1| presents representative MCMC output for these two
settings (Vasicek| [1977] - left sub-figures, |Cox et al. [1985] - right sub-figures), for different v, starting with
v = 0.76 in the first row to v = 0.99 in the third row. For low v samples are well behaved, with v = 0.9
this is still the case but the standard deviation of the parameter §F starts to increase (take a look on the
scale of the horizontal axis). With high serial correlation the sampler produces a "wall”. The standard
deviation for the Vasicek model is higher than the standard deviation for the CIR model. Nevertheless
the standard deviations are very high in both models. This corresponds to our analytical results with
the information matrix, where the standard deviation of the parameter #¥ increases drastically when we
approach a unit root.

For the model considered above the conditional densities of v and 67 are the conditional densities used
in the Gibbs sampling steps. Based on De Pooter et al.|[2006] or De Pooter et al. [2008] Appendix
derives the marginal distribution of ¥ v for the Vasicek model. Here we observe that the joint distribution

7(6F, v|X) becomes improper with v = 1. With v close to one it becomes almost flat.

9Also in the Vasicek, we consider 7 as a free parameter to demonstrate the impact of near unit root behavior on parameter
estimation.
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Figure 1: Vasicek and CIR Model: Samples of the joint posterior of 8 and v, 50,000 MCMC steps, 20,000 burn-in.
Vasicek model left sub-figures, CIR model right sub-figures. First row v = 0.76 (moderate persistence), second row v = 0.9;
third row v = 0.99 (near unit root); #¥ = 3. Uniform prior on v, conjugate normal prior with parameters ago = 0 and
Ag,0 = 1000 on #f. Note that the range of the horizontal axis is different for different v.
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4.2 Near Unit Root Behavior and Sufficiently Informative Priors

In a Bayesian setting we are able to compensate for the term (1 — v)~! in the priors. [De Pooter et al.
[2006] propose either to put zero measure on v larger than 1 — e (this approach has been applied in |Jones
[2003]), construct a Kleibergen and van Dijk| [1998] prior or to choose a |Schotman and van Dijk| [1991]
prior. In the third approach, Schotman and van Dijk [1991] use a conjugate normal prior for 6" with a
variance term proportional to ZQﬁ. The higher the degree of persistence of the stochastic process the
lower the prior information on the parameter #°. We augment this idea to the m dimensional setting,

such that

wsp(0F |1, 52) = N (ag,O,Am (I — )" Z2((In — y)—l)T) . (18)

The Schotman and Van Dijk prior will be used in all further parts of this paper; flgp is set to 1000,
ag o remains Opx1. With (18) the integral of 7(6F,v|X) for the Vasicek model becomes finite. However,
we observe in simulation experiments that the wall does not disappear. Therefore, we have to construct
a sufficiently informative prior.

In Section [3| we observed that the information matrix becomes ill-conditioned, if some eigenvalues of
v were close to one. Therefore, in addition to the prior (18), we use a prior punishing v with eigenvalues
A= Aty dom) ! close to one. We choose a function g : R — R putting equal probability weight to
any Ay; € [As, A*], with 0 < A, < A* < 1. To the left and to the right of this interval we assign smaller prior
probabilities. The degree of punishment will be controlled by the hyper-parameters v, and +* fulfilling

Yo = ry*%. Then with ¢ = (1 — A\*)7" we get

m

g(M\i) = (/\1*1&1@* + el <<+ (1 - /\w‘)”*hm»*) Ly,.ef01) and ms(v) o< [[9(Awi) - (19)
i=1

In the limit v* — oo, corresponds to a shrinkage prior, where no prior mass is put on A,; > A*.

Ay* = 0 for the remaining part of this articlem

10(i) If v is lower triangular A,; = v;;. (ii) To sample v, the Metropolis Hasting algorithm has to be used. Although
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Results for the Ornstein-Uhlenbeck and the CIR Setting: We generate M = 500 paths of (X,,). For each
m=1,...,M we obtain the estimates \ilf by using MCMC (50,000 MCMC steps and 20,000 burn in-steps).
The parameters are 7 = 3, v = 0.99 and ¥? = 1.22 for the Vasicek and %2 = 0.72 for the CIR setting.
The estimates \iln]f are given by the sample means from the MCMC steps following the burn-in phase. From
these M estimates we calculated the the mean, the median, the standard deviation SD, the minimum, the
maximum, and the 2.5% and 97.5% quantiles. This is done for the Vasicek and the CIR model. Table
and present the results from this Monte-Carlo study for the prior and the shrinkage priorm =2
with , the different \* are shown in Table |1| and We observe that with the variation of the
estimates still remains substantial. By increasing v* we can obtain more reliable estimates. To avoid time
consuming fine tuning, we propose to stick to a shrinking prior with A* = 0.995. This is sufficient for the
simulated data where the true v is known. For the empirical data such a strong assumption seems to fit
as well (see also |Jones| [2003]) when \* is ”sufficiently larger” than the true v but "sufficiently smaller
than 17. The application of the shrinking prior is not completely free of cost. First, of course, the true
parameter has to be within the interval [0, \*). Additionally, if the parameter k” = —log(v)/A is of our
main interest, we observe that although the impact of the prior on v seems to be reasonably small, the

P

impact on £° can be quite substantial.

In addition we also estimated v, 8, 6% by means of maximum likelihood. Without any restrictions in
the optimization routine we obtained results comparable to the results at the beginning of Section [4.1
For most m we observe that the maximization routine provides us with very small or very large estimates

050

of the parameters (also values larger than +10°" are observed), the highest variation is observed with the

already investigated in [Hoogerheide et al.| [2007], it is worth noting that sampling ¥ by means of the Metropolis Hastings
needs some tuning if v is close to one. With Gibbs sampling the variance of the conditional posterior p(HP|X7 v, 22) becomes
automatically large with v close to one, while in the MH scheme efficient sampling requires that this effect is included in
the proposal density. (iii) Alternatively we can also use an informative normal prior with a,o equal to the (highest) first
order autocorrelation ACF, (yeP* (1)), i = 1,...,k, and A, = A, 0A/T. A, is set to 5, 10 or 1000, where the Gibbs
sampler can also be applied. For a univariate affine term structure model, the first order autocorrelation of the yields fulfills
ACF:(yiP% (1)) = % < v. The less or equal to is caused by market micro-structure noise. For m > 2 a prior of this
kind is a much stroﬁger a-priori assumption on the eigenvalues of v. This prior will not be applied further in this article.
(iv) On the other side max{KC\Fl(yf;"S(n))} can be used as a lower bound for \* with the shrinkage prior. Smaller cut-offs
should not be used due to the relationship obtained above.

HNote that Table|l|and [2] present means of the parameter estimates \i/,f . Further tables present parameter estimates from
one MCMC chain.
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parameter 7 as with MCMC output.

4.3 Instantaneous Yields with an A,(3) Setting

We continue to work with the parameters used at the end of Section As regards , this specification has
the advantage that closed form solutions for A(7) and B(7) are availablem Therefore we avoid problems
that might arise with the numerical solution of ordinary differential equations and increase computing
speed. Satisfying the Feller condition for the square root component requires x1; 67 > Y2, /2. For %2 we

stick to an inverse Gamma prior with parameters ng and Sy. This yields:

7(OF) o wsr(v) - msp (622, v) - 1P oP>52 /2) -m(%?) . (20)

By the prior , either with +* finite or with the shrinkage prior as a limit, we automatically fulfill the
restriction required for eigenvalues of v smaller than one. Performing Bayesian parameter estimation with
this model confirms the results obtained with the Vasicek and the CIR model. With a shrinkage prior,
where \* = 0.995, we have a prior which is easy to implement with relatively good sampling properties.

Therefore, we continue to work with a shrinkage prior on the eigenvalues of v also in this A;(3) model.

5 Yields observed with Common Micro-Structure Noise

We proceed with the Aj(3) setting already investigated in the Sections |3| and To perform Bayesian
parameter estimation we augment the set of parameters (see Tanner and Wong [1987]) by the latent
process X. While the density of X1,..., Xy is determined by the model assumptions (see ), we have
to specify the prior 7(Xo, ¥). In addition, we have to specify the priors for k%, 6%, agps and dy. For the
diagonal components of k9, Xy, and 69 we use a gamma prior with parameters nog = 1 and Spg = 1,
while for dg, X2 and X3 - all living on R - we use a normal prior with mean parameter zero and

variance 1000. Since K,3PQ = fngQ was assumed, the prior for this parameter is already specified. To derive

2Here the Mathematica package has been used.
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a stationary process under Q the Feller condition for the square root component requires K?IG? > 2 /2.
To derive a B of rank m, we apply the prior 7(det(B'B)) on the determinant of (B'B). Here we
assume that 7(det(BTB)) o |det(BTB)\dll‘det(BTB)KdO; where d; was set to 1 and dg = 107!, For the

data considered in this article we observe that the impact of this prior can be neglected.

2

For the micro structure noise parameters m(o2,;) = [,_s W(Jgps(n)) is assumed. 7(0¢,(7;)) is trun-

eps
cated inverse gamma ZG7(noeps, Soeps) With ngeps = 1 and Speps = 1. The truncation is such that

ﬂ(agps(n)) > 0 for 0 < 02, (1) < V(Yeps(7i))- V(yeps(7i)) can be estimated from prior data, or if not avail-

eps
able — by being less clean — from the actual data. This truncation was necessary to improve the properties
of the Bayesian sampler. In more details: For the updates of the latent process X we mix between random

walks proposals and proposals based on running the Kalman filter as introduced in |[Frihwirth-Schnatter

2
eps

and Geyer| [1996]. For the second opportunity to work o , should not be too large. If the sampler is

2

started with some X not sufficiently close to the true X, the sampler generates o,; much larger than

2
eps*

A lot of these samples are even larger than V(yeps(7i)), while 02,,(7:) < V(yeps(7)) by the

the true o
model assumptions. Without a-priori restrictions on ngs(n) proposing from the Kalman filter turned out
to be inefficient. This is the reason why we impose a truncated inverse gamma prior on the variance of
the noise terms. For the sampling of ¥ see Appendix

The parameters are sampled by means of a MCMC sampler. We set A* = 0.995 and work with a
shrinkage prior; working with prior (19)), v* = 2 and A* = 0.99 does not improve the estimation results.
Table [3] presents typical MCMC output for simulated data. Starting the sampler at different initial values
results in very similar estimates. As already observed with instantaneous yields the estimates of v are
close to their true parameter values, while the non-linear transformations x* show an upward bias. A
modest upward bias is also observed for most of the estimates of the volatility terms ¥2. For the estimates
of 2 quite a large variation is observed. Finally we have to point out that the parameters Jgps(n) are
difficult to estimate for the smaller maturities, the upward bias can be substantial. We try to explain

why the noise for smaller maturities is so difficult as follows: When we consider we observe that for

smaller maturities the absolute values of the elements of B(7;) are larger while |A(7;)| is small and vice
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versa. That is to say the larger 7; the smaller the impact of B(7;)X,,; i.e. the variance of the model yields
decreases. For the small maturities very precise estimates of X are necessary to obtain precise estimates
of ngs (1;). However, when starting the sampler with the true parameters and the true X it is not very

difficult to estimate the noise parameters for the different maturities.

6 Parameter Estimation with Empirical Data

This section applies the econometric tools developed in the former sections to empirical term structure
data. From the Federal Reserve (http://federalreserve.gov/releases/h15/data.htm) we downloaded yields
for the time span March 8, 2003 to June 26, 2009. A full panel of maturities from one month to thirty
years is available for these periods. Since the thirty year maturity time series exhibits a lot of missing
values this maturity has been excluded. This gives 7 = {1/12,1/4,1/2,1,2,3,5,7,10,20}, k = 10 and
N = 413 observations per yield time series. These discrete time yields were also translated to continuous
compounding. Although this H-15 data set can only be seen as a proxy for the risk-free term structure,
we also use it since it is often used in recent literature (e.g. Chib and Ergashev| [2009]). Standard tests on
a unit root only reject the zero of a unit root for the long maturity.

In addition we derived a risk-free term structure data from USD LIBOR (maturities of 1, 3, 6, 9
and 12 months from Bloomberg) and USD swap rates (middle rates, for maturities 2, 3, 4, 5, 6, 7, 8,
9, 10, 12, 15, 20, 25 and 30 years from Datastream). Similar to [Filipovi¢ [2009][Chapter 2] we derived
continuously compounded spot rates by means of ”bootstrapping”. Here we worked with £ = 11 maturities,
T={1/12,1/4,1/2,1,2,5,7,10,15,20,30}, and N = 500 observations. The time span considered was July
1, 2002 to June 2004.

Tables [ and [5] present the parameter estimates for the empirical data. We want to point out that some
differences in the parameter estimates can be observed when comparing the estimates for the two data sets.
With both data sets the estimates of the parameters v;; are all larger than 0.95, the standard deviations are

low as observed with simulated data. We also know that the impacts of small changes in v have relatively
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P especially in /%:1;2 and /%31:3 differences are observed. While /%?1 and /%2% are

large impacts in k. In &
quite similar we have once again differences in the third term, a similar effect arises with the estimates
$2. The estimates 8y and 69 are different. We also have to point out that due to higher variance of the
H-15 yields (range between 0.24 for the highest maturity to 2.5 for the short term maturities) compared
to the European yield data (range 0.057 to 0.19, highest variance for medium maturities) the estimates

of some ¥2 should be higher; in our estimates this is the case with 253 In addition the estimates of the

micro-structure noise parameters 52;,5(71') are higher for the H-15 data set. Based on our estimates of

) 62p5(78)
V(Yeps(7:))

variance of the yields observed. For the European yield data we observe that between 32% and 99% of the

the noise terms 521,8 (13), estimates the proportion of the micro-structure noise in terms of the
variance is due to market-micro structure noise, while for the H-15 data the numbers vary between 12%
and 98%. This impact can be considered to be substantial. The very high percentages are observed with
the longest maturites where the impact of X on the yields becomes very small and the model yields are
mainly determined by A. This explains why almost all the variation with the large maturites is considered

to be micro-structure noise. In addition we have to remark that based on our expierence with similuated

2
eps

data, especially the estimates for o7 .(7;) for the shorter maturities have to be interpreted with care. Last
but not least the inefficiency factors are high but also remain in the range reported in [Chib and Ergashev
[2009].

Finance literature often compares the parameter estimates of x” to k% and 8F to 6% to infer risk
premia. Suppose that we stick to the following rule of thumb: parameters are said to be significantly
different if the intervals [/%S + sd(mg)] and [ & sd(kL)] do not overlap. Based on this rule only for #4; in
the H-15 data set a significant effect can be observed, for all other mean reversion parameters no significant
risk premium can be observed. In contrast to the mean reversion parameters 69 is significantly larger
than 67 in both data sets. However, we once again have to point out that the standard deviations of the
samples of 8 strongly depend on the prior used. Since we already know that the standard deviation of

the estimates of 7 are strongly influenced by the choice of the prior, the results of the above comparison

should be handled with care.
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7 Conclusions

In this article we investigated the impacts arising from near unit root behavior on parameter estimation
with affine term structure models. We showed that the information matrix approaches a singularity when
serial correlation increases. To cope with this problem in a Bayesian framework, we constructed priors
regularizing the marginal distribution and allowing for stable parameter estimation. More precisely, we
applied a multivariate version of the Schotman and van Dijk [1991] prior to the level parameters. Since
this is not sufficient to get reliable parameter estimates, an informative prior punishing parameter values
where weak identification occurs is compared to a more simpler shrinkage prior. Due to its simplicity
and the fact that the more complicated prior does not really improve the estimation results this article
recommends to work with a shrinkage prior on the mean reversion parameters, which is in line with |[Jones
[2003]. By means for this prior, eigenvalues of this matrix close to one have zero prior probability mass.
That is to say sufficiently strong priors are necessary to get reliable parameter estimates.

This article provides also important insights for a finance audience. The first point is that the level
parameter of the risk-free term structure is difficult to estimate due to a high degree of serial correlation.
This has important implications: When using affine term structure models, this implies that this parameter
can only be estimated with a low precision. Second interpreting differences in the level parameters as risk
premia, should also be handled with care.

Last but not least we have to raise the question why affine term structure models have become so
popular although there are so many problems from an econometric point of view. Regarding this issue,
affine term structure models provide a mathematically elegant and consistent way to describe the whole
term structure by a parsimonious model. The principle of no-arbitrage is fulfilled for all yields. In addition
this class of models offers a natural way to include other sources of risk such as credit and liquidity risk,
and can therefore be used for bond, corporate default swap and option pricing issues [among a plenty of
literature see e.g. |Lando, 1998} |Duffie and Singleton, [1999; Driessen, 2005; Feldhiitter and Landol, [2008;

Pan and Singleton, [2008]. Thus, we conclude that if we continue to stick to this class of models, we have
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to be careful as regards parameter estimation.
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A The Canonical Representation of an A;(m) Model

Given the notation of Section [2| an affine stochastic process is defined as follows:

Definition 2 (Affine Process). (Y (t)) follows an affine stochastic process dY(t) = p(Y(¢))dt +
o(Y (t))dW (t) if the (positive definite) diffusion matrix o(Y (¢))o(Y (t))" and the drift term B(Y (t)) are

affine functions in Y'(¢) (see Filipovid| [2009][Definition 10.1 and Theorem 10.1]).

Diagonal Diffusion Term: T4 is called an affine transformation if ToY (t) = LY (t) + 0. Lisam xm
non-singular matrix and ¢ is a vector of dimension m (see Dai and Singleton|[2000][Appendix A]). Equipped

with Ty we get:

Definition 3 (Affine Process with Diagonal Diffusion Term). An affine stochastic process is said to have
a diagonal diffusion term if there exists an affine transformation T4Y, such that 3(X(t)) is affine in X (¢)
and [o(X (£))o(X (t)) )i = a; + b, X (t) while [o(X (t))o(X (t)) )i =0, for i, =1,...,m; @ > 0 and b; is

a vector of dimension m. See Cheridito et al.| [2008] and Dai and Singleton, [2000].

By considering (1)) and Dai and Singleton! [2000], the process (X (t)) can be transformed by means of
T4 such that > becomes diagonal. That is to say is a (maybe transformed) representation of an affine
process with diagonal diffusion matrixﬁ

Dai and Singleton| [2000]-canonical representation: Let us partition the matrices k2 and B as follows:

BB BD BD
K;Q _ Kix1 Elx(m—l) : B— I B Ix(m—1) (21)
DB DD
Kim—l)xi  ®(m—1)x(m-1) Om—nyxt O(m—1)x(m—1)

6 is partitioned into 8 and 6P, where the first term is of dimension ! while the second is of dimension

m — [. The same slip-up has already been applied to X (¢). The diffusion matrix is diagonal, such that

13Regarding the question, whether any affine process can be transformed to the structure given by (1)), [Cheridito et al.
[2008] have shown that this need not be the case. |Cheridito et al||2008][Theorem 2.1] provide a condition when such a
transformation of the affine model in Definition [2| to the structure given by is possible; counterexamples when their
condition is not met are provided as well. For m < 3 such a transformation exists. Even if higher dimensional processes
are used (e.g. |Duffee| [2011] with term structure data, when credit risk is added as in |Feldhiitter and Lando| [2008] or
CDS spreads are priced [Schneider et al.| [2010]), models with diagonal/diagonalizable diffusion matrix are mainly applied in
financial models.
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SVS(X ) (SV/S(X(#)) " = %2,/S(X(¢)). Dai and Singleton [2000] have demonstrated that under the

following conditions the model is admissible and identified.

Definition 4 (Dai and Singleton| [2000]-canonical representation of an A;(m) Model). Consider (1)) with
diagonal diffusion matrix. Admissibility and identification require: (i.a) If I > 0 then % is of the structure
. First, kB0 = 0;x,_1, where Ojxm—_; is a I X m — [ matrix of zeros. kij <0for1 <j<landi#j
and Z;Zl kij0; > 0 for i = 1,...,1 (which specifies the K7 and kPP blocks). (i.b) If I = 0, then k€ is a
lower triangular matrix. (ii) HZ.Q satisfies 91.@ >0fori=1,...,1 GiQ =0fori=10+1,...,m. é and 6;,
i=1,...,0 are free. J is a free parameter, with §; > 0 for ¢ > [ + 1. (iii) Regarding B, I;; is the identity
of dimension . The elements of the submatrix BEL fulfill Bij>0for1<i<landl+1<j<m. By=1
for i =1,...,l. This results in the matrix B as described in (2I). a; =0 for i =1,...,l and oy =1 for
i=1+1,...,m. (iv) The elements of the main diagonal of ¥ are equal to 1; ¥;; =0 for all4,j =1,...,m,

1 # j, by the assumption of a diagonal diffusion matrix.

B The Minimal Model

Let us consider the state space model :

vy = A-BX,+ /02

eps N

X, = vXp1+ (In—v)0 +2S, 1VAe, ,

2

ops(7i) < co. In addition we assume that the k x m

with the non-singular k£ x k matrix Jgps; where 0 < o

matrix B has rank m, which is the dimension of X,,.

Definition 5 (Minimal Dimension). A state space model is called controllable if for any two vectors z,
and z; € R™, there exists an integer v and noise terms &, such that X, = xp if Xo = z,. A state
space model is called observable if and only if Xy is completely determined by y,, n > 0, given e, = 0.
The model is called minimal if it is controllable and observable. (see Brockwell and Davis| [2006][Chapter

12.4]).
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Regrading controllability, we get Xo = x4, X1 = vaq+ (I, —v)0F + Hieq, with Hy = E\/Sn,l(:ca)\/g,

Xo = V24 + (Im + V) Um — V)07 + vHiey + Haeo, ..., Xy = V24 + (I, + v)0F Z;):_ol vt
Z;);ol ViH;j1€i01; where Hi(z;_1) = 2+/Si_1(z;_1)VA. Then z, can be derived from z, if C, =
(Hy,vH, 1,v?’H, o,...,v"" Hy) has rank m, which is the dimension of X, (see [Brockwell and Davis

[2006][p. 490]). H; is diagonal, positive definite and of full rank by the model assumptions. v is of full-
rank by the stationarity assumption. Therefore all the terms in C have rank m, such that C' has rank
m. That is to say the model in controllable. Observability follows directly from Brockwell and Davis
[2006|[Theorem 12.4.4]: Consider the m x jk matrix O; = (BT, v"BT,...,vT9-1BT). If O, has rank m,
then the system is observable. In our case O,, is of rank m since B has rank m by Assumption [3] This

can be summarized as follows:
Lemma 1. Suppose that Assumptions hold, then the system is of minimal dimension.

Example |l| already demonstrated that we can replace the processes X1, and Xs, by Xln = X1y +Xop,

and X3, = 0 and get the same term structure. In terms of this section we get:

Example 4 (Counterexample). Consider a two factor Vasicek model investigated in Example Since
Ii% = m% we get Bi(7;) = Ba(mi) = ﬁ(l — exp(—k9T;)) for all 7;. In this case B has rank 1. v is
diagonal with elements v;; = exp(—+ A). The elements of Oy, are given by

J J J J
BT vip 0 By Bar -+ Bpu viBu v Bar - 141Bu
1% = =

J J J J
0 vy Bz B2 -+ B VpBi2 15B2 --- 13,Bio

such that if ¥T/B" is a linear combination of the rows of B. This results in rank(O,,) = 1.

What remains to discuss is when B has full rank: For the general systems of ODEs we still assume
Q

that B has full rank. For independent Gaussian terms different x;; are sufficient.
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C A Note on Particular Noise

Let us now assume that m maturities are observed without noise, that is to say in contrast to Assumption 2]

ein = 0 for m maturities. For these m yields we arrive at the log-likelihood

o, yfix’eps) = —Nlog |dethim] + E(WP;X) ) (22)

while for the remaining k — m yields observed with noise we get ¢(¥;y°P*>"f X). Bf® stands for the sub-
matrix of B corresponding to the maturities observed without noise. y/*€Ps ¢ R™ and yers"f ¢ Rk—m
are the yields observed without and with noise. In the one dimensional case, where |detBf*| =|B/%|
no problems arise if k% is sufficiently larger than zero. With m > 1 a further important problem arises.
Although, the matrix B has to be of full rank by the minimality requirement, the matrix B can be
ill conditioned. The fraction of the largest over the smallest eigenvalue of B/* can become quite large if
the rows of B/™ are close to colinearity. If this is the case |detB/*| becomes a dominating term in the
likelihood . Due to the high condition number, the impact of a small change in some component of
U? can be tremendous. On the other had with common noise B is only used to transform X, into model
yields. Since financial applications favor multi-factor term structure models, this analysis provides us
with the important insight that the assumption of particular noise should not be applied. This problem
goes back to a standard problem of numerical linear algebra@ In other words, with particular noise
X, = (Bfiw)=1(yli=Ps _ Afir)  Small changes in B result in large changes in its inverse. X, is

strongly affected by small changes in ¥9. The following examples should shed some light on this problem:

Example 5. Consider a two factor Vasicek model with independent factors. Here, with Bj(n) = m(l —
33T

In a former version of this paper we estimated a Vasicek model with no market price of risk. This setting can be
transformed to the structure of the instantaneous yield model. After applying the priors used in Section 4] we observed good
sampling behavior with particular micro-structure noise for the Vasicek model with zero market price of risk. When insisting
on particular noise with A;(3) models, the likelihood approximations of [Alt-Sahalia and Kimmel [2009] can be used.
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exp(—/{?jT)), we get

Bi(m1) Ba(m)

Bi(m2) Ba(m)

The eigenvalues are 5 (B1(7'1 +B2 (12)) j:\/ 1(m1) + By (12))%/4 — By (71)32(72) By (72)32(7'1) . If the
determinant Bj(71)Ba(r2) — Bi(m2)Ba(r1) = 0, the eigenvalues are Bj(r;)Ba(m2) and 0, such that the
condition number goes to infinity. A singular Bf* is derived with 7, = ™ or /-@?1 = /-;22 Therefore also

for | =~ 79 and n% ~ K,% the condition numbers can remain large.

Example 6. Consider the A;(3) model investigated in Section |5, Assume 7/ = {2,510}, then the
eigenvalues of B/ are 3.8607, —0.0958 and 0.0010, such that the fraction of largest over the smallest
eigenvalue in absolute terms is 3697.9. When using different 7/ the smallest fraction of eigenvalues still

remains above 1000.

D The Information Matrix

D.1 Information Matrix for the Instantaneous Process of an A;(m) Setting

Let us consider @: For a stationary (X,,) the covariance matrix is Cov(X,,) = E(X, —0)? = E(X, X,] ) —
09", This matrix is positive definite. By the Feller condition we get (X2) > 0 (a.s.). This results in
S(Xn—1) > 0 by the assumptions of Section |2} For the following analysis it is sufficient to know that the
m x m matrix Cov(X,,) is positive deﬁniteE] It can be derived in closed form - up to an evaluation of a
matrix exponential - from (Cuchiero et al|[2010]. Alternatively, if S(X,_1) is constant or approximated
by S(6%), we get from Hamilton| [1994][p. 265]: vec(Cov(Xy) = (Iym) — C) tvec(325,-1(67)A) where
C=wQvr). @ stands for the Kronecker product.

Let us consider the log-likelihood . V' are the non-restricted parameters of the m x m matrix

v. 0 < m! < m? is the number of free parameters in v. By means of matrix calculus (see e.g. [Poirier

5 Existence of 2k moments is treated in [Filipovi¢| [2009][Chapter 10, Lemma 10.7], for general stationarity conditions the
reader is referred to |[Kim and Glasserman| [2008].
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[1995][Appendix B]) we get:

. (23)

n

826(WP; X) ZN: [G(Xn v X1 — (I — y)eP)]T 5 [a(xn — v X1 — (I — v)0F)

- _ —1
dvec(V vec(v')T —~ dvec(v') > Ovec(v')

The matrix %(V,)(Xn —vX,_1 — (I — v)0F) is of dimension m x m/,. The elements of this matrix are

given by Po/[(— X1 + 07), (—Xon +0L), ..., (=X s + 0L)], where P,/ projects on the m/ columns of the
m x m? matrix [(—X1, +6]), ..., (—Xmn + 0:;)]@

Using the diagonal structure of the diffusion matrix we get

N
826(\PP3 X) _ Z 1, (_Xj" + ef)lvij#o(_an + 95)1%11;750 (24)
81/1'3'81/1,1” —_ (i=v) Z?iSM(Xn_l)A ’
for i,j,v,w = 1,...,m. In X,, enters into the numerator while X,,_1 enters in the denominator.

Consider this fraction as a function ¢g(X,, X,—1) such that we can approximate the expectation of the

fractions by the first order approximations (see [Paolella, [2007]|[Chapter 2.3]). This yields

E(_@%(\IIP;X)) ~ N [Cov(Xy)] juw (25)

81/1']'61/,0“] . W Vij;ﬁoll/vw;éol(i:v) .

In S;;(6F) the parameter §7 is plugged in for X,,—1. [Cov(X,)]jw is the element (j,w) of the covariance

matrix. In the same way as described above we can derive all blocks of the proxy of the expected values

of the m], x m], Hessian. Since Cov(X,,) is positive definite, E (— oot

) has to be positive definite.
If only a mj, x mj,, submatrix of the m x m is considered, this submatrix has to be positive definite by

the principal minors criterion.

2 P.
Based on E (—%) becomes close to a singularity if EQSii,n_l(QP)A becomes large. Al-
ternatively the determinant of the covariance matrix can be small as well. From estimates reported in

literature neither the former nor the latter case can be expected.

Next we consider the parameter 67, with the non-restricted components 6 /, its number is mj. By

$The symbol P. is used as a projection device either to project on the non-restricted elements of a vector or to project on
the elements of a matrix which are non-zero due to restrictions on the parameters.
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matrix calculus we get

2 P. N
W = - ZPGP' [(Im — ) (228, 1 A) (I, — 1/)] ) (26)
n=1

Assume that all elements are free parameters, then the expectation of becomes
N - (I —v) (527 AE(S, ) (T — 1) - (27)

By the diagonal structure, (¥?)~! is given by its reciprocals. E(S !

n—1

) can be approximated by a (first
order) approximation of the expectation of 1/S;,_1 (e.g. 1/Sjn_1 ~ 1/S4(6F) ). £~!is a proxy
of (X2)7'AE(S,%,). Here it is sufficient to know that E(S,';) > 0, which is implied by S,_; > 0
(a.s.). Assume that all parameters of 6 are free. To get a regular matrix, the quadratic form (I, —
v)TY¥~1(I,, — v) has to be positive definite which is the case if its determinant is larger than zero. By the
properties of determinants we get det [(I, — v) 'S (I, — v)] = det [(I,, — v)] det [S71] det [(In, — v)).
Since det [E71] > 0, is positive definite if det[(I,, —v)] > 0. This condition is satisfied if the
eigenvalues of I,, — v are strictly positive, which is the case if the eigenvalues of v are smaller than

one. These eigenvalues have been abbreviated by A, = (Ap1, ..., )\l,m)T. If some parameters of 0F are

restricted, then we get the corresponding part of the information matrix by means of

el 0%(wr; X)
00F" (9F")T

> = N Py (I — )T (53) M AE(S; ) (T~ )] (25)
If one eigenvalue of v is equal to one, this does not automatically imply that is singular. The matrix
is regular if the projection on the Pypr on the rows of (I, — v) has rank mj,. Since for an arbitrary matrix
A, rank(A) = rank(A") = rank(AAT) = rank(A" A), the rank of Pypr (I, — v)(In, — v) ") has to be
less or equal to m). The projection is a submatrix of (I, — v)(22)"*AE(S,*,)(I;n — v) . Full rank of

(I, — v)(2?)7YAE(S,!,) (I, — v) T implies a rank of m/, for this submatrix.
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For the matrix ¥? we get:

%
26 ‘IJP' 12121 — 5
8(822’ Z “’nilA with ¢; = Xj, — Z VijXin—1 =228 n-10¢; . (29)

n=1
All the ij terms are zero be the diagonal structure of ¥.2. can be transformed to
N 122 E SAEI

(WP X) i crE— No1_ .
822 = _Z - _Z ?EZ.)Q ) (30)

11 n=1 i

<.

Since X,_1 and ¢; are independent, taking expectations yields:

If also some diagonal elements would be fixed to some positive values a-priori then we could proceed as

with projections as applied to the other parameters. Last but not least, if some B;; are free parameters,

we get

0%0(WP; X A28 1A+ ¢

(7’) [ Z Xj,nlew,nfl . %, n3 1 Cz

0B;; 0By — S AS”n 1

N
- — Z X. X _%E?isii n—1A + 22 Sii,nflAQ?n (32)
Jjn—1Awmn—1 (E2A)S3 ) .

mn,n—

n=1

These terms can be non-zero for ¢ = v only. The conditional expectation of these terms are

020w X)) 3528iin1A Xjn—-1Xwn—1
E(———"|X,_ = B Xip1Xon1 2t 2 |X,,_ | = 22200
( 0B;;08B,. | 1) TN I 252 (33)

1,n—1 it,n—1

Similar to what we did with v, where X,,_1 shows up in the numerator and the denominator, we can do

a first order approximation (see Paolellal [2007][Chapter 2.3]), where each element [Cov(X,,) + 0707 T];,

of the mjs; x mjs; block matrix for each i = 1,...,m is divided by 2 E(S%, _,); B’ are the free elements of

,n—1

B, m/y is the number of free elements - mj; is the number of free elements of the first column of B. Since
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P.
the matrix Cov(X,,) is positive definite, each of these blocks is positive definite, such that E (—624(\11 ’X))

9B;;0Byw
has to be positive definite. This matrix can become ill-condition matrix with large S ,—1 and an ill-

conditioned covariance matrix of X,. Projecting on the non-restricted elements provides us with the

2(TP;X)
block regarding E ( W)’

Insofar we have calculated the blocks of the information matrix I(¥¥), which are located along the
main diagonal of this m/, X m/, matrix; m/, was the number non-restricted parameters under P which
is equivalent to the number of free elements in WX, In the general setting the expectations of the mixed

. s 92(vP;X)  920(¥F;X) . . .
partial derivatives 1,98 v, 00, etc. need not be zero as in the Vasicek setting. However, to show

that I(WF) is (strictly) positive definite, we can consider the principal minors M _ of this matrix (m/p x m/s
submatrices with m/, < m/p). For a positive definite matrix all principal minors along the main diagonal
of M., have to be positive (see Mas-Colell et al,| [1995][Theorem M.D.2]). For the underlying setting
let us rearrange the matrix I(¥F) such that is start with the block for 7. Here we have observed that
this block is singular if its rank is less than mj,. If this block has not full rank at least one of the my,
principal minors has to be zero. In this case the information matrix becomes singular. If some of these

principal minors are small, then the information matrix becomes ill-conditioned. This is the case of some

eigenvalues of v are close to one. If necessary, we can proceed in the same way for the other parameters.

D.2 The A;/(m) Affine Setting and Micro-Structure Noise

Generally, ¥® affects A and B, which allows us - given X, - to derive the model yields y,,. We consider
(09, agps; y°P5|X) as described by . The non-restricted elements of U@ are denoted by ¥%. For those
parameters in T¥9 also entering in UF we get additional information from y*. Here the corresponding
expectations of partial derivatives have to be put to be added to elements of I(¥U%). Such elements are
the non-restricted elements of ¥? and maybe elements of k9 and #% which are equal in both measures.

For fixed X we get

(T, 02,y X N !
E (09, 02,y )|X S (A —BX,)
vec(T)vec(W?)T Odvec \IJQ)

n=1
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-
(a'gps)*l consists of the reciprocals of the noise volatility terms described by . {m} is of

dimension k times the number of free elements m’Q The existence of these partial derivatives already

follows from |Gronwall [1919]. From we know that 6(1(612();73) only depends on k% and ¥; for Gaussian

processes it depends on k9 only. Although A and B and its corresponding derivatives are not available

82[(\I}Q Eps,yeps IX) |
Bvec(‘I/Q)vec ‘IIQ

in closed form, we can derive the terms of this symmetric m’Q X m’Q matrix E (

by means of

v
B 18<A<n>a£<n>x )3(A(Tz)a;, gmxn)] | (35)

oV’

i— i—

for all \Il?_, \IJ?_ € U9 x v9. aAigl) and 8;11(51) have to be derived numerically. In addition demands

for E(X,) = 07 and E(X,X,] ) = Cov(X,,) + 0F6P T which are available in closed form.

E The Marginal Distribution of 67 and v in the Vasicek Model

By means of De Pooter et al|[2006] or De Pooter et al. [2008] we get the marginal distribution of the
parameters 67, v for the Vasicek model. With X := (X1,..., Xn), X_1 := (X0, X1,...,XN_1), M4 :=

—A(ATA)TIAT| Iy is the N-dimensional identity matrix, Agp = X 1 —607, A, = (1-v)X, ¢(¥F) :=
Fa( IU_V” ) = Fn(5%), Far(.) is the probability distribution function of a standard normal random variable,

and 02 =2 ((X —vX_1)" (X — VX,l))_1 the marginals are given by:

-

(071X, 1, %?) ((X 07)T My, (X — 67) )7 (X L= 0T (X , —6)T ) 2 e(wP) (36

T(r|X) o (<X—vX_1>TMAy<X—vX D) T ONT %u—u) ey - (37)

While the density cannot be attributed to a density currently known in literature, we observe that
the marginal density factorizes into a student-t kernel, the term (1 — v)~! and the indicator function
14,€0,1))- Thus, when v — 1 then (1 — v)~! — oco. Considering , v — 1 results in 02 — oo and
c(¥F) — 0. Therefore the joint distribution 7(6%,v|¥?, X) becomes improper with v = 1. With v close

to one it becomes almost flat.
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F Bayesian Sampling of the Parameters

Let (X,,) follow an affine diffusion with diagonal diffusion matrix. We get the parameters by means of

Gibbs sampling and/or the Metropolis Hastings (MH) algorithm as follows:

Step 1: sample 87 from p(67|X, v, ¥2)
Step 2: sample v from p(v|X, 07, %2?)

Step 3: sample X2 from p(X?|X, 07, v)

Ad Step 1: With v fixed, YV, 9 = X;, —vX,,—1 € R™ and Zy,, = (I;, —v) € R™*™. We can write
Yoo = Zgn0+ \/i’sn; here f)n = 225,_1A. Le. we get a regression model with heterogeneous innovations
(see e.g. |Friihwirth-Schnatter| [2006]). If some components of #¥ are restricted, the analysis can be
performed in an equivalent way. With conjugate priors, 87 can be sampled from a normal distribution with
parameters ap, = Ao,y (ITN, (21,55 Yo)] + Ay fano) and Ay, = (IS4 (Z],8712, )] + A78)
Ap, is the prior variance and ag is the prior mean. Applying the prior mgp results in Ag o= flgp .
(I, —v)~'%2(I,, —v)~'T. For a non-conjugate prior the MH algorithm has to be applied. This normal
conditional density can also be used as a proposal density q(9P ) in a MH step (see also|Chib and Ergashev
[2009], where similar tailored proposal densities are used). For m > 1 we follow this approach, while for

the Vasicek and the CIR model the Gibbs sampler was applied.

Remark 2. Especially in the Vasicek setting sampling from p(#”|X, v, £2) in Step 1 can be performed
by using the Gibbs sampler. Alternatively, the Metropolis-Hastings algorithm can be used. With the MH

algorithm it is important to note that sampling of #” requires a careful choice of the proposal densities

prop _ P
K3

q(.). By using a normal random walk proposal GZP + cpre, € ~ N(0,1) and ¢yp constant (and

”as usual not too large to get sufficiently high acceptance probabilities”), we hardly get large deviations

P

from HZP as done by Gibbs sampler when v;; is close to one. To tackle this problem we propose from a

normal random walk proposal with cyr o< (1 — vk )~L. For the Vasicek model we compared the posterior

0

samples and observed minor differences when the MH algorithm is used instead of Gibbs sampler. Here
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the reader is also referred to |Hoogerheide et al.| [2007] and Hoogerheide and van Dijk [2008].

Ad Step 2: With 87 fixed, we define Yy, = X, —0F € R™ and Z,,, = X,,_1 — 0F € R™"™; m/, is
the number of non-zero parameters in v. From the m x m matrix v, we get the vector 5(v) by deletion
of the elements equal to zero of vec(v). (v) has dimension m!,. Now we get Y, , = Z,,0(v) + \/ien.

N
n=1

v can be sampled from a normal distribution with parameters a, ), = A4, - ([Z _(z] i_lYn,y)D and

n,v=n

n,v=n

- -1
Ay = <[ZT]:[:1(ZT Z_lZn’l,)]) . Alternatively a conjugate normal prior with parameters a, o and
A, can by applied, such that a,, and A, , become a,, = A, ([Zgil ZI Y, )+ A;(l)al,,o) and

nwsn
Ay, = ([ij:l Z;':Vflglzn,y] + A;é)il, respectively (see e.g. |Cameron and Trivedi| [2005]). A conjugate
truncated normal could also be applied by using a,o and A, as above and v € (0,1). Here, v is sampled
from a normal distribution with parameters a, , and A, ,. The sample is accepted if v € (0,1). For m > 1
the eigenvalues of v have to be in this interval. With the prior 7gs(.), the MH algorithm has to be used
but the above conditional density can be used as a proposal density.

For the random walk proposals we use uil;’pmp = v}] + c,pe; we set ¢.p = 0.1 and € ~ N(0,1). While
for the Vasicek and the CIR model the Gibbs sampler has been applied (if possible due to the prior),
we sample v for the multivariate setting by means of the MH algorithm with random walk proposals (in
contrast to |Chib and Ergashev| [2009)).

Ad Step 3: If X2 has diagonal structure, we sample E?i from an inverse gamma distribution with
parameters n;, (degrees of freedom parameter) and S;, (scale parameter) based on the assumption of the
conjugate inverse Gamma prior. The parameters are given by n;, = ng+N/2 and Sj, = Sp+ 3 Zﬁle(Xn -
vXyo1— 0P (1 =v))/[Siin-1A%%])2. In the Vasicek in the CIR model we apply a Gibbs sampler with this
conjugate prior. For the yields observed where ¥2 enters into A and B, the Metropolis Hastings algorithm
has to be applied. Here we mix between proposals from these densities and random walk proposals.

For the parameter §y we applied the MH algorithm. We propose from a normal density which is
derived in a similar way as the conditional density in Step 1. Given X, the other parameters and the
fact the &g enters into A in a linear way allows us to write y/° = 6y + A~ — BX,, + e,,, where A~ is A

without the dg component. In this case sampling dg corresponds to Bayesian sampling of a sample mean
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with heterogeneous innovations. For the updates of 69 and k¥, random walk updates have been applied.

2

For o7,

we applied the Gibbs sampler as in Step 3.
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Parameter Estimates with the Prior 1}
mean(UF sd(WF min(¥F)  maz (VP UP 0.025) median(¥F ¥F 0.975
( (e, (e,
Parameter Estimates for the OU model with v* = 2, A* = 0.9999

v 0.9882 0.0085 0.9498 1.0000 0.9700 0.9893 0.9997
6F 4.8286 127.3978 -1829.6188 1906.1439 -187.0803 3.1611 210.2170
o? 1.4439 0.0917 1.1148 1.9084 1.2752 1.4401 1.6346
xP 0.6251 0.4531 0.0010 2.6948 0.0179 0.5625 1.5939
Parameter Estimates for the CIR model with v* = 2, A* = 0.9999
v 0.9871 0.0080 0.9519 1.0000 0.9703 0.9878 0.9988
6F 28.0817 126.0652 -1436.7104 2320.7493 -52.5715 3.9422 324.4285
o? 0.4919 0.0312 0.3800 0.6488 0.4344 0.4906 0.5568
wP 0.6843 0.4265 0.0018 2.5807 0.0609 0.6410 1.5747
Parameter Estimates for the OU model with v* =2, A* = 0.995
v 0.9882 0.0086 0.9495 1.0000 0.9698 0.9893 0.9995
6F 24114 127.9933 -1880.2639 1864.3128 -200.6264 3.0177 198.4717
o? 1.4480 0.0920 1.1178 1.9111 1.2788 1.4441 1.6393
wP 0.6261 0.4557 0.0005 2.7117 0.0241 0.5627 1.6016
Parameter Estimates for the CIR model with v* = 2, A* = 0.995
v 0.9864 0.0082 0.9507 0.9999 0.9695 0.9872 0.9985
6" 26.0766 121.2544 -1419.3769 2263.3184 -51.2701 3.5733 309.4119
o? 0.4862 0.0309 0.3750 0.6414 0.4295 0.4849 0.5504
rwl 0.7184 0.4334 0.0039 2.6426 0.0785 0.6741 1.6223
Parameter Estimates for the OU model with v* =2, A* = 0.99
v 0.9871 0.0080 0.9519 1.0000 0.9703 0.9878 0.9988
6F 28.0817 126.0652 -1436.7104 2320.7493 -52.5715 3.9422 324.4285
o? 1.4919 0.0312 1.3800 1.6488 1.4344 1.4906 1.5568
xP 0.6843 0.4265 0.0018 2.5807 0.0609 0.6410 1.5747
Parameter Estimates for the CIR model with v* = 2, \* = 0.99
v 0.9872 0.0081 0.9520 1.0000 0.9704 0.9880 0.9988
6" 26.6796 125.1440 -1472.8413 2303.1051 -54.7794 3.6674 320.7548
o? 0.4905 0.0312 0.3787 0.6479 0.4332 0.4892 0.5553
wP 0.6768 0.4273 0.0009 2.5724 0.0606 0.6318 1.5704

Table 1: Parameter estimates for the Vasicek [1977] and the |Cox et al.|[1985] model. Data simulated with 6F =3,v=0.99
and X2 = 1.22 for the Vasicek and 2 = 0.72 for the CIR setting. Statistics obtained from M = 500 simulation runs. Prior

applied to v.
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Parameter Estimates with Shrinkage Prior
mean(¥F)  sd(UF)  min(UF) max(¥F) ¢V 0.025) median(¥F) ¢(¥F 0.975)
Parameter Estimates for the OU model, shrinkage prior, A* = 0.9999

v 0.9862  0.0086 0.9478 0.9999 0.9682 0.9869 0.9992
6" 2.9612 13.7410 -186.1015  190.1522 -20.6280 3.0207 25.8990
o? 1.4337  0.0911 1.1063 1.8921 1.2662 1.4299 1.6229
wF 0.7291  0.4590 0.0053 2.8061 0.0443 0.6888 1.6915
Parameter Estimates for the CIR model, shrinkage prior, A* = 0.9999
v 0.9864  0.0087 0.9475 0.9999 0.9682 0.9871 0.9992
or 6.2284 14.7442 -156.2127  242.4959 -6.7318 3.3476 42.6995
o? 0.4883  0.0310 0.3770 0.6442 0.4313 0.4870 0.5528
wF 0.7208  0.4618 0.0052 2.8210 0.0417 0.6784 1.6921
Parameter Estimates for the OU model, shrinkage prior, A* = 0.999
v 0.9848  0.0081 0.9480 0.9990 0.9677 0.9854 0.9978
6F 3.0093 1.8791 -16.8882 22.9827 -0.7151 3.0004 6.7872
o? 1.4493 0.0920 1.1176 1.9145 1.2800 1.4454 1.6406
wF 0.8044  0.4318 0.0523 2.7981 0.1163 0.7706 1.7162
Parameter Estimates for the CIR model, shrinkage prior, A* = 0.999
v 0.9846  0.0082 0.9476 0.9990 0.9676 0.9852 0.9977
6F 3.0209  1.8547  -16.8976 22.6495 -0.7079 3.0304 6.6702
o? 1.4327  0.0910 1.1055 1.8904 1.2654 1.4289 1.6218
wF 0.8112  0.4340 0.0530 2.8200 0.1179 0.7789 1.7244
Parameter Estimates for the OU model, shrinkage prior, \* = 0.995
v 0.9827  0.0071 0.9482 0.9950 0.9673 0.9834 0.9938
6r 3.0622  0.6808 -1.4025 7.5643 1.6617 3.0615 4.4677
o? 1.4405  0.0914 1.1117 1.9014 1.2724 1.4366 1.6306
wF 0.9117  0.3797 0.2615 2.7828 0.3223 0.8727 1.7378
Parameter Estimates for the CIR model, shrinkage prior, A* = 0.995
v 0.9827  0.0072 0.9473 0.9950 0.9670 0.9834 0.9938
6r 3.0710  0.6693 -1.0711 8.1534 1.8808 3.0103 4.6143
o? 0.4912  0.0312 0.3791 0.6494 0.4339 0.4899 0.5561
wF 0.9160  0.3839 0.2615 2.8306 0.3224 0.8762 1.7524

Table 2: Parameter estimates for the Vasicek [1977] and the |Cox et al.|[1985] model. Data simulated with 0F =3,v=0.99
and ©? = 1.22 for the Vasicek and X2 = 0.77 for the CIR setting. Statistics obtained from M = 500 simulation runs. Shrinkage
prior applied to v.
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Parameter Estimates for A;(3) Setting

true  mean sd min  max q(0.025) median q(0.975) IEF
1281 0.9867 0.9823 0.0065 0.9605 0.9950 0.9684  0.9826 0.9931  82.5969
V22 0.9848 0.9938 0.0011 0.9883 0.9950 0.9911  0.9941 0.9950  12.3765
V39 -0.0019  0.0038 0.0017 -0.0013 0.0081 0.0001  0.0038 0.0072  130.0790
V33 0.9829 0.9464 0.0134 0.9157 0.9768 0.9215  0.9477 0.9704 155.4359
K 0.7000 1.1913 0.4846 0.2618 2.8435 0.3689  1.1567 2.2269
Kl 0.8000 0.4763 0.3682 0.2614 2.9426 0.2639  0.3383 1.6589
Kl 0.1000 -0.0966 0.1098 -0.4479 0.3572 -0.3016 -0.0987 0.1128
Kkiy 0.9000 2.4559 0.7983 0.2618 4.9630 0.8550  2.4795 4.0057
K 0.5000 0.4610 0.0671 0.3123 0.6089 0.3459  0.4480 0.5892 198.1873
Koo 0.7000 0.7634 0.0498 0.6282 0.8684 0.6620  0.7720 0.8424 197.0050
K3Q3 1.0000 1.0923 0.0772  0.9277 1.2707 0.9497  1.1089 1.2380 198.9622
oF 1.5000 1.6014 0.1151 0.6656 2.8691 1.3789  1.5871 1.8949 4.9220
«9? 2.0000 3.1638 0.3816 1.8168 3.8732 2.1398  3.2499 3.6659 193.3803
0o 1.0000 0.7357 0.3195 0.2270 1.9946 0.4071  0.6012 1.5206 195.7308
»2, 0.0625 0.0938 0.0199 0.0491 0.1841 0.0606  0.0937 0.1385 181.5149
2, 0.1600 0.2365 0.0504 0.1384 0.4424 0.1715  0.2202 0.3568 181.2781
233 0.2500 0.2480 0.0311 0.1542 0.3818 0.1936  0.2458 0.3142 147.8921
211 0.2500 0.3045 0.0323 0.2216 0.4291 0.2461  0.3061 0.3721
Y99 0.4000 0.4837 0.0500 0.3721 0.6652 0.4142  0.4692 0.5973
Y33 0.5000 0.4970 0.0311 0.3927 0.6179 0.4400  0.4958 0.5605
02,(1/12)  0.0069 0.0477 0.0576 00112 0.1947 00133 00185  0.1947  63.9079
Jgps(l/él) 0.0072  0.0429 0.0525 0.0100 0.1773 0.0122  0.0167 0.1773  59.3977
Uzps(1/2) 0.0076  0.0368 0.0435 0.0094 0.1472 0.0112  0.0149 0.1472  61.1095
ngs(l) 0.0086 0.0305 0.0315 0.0103 0.1101 0.0118 0.0151 0.1101  60.5161
ngS(Q) 0.0107  0.0248 0.0157 0.0123 0.0641 0.0144 0.0176 0.0641  57.8162
O'gps(?)) 0.0130  0.0235 0.0090 0.0142 0.0451 0.0165  0.0197 0.0451  56.6530
Jgps(5) 0.0183  0.0257 0.0035 0.0173 0.0321 0.0209  0.0246 0.0321  58.5145
o2 ,.(7) 0.0238 0.0277 0.0011 0.0216 0.0284  0.0247 0.0284  0.0284  14.4051
ngs(lO) 0.0302  0.0293 0.0009 0.0230 0.0298 0.0266  0.0298 0.0298 9.4167
ngS(QO) 0.0183  0.0190 3.6E-5 0.0167 0.0190 0.0190  0.0190 0.0190 1.1070

Table 3: A;(3) Model, Simulated Data: MCMC estimates of parameters ¥; shrinkage prior with A* = 0.995. N = 500
observations, k = 10 maturities 7 = {1/12,1/4,1/2,1,2,3,5,7,10,20}. The columns provide the true parameter values and
the descriptive statistics sample mean, standard deviation (sd), minimum, maximum, 0.025% quantile, median, the 0.975
quantile and the |Chib| [2001] inefficiency factor. 50,000 MCMC steps, 20,000 burn in.

48



Parameter Estimates for A;(3) Setting - Empirical US Data

mean sd min max ¢(0.025) median q(0.975) IEF
V11 0.9859 0.0035 0.9811  0.9950 0.9813  0.9852 0.9936  13.9133
V22 0.9902 0.0038 0.9811  0.9950 0.9819  0.9912 0.9948  51.2329
V32 0.0912 0.0536 0.0108  0.2419 0.0225  0.0805 0.2046 198.4277
V33 0.9871 0.0041  0.9811 0.9950  0.9813  0.9866  0.9945  17.7597
kb 0.7392 0.1861 0.2616  0.9950 0.3335  0.7757 0.9841
KL 0.5141 0.2007  0.2614  0.9949  0.2693  0.4610  0.9530
H?I)DQ -4.8105 2.8287 -12.8454 -0.5684 -10.7918 -4.2542  -1.1907
Kl 0.6794 0.2165  0.2614 0.9950  0.2881  0.7019  0.9858
/1?1 0.1472  0.0569 0.0639  0.3957 0.0721  0.1459 0.2547 199.0140
KQQQ 0.7934 0.0900 0.5310  0.9750 0.5691  0.8111 0.9329 198.3452
/{% 2.4098 0.3720  1.0959  2.7352  1.2617  2.5574  2.7004 199.9012
9{3 1.9354 0.1465 0.7277  3.5848 1.6842  1.9011 2.3229 3.0251
91Q 15.9040 3.7424 6.2730 24.6725 8.2071 16.5237 22.1365 199.5094
0o 0.0372 0.0869 -0.3222  0.3270 -0.1303  0.0194 0.1874 179.5633
»2, 0.0905 0.0163 0.0405  0.1445 0.0511  0.0934 0.1162 171.0889
2, 0.3433 0.1846 0.1003  0.9085 0.1227  0.2893 0.7091 195.3897
2, 1.3265 0.5252 0.2089  2.4453 0.2563  1.4723 2.0368 193.2727
Y11 0.2994 0.0286 0.2012  0.3801 0.2260  0.3057 0.3409
Yoo 0.5648 0.1557  0.3167  0.9532  0.3503  0.5379  0.8421
Y33 1.1199 0.2690 0.4570  1.5638 0.5062 1.2134 1.4272
02,,(1/12)  0.7684 08143  0.0492 24694  0.0604 04370  2.4694 197.3384
o2 (1/4) 04959 0.6196  0.0195 24992  0.0244 02781  2.1706 198.0231
Jgps(1/2) 0.4020 0.5901 0.0110  2.4926 0.0154 0.1814 2.1160 198.1032
ngs(l) 0.2631 0.4706 0.0103  2.1548 0.0139  0.0628 1.7133 198.1821
02,5(2) 0.2021 0.3321  0.0109  1.6277  0.0151  0.0797  1.2502 197.9106
02,5(3) 0.2117 0.2493  0.0295 1.2600  0.0413  0.1392  1.0056 197.2610
JEPS(S) 0.2290 0.1258 0.0789  0.7748 0.1169  0.2021 0.6371 193.3388
Jgps(7) 0.2423 0.0702 0.1193  0.5379 0.1607  0.2304 0.4570 176.3249
ngs(IO) 0.2184 0.0417 0.1188  0.3545 0.1596  0.2123 0.3280 117.7855
ngS(QO) 0.2448 0.0104 0.1769  0.2493 0.2114  0.2493 0.2493  23.8948

Table 4: A;(3) Model, H-15 Data: MCMC estimates of parameters ¥ and the |Chib| [2001] inefficiency factor IEF: The
columns provide descriptive statistics calculated from the posterior. The estimates are based on 50,000 MCMC steps, 20,000
burn in. Shrinkage prior with A* = 0.995. N = 413 observations, k = 10 maturities 7 = {1/12,1/4,1/2,1,2,3,5,7,10, 20}.

49



Parameter Estimates for A;(3) Setting - Empirical European Data

mean sd min max ¢(0.025) median q(0.975) IEF
V11 0.9887 0.0040 0.9722  0.9950 0.9804  0.9889 0.9947  53.2176
V99 0.9918 0.0024 0.9824  0.9950 0.9863  0.9923 0.9949  20.4088
V32 0.0182 0.0035 0.0057  0.0265 0.0114  0.0183 0.0242 112.3791
V33 0.9591 0.0119 0.9272  0.9882 0.9352  0.9596 0.9808 161.3796
x 0.9862 0.5449 0.2614  3.3264  0.3001 0.8544  2.3163
Kl 0.5468 0.2558  0.2614  1.9257 0.2708  0.4759 1.2771
KL -0.3721 0.4825 -1.4198 0.7810 -1.1056 -0.4682  0.6002
H?Iz), 2.5286 0.9804 0.2703  6.4312 0.8207  2.4644 4.3904
/{({21 0.2455 0.0923 0.1083  0.5857 0.1281  0.2222 0.5218 199.5059
Koo 0.7603 0.1622 0.4984 1.0261  0.5203  0.7460  1.0004 199.7201
/<;3Q3 1.1244 0.0424 1.0428  1.2512 1.0634 1.1161 1.2175 196.2825
9{3 2.0134 0.0841 0.8178  2.8744 1.7721  2.0244 2.1274  32.9397
9? 9.1917 0.9575 7.6658 12.7288  7.8739  9.0578 11.9971 198.0933
0o -0.8778 0.1989 -1.8218 -0.2427 -1.4092 -8E-01 -0.6436 187.7038
2 0.0395 0.0151 0.0195  0.0944 0.0234 0.0341 0.0774 194.0363
2, 0.1030 0.0485 0.0454  0.2807 0.0536  0.0859 0.2239 195.4531
2, 0.1189 0.0306 0.0696  0.2529 0.0830  0.1099 0.1997 188.3213
211 0.1957 0.0351 0.1397  0.3073 0.1528  0.1847 0.2782
Y99 0.3133 0.0700 0.2131  0.5298 0.2315  0.2930 0.4732
Y33 0.3422 0.0420 0.2637 0.5029  0.2880 0.3314  0.4469
Jgps(1/12) 0.0310 0.0166 0.0117  0.0647 0.0151  0.0238 0.0647  87.4174
ngs(l/él) 0.0293 0.0170 0.0068  0.0581 0.0109  0.0215 0.0581 100.2041
02,5(1/2) 0.0186 0.0181 0.0049  0.0570  0.0061 0.0095  0.0570  86.5584
Ggps(l) 0.0645 0.0189 0.0197  0.0851 0.0296  0.0662 0.0851 119.2183
JgpS(Q) 0.1366 0.0293 0.0665  0.1636 0.0801  0.1469 0.1636 145.6772
ngs(5) 0.1700 0.0180 0.1159  0.1899 0.1352  0.1704 0.1899 105.7929
o2,.(7) 0.1577 0.0135 0.1096 0.1713  0.1299 0.1596  0.1713  84.7395
02,5(10) 0.1370 0.0096 0.0977  0.1459  0.1160 0.1394  0.1459  57.3023
02,(15) 01085 0.0051 00740 0.1113  0.0938 0.1113 0.1113 351514
JgpS(QO) 0.0917 0.0037 0.0665  0.0933 0.0801  0.0933 0.0933  46.1553
ngs(?)()) 0.0811 0.0018 0.0631  0.0816 0.0747  0.0816 0.0816  12.3991

Table 5: A;1(3) Model, Yields from LIBOR and Swap Rates: MCMC estimates of parameters ¥ and the |Chib
[2001] inefficiency factor IEF: The columns provide descriptive statistics calculated from the posterior. The estimates are
based on 50,000 MCMC steps, 20,000 burn in. Shrinkage prior with A* = 0.995. N = 500 observations, k = 11 maturities
7 ={1/12,1/4,1/2,1,2,5,7,10, 15,20, 30}.
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